diff --git a/paddle/fluid/operators/conv_fusion_op.cu.cc b/paddle/fluid/operators/conv_fusion_op.cu.cc index d8b997cca613f660046106512fc03bf55f9b992d..f97ebecfdd90beade3bef824c04ad7b2763eb036 100644 --- a/paddle/fluid/operators/conv_fusion_op.cu.cc +++ b/paddle/fluid/operators/conv_fusion_op.cu.cc @@ -104,7 +104,9 @@ class CUDNNConvFusionOpKernel : public framework::OpKernel { // ------------------- cudnn conv algorithm --------------------- cudnnConvolutionFwdAlgo_t algo; auto handle = dev_ctx.cudnn_handle(); - auto workspace_handle = dev_ctx.cudnn_workspace_handle(); + + Tensor cudnn_workspace; + void* cudnn_workspace_ptr = nullptr; CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType( cudnn_conv_desc, CUDNN_DEFAULT_MATH)); @@ -118,19 +120,24 @@ class CUDNNConvFusionOpKernel : public framework::OpKernel { workspace_size_limit, &algo)); VLOG(3) << "cuDNN forward algo " << algo; } else { + cudnn_workspace = + ctx.AllocateTmpTensor( + framework::make_ddim( + {static_cast(workspace_size_limit)}), + dev_ctx); + cudnn_workspace_ptr = static_cast(cudnn_workspace.data()); + auto search_func = [&]() { int returned_algo_count; std::array fwd_perf_stat; - auto cudnn_find_func = [&](void* cudnn_workspace) { - CUDNN_ENFORCE( - platform::dynload::cudnnFindConvolutionForwardAlgorithmEx( - handle, cudnn_input_desc, input_data, cudnn_filter_desc, - filter_data, cudnn_conv_desc, cudnn_output_desc, output_data, - kNUM_CUDNN_FWD_ALGS, &returned_algo_count, - fwd_perf_stat.data(), cudnn_workspace, workspace_size_limit)); - }; - workspace_handle.RunFunc(cudnn_find_func, workspace_size_limit); + + CUDNN_ENFORCE(platform::dynload::cudnnFindConvolutionForwardAlgorithmEx( + handle, cudnn_input_desc, input_data, cudnn_filter_desc, + filter_data, cudnn_conv_desc, cudnn_output_desc, output_data, + kNUM_CUDNN_FWD_ALGS, &returned_algo_count, fwd_perf_stat.data(), + cudnn_workspace_ptr, workspace_size_limit)); + VLOG(3) << "Perf result: (algo: stat, time, memory)"; for (int i = 0; i < returned_algo_count; ++i) { const auto& stat = fwd_perf_stat[i]; @@ -181,6 +188,15 @@ class CUDNNConvFusionOpKernel : public framework::OpKernel { PADDLE_ENFORCE_LE(workspace_size_in_bytes, workspace_size_limit, "workspace_size to be allocated exceeds the limit"); + if (!cudnn_workspace_ptr) { + cudnn_workspace = + ctx.AllocateTmpTensor( + framework::make_ddim( + {static_cast(workspace_size_in_bytes)}), + dev_ctx); + cudnn_workspace_ptr = static_cast(cudnn_workspace.data()); + } + if ((activation == "identity") && (!residual)) { // Only the CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM algo is // enabled with CUDNN_ACTIVATION_IDENTITY in cuDNN lib. @@ -188,13 +204,12 @@ class CUDNNConvFusionOpKernel : public framework::OpKernel { // cudnnConvolutionForward and cudnnAddTensor // ------------- cudnn conv forward and bias add --------------------- ScalingParamType alpha = 1.0f, beta = 0.0f; - auto cudnn_func = [&](void* cudnn_workspace) { - CUDNN_ENFORCE(platform::dynload::cudnnConvolutionForward( - handle, &alpha, cudnn_input_desc, input_data, cudnn_filter_desc, - filter_data, cudnn_conv_desc, algo, cudnn_workspace, - workspace_size_in_bytes, &beta, cudnn_output_desc, output_data)); - }; - workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes); + + CUDNN_ENFORCE(platform::dynload::cudnnConvolutionForward( + handle, &alpha, cudnn_input_desc, input_data, cudnn_filter_desc, + filter_data, cudnn_conv_desc, algo, cudnn_workspace_ptr, + workspace_size_in_bytes, &beta, cudnn_output_desc, output_data)); + CUDNN_ENFORCE(platform::dynload::cudnnAddTensor( handle, &alpha, cudnn_bias_desc, bias_data, &alpha, cudnn_output_desc, output_data)); @@ -205,15 +220,13 @@ class CUDNNConvFusionOpKernel : public framework::OpKernel { // ------------------- cudnn conv+bias+act forward -------------------- ScalingParamType alpha1 = 1.0f; ScalingParamType alpha2 = residual ? 