Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
b4a4eef2
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b4a4eef2
编写于
8月 04, 2022
作者:
W
Wilber
提交者:
GitHub
8月 04, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
convert support multi block. (#44866)
* convert support multi block. * update
上级
f9e7fe66
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
327 addition
and
207 deletion
+327
-207
paddle/fluid/inference/analysis/passes/convert_to_mixed_precision.cc
...d/inference/analysis/passes/convert_to_mixed_precision.cc
+323
-207
paddle/fluid/inference/api/analysis_config.cc
paddle/fluid/inference/api/analysis_config.cc
+4
-0
未找到文件。
paddle/fluid/inference/analysis/passes/convert_to_mixed_precision.cc
浏览文件 @
b4a4eef2
...
...
@@ -14,7 +14,10 @@
#include "paddle/fluid/inference/analysis/passes/convert_to_mixed_precision.h"
#include <algorithm>
#include <iterator>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include "paddle/fluid/framework/block_desc.h"
...
...
@@ -39,7 +42,106 @@ namespace analysis {
namespace
{
bool
IsKernelSupportPrecision
(
inline
std
::
string
SerializeParams
(
framework
::
Scope
*
scope
,
const
std
::
vector
<
std
::
string
>&
params
)
{
std
::
ostringstream
os
;
phi
::
CPUContext
ctx
;
for
(
const
auto
&
param
:
params
)
{
VLOG
(
3
)
<<
"Serialize param: "
<<
param
;
PADDLE_ENFORCE_NOT_NULL
(
scope
->
FindVar
(
param
),
platform
::
errors
::
NotFound
(
"Block should already have a '%s' variable"
,
param
));
auto
*
tensor
=
scope
->
FindVar
(
param
)
->
GetMutable
<
framework
::
LoDTensor
>
();
framework
::
SerializeToStream
(
os
,
*
tensor
,
ctx
);
}
return
os
.
str
();
}
inline
void
StrToBinary
(
const
std
::
string
&
path
,
const
std
::
string
&
str
)
{
std
::
ofstream
file
(
path
.
c_str
(),
std
::
ios
::
binary
);
file
.
write
(
str
.
c_str
(),
str
.
size
());
file
.
close
();
}
inline
bool
NodeVarHasDtype
(
framework
::
ir
::
Node
*
node
)
{
if
(
node
->
IsCtrlVar
())
return
false
;
if
(
node
->
IsVar
()
&&
(
node
->
Var
()
->
GetType
()
==
paddle
::
framework
::
proto
::
VarType
::
SELECTED_ROWS
||
node
->
Var
()
->
GetType
()
==
paddle
::
framework
::
proto
::
VarType
::
LOD_TENSOR
||
node
->
Var
()
->
GetType
()
==
paddle
::
framework
::
proto
::
VarType
::
LOD_TENSOR_ARRAY
||
node
->
Var
()
->
GetType
()
==
paddle
::
framework
::
proto
::
VarType
::
STRINGS
||
node
->
Var
()
->
GetType
()
==
paddle
::
framework
::
proto
::
VarType
::
VOCAB
))
{
return
true
;
}
return
false
;
}
void
SaveMixedModel
(
framework
::
ir
::
Graph
*
graph
,
framework
::
Scope
*
scope
,
framework
::
ProgramDesc
*
mixed_program_desc
,
const
std
::
string
&
mixed_model_file
,
const
std
::
string
&
mixed_params_file
,
phi
::
DataType
mixed_precision
)
{
paddle
::
CPUPlace
place
;
auto
parameters
=
scope
->
LocalVarNames
();
std
::
sort
(
parameters
.
begin
(),
parameters
.
end
());
std
::
unordered_set
<
std
::
string
>
weights_should_be_fp32
;
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
!
(
node
->
IsVar
()
&&
!
node
->
IsCtrlVar
()))
continue
;
if
(
NodeVarHasDtype
(
node
))
{
if
(
node
->
Var
()
->
Persistable
()
&&
node
->
Var
()
->
GetDataType
()
==
paddle
::
framework
::
proto
::
VarType
::
FP32
)
{
VLOG
(
2
)
<<
"weights keep to fp32: "
<<
node
->
Name
();
weights_should_be_fp32
.
insert
(
node
->
Name
());
}
}
}
for
(
const
auto
&
param_name
:
parameters
)
{
auto
*
var
=
scope
->
FindLocalVar
(
param_name
);
if
(
var
->
IsType
<
framework
::
LoDTensor
>
()
||
var
->
IsType
<
framework
::
Tensor
>
())
{
auto
*
t
=
var
->
GetMutable
<
framework
::
LoDTensor
>
();
framework
::
Tensor
mixed_tensor
;
mixed_tensor
.
Resize
(
t
->
dims
());
auto
*
data
=
t
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
if
(
mixed_precision
==
phi
::
DataType
::
FLOAT16
&&
!
weights_should_be_fp32
.
count
(
param_name
))
{
mixed_tensor
.
set_type
(
paddle
::