1.0f : 0.0f; - auto cudnn_func = [&](void* cudnn_workspace) { - CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBiasActivationForward( - handle, &alpha1, cudnn_input_desc, input_data, cudnn_filter_desc, - filter_data, cudnn_conv_desc, algo, cudnn_workspace, - workspace_size_in_bytes, &alpha2, cudnn_output_desc, residual_data, - cudnn_bias_desc, bias_data, cudnn_act_desc, cudnn_output_desc, - output_data)); - }; - workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes); + + CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBiasActivationForward( + handle, &alpha1, cudnn_input_desc, input_data, cudnn_filter_desc, + filter_data, cudnn_conv_desc, algo, cudnn_workspace_ptr, + workspace_size_in_bytes, &alpha2, cudnn_output_desc, residual_data, + cudnn_bias_desc, bias_data, cudnn_act_desc, cudnn_output_desc, + output_data)); } std::vector channels = ctx.Attr>("split_channels"); if (channels.size()) { diff --git a/paddle/fluid/operators/conv_transpose_cudnn_op.cu.cc b/paddle/fluid/operators/conv_transpose_cudnn_op.cu.cc index f44094ca6b7b7f23f2e7593ad79e4e2a6f0d3070..016cf8448c5e07fdedab8c5e4a7d0ae9e2ded1ee 100644 --- a/paddle/fluid/operators/conv_transpose_cudnn_op.cu.cc +++ b/paddle/fluid/operators/conv_transpose_cudnn_op.cu.cc @@ -104,16 +104,18 @@ class CUDNNConvTransposeOpKernel : public framework::OpKernel { int output_offset = output->numel() / output->dims()[0] / groups; int filter_offset = filter->numel() / groups; T alpha = 1.0f, beta = 0.0f; - auto workspace_handle = dev_ctx.cudnn_workspace_handle(); + + auto temp_allocation = + platform::DeviceTemporaryAllocator::Instance().Get(dev_ctx).Allocate( + workspace_size_in_bytes); + void* cudnn_workspace = temp_allocation->ptr(); + for (int g = 0; g < groups; g++) { - auto cudnn_func = [&](void* cudnn_workspace) { - CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardData( - handle, &alpha, cudnn_filter_desc, filter_data + filter_offset * g, - cudnn_input_desc, input_data + input_offset * g, cudnn_conv_desc, - algo, cudnn_workspace, workspace_size_in_bytes, &beta, - cudnn_output_desc, output_data + output_offset * g)); - }; - workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes); + CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardData( + handle, &alpha, cudnn_filter_desc, filter_data + filter_offset * g, + cudnn_input_desc, input_data + input_offset * g, cudnn_conv_desc, + algo, cudnn_workspace, workspace_size_in_bytes, &beta, + cudnn_output_desc, output_data + output_offset * g)); } } }; @@ -209,20 +211,22 @@ class CUDNNConvTransposeGradOpKernel : public framework::OpKernel { output_grad->numel() / output_grad->dims()[0] / groups; int filter_offset = filter->numel() / groups; T alpha = 1.0f, beta = 0.0f; - auto workspace_handle = dev_ctx.cudnn_workspace_handle(); + + auto temp_allocation = + platform::DeviceTemporaryAllocator::Instance().Get(dev_ctx).Allocate( + workspace_size_in_bytes); + void* cudnn_workspace = temp_allocation->ptr(); + if (input_grad) { T* input_grad_data = input_grad->mutable_data(ctx.GetPlace()); // Because beta is zero, it is unnecessary to reset input_grad. for (int g = 0; g < groups; g++) { - auto cudnn_func = [&](void* cudnn_workspace) { - CUDNN_ENFORCE(platform::dynload::cudnnConvolutionForward( - handle, &alpha, cudnn_output_desc, - output_grad_data + output_grad_offset * g, cudnn_filter_desc, - filter_data + filter_offset * g, cudnn_conv_desc, data_algo, - cudnn_workspace, workspace_size_in_bytes, &beta, cudnn_input_desc, - input_grad_data + input_offset * g)); - }; - workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes); + CUDNN_ENFORCE(platform::dynload::cudnnConvolutionForward( + handle, &alpha, cudnn_output_desc, + output_grad_data + output_grad_offset * g, cudnn_filter_desc, + filter_data + filter_offset * g, cudnn_conv_desc, data_algo, + cudnn_workspace, workspace_size_in_bytes, &beta, cudnn_input_desc, + input_grad_data + input_offset * g)); } } @@ -232,15 +236,12 @@ class CUDNNConvTransposeGradOpKernel : public framework::OpKernel { // Because beta is zero, it is unnecessary to reset filter_grad. // Gradient with respect to the filter for (int g = 0; g < groups; g++) { - auto cudnn_func = [&](void* cudnn_workspace) { - CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardFilter( - handle, &alpha, cudnn_output_desc, - output_grad_data + output_grad_offset * g, cudnn_input_desc, - input_data + input_offset * g, cudnn_conv_desc, filter_algo, - cudnn_workspace, workspace_size_in_bytes, &beta, - cudnn_filter_desc, filter_grad_data + filter_offset * g)); - }; - workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes); + CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardFilter( + handle, &alpha, cudnn_output_desc, + output_grad_data + output_grad_offset * g, cudnn_input_desc, + input_data + input_offset * g, cudnn_conv_desc, filter_algo, + cudnn_workspace, workspace_size_in_bytes, &beta, cudnn_filter_desc, + filter_grad_data + filter_offset * g)); } } } diff --git a/paddle/fluid/operators/fused/fusion_conv_inception_op.cu b/paddle/fluid/operators/fused/fusion_conv_inception_op.cu index 6e13887866485bd114ebf12f4bdfa8d60fca6d01..c72a966c575d4a63471905b82643e96454f08187 100644 --- a/paddle/fluid/operators/fused/fusion_conv_inception_op.cu +++ b/paddle/fluid/operators/fused/fusion_conv_inception_op.cu @@ -216,18 +216,19 @@ class CUDNNConvInceptionFusionOpKernel : public framework::OpKernel { out_datas.push_back( static_cast(output_data + (oc0 + oc1 + oc2) * h * w)); + auto temp_allocation = + platform::DeviceTemporaryAllocator::Instance().Get(dev_ctx).Allocate( + workspace_size_in_bytes); + void* cudnn_workspace = temp_allocation->ptr(); + for (int i = 0; i < 4; ++i) { - auto func = [&](void* cudnn_workspace) { - CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBiasActivationForward( - handle, &alpha, in_desc[i], in_datas[i], filter_desc[i], - static_cast(filters[i]->data()), conv_desc[i], - algo[i], cudnn_workspace, workspace_size_in_bytes, &beta, - out_desc[i], out_datas[i], bias_desc[i], - static_cast(bias[i]->data()), cudnn_act_desc, - out_desc[i], out_datas[i])); - }; - auto workspace_handle = dev_ctx.cudnn_workspace_handle(); - workspace_handle.RunFunc(func, workspace_size_in_bytes); + CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBiasActivationForward( + handle, &alpha, in_desc[i], in_datas[i], filter_desc[i], + static_cast(filters[i]->data()), conv_desc[i], + algo[i], cudnn_workspace, workspace_size_in_bytes, &beta, out_desc[i], + out_datas[i], bias_desc[i], + static_cast(bias[i]->data()), cudnn_act_desc, + out_desc[i], out_datas[i])); } cudnnTensorDescriptor_t x_desc; diff --git a/paddle/fluid/operators/warpctc_cudnn_op.cu.cc b/paddle/fluid/operators/warpctc_cudnn_op.cu.cc index a764d59410c90535dbda0b3f11e89ae9bf578c04..2c0f9b89a8edbd288355a3b2e5113b469694a2ae 100644 --- a/paddle/fluid/operators/warpctc_cudnn_op.cu.cc +++ b/paddle/fluid/operators/warpctc_cudnn_op.cu.cc @@ -145,16 +145,16 @@ class CudnnCTCKernel : public framework::OpKernel { T* loss_data = loss->mutable_data(loss_dims, ctx.GetPlace()); - auto workspace_handle = dev_ctx.cudnn_workspace_handle(); - auto cudnn_func = [&](void* cudnn_workspace) { - CUDNN_ENFORCE(platform::dynload::cudnnCTCLoss( - handle, cu_logits_desc, warpctc_logits_data, warpctc_label_data, - warpctc_label_lengths.data(), warpctc_logits_lengths.data(), - loss_data, cu_grad_desc, warpctc_grad_data, - CUDNN_CTC_LOSS_ALGO_DETERMINISTIC, cu_ctcloss_desc, cudnn_workspace, - workspace_size)); - }; - workspace_handle.RunFunc(cudnn_func, workspace_size); + auto temp_allocation = + platform::DeviceTemporaryAllocator::Instance().Get(dev_ctx).Allocate( + workspace_size); + void* cudnn_workspace = temp_allocation->ptr(); + + CUDNN_ENFORCE(platform::dynload::cudnnCTCLoss( + handle, cu_logits_desc, warpctc_logits_data, warpctc_label_data, + warpctc_label_lengths.data(), warpctc_logits_lengths.data(), loss_data, + cu_grad_desc, warpctc_grad_data, CUDNN_CTC_LOSS_ALGO_DETERMINISTIC, + cu_ctcloss_desc, cudnn_workspace, workspace_size)); } };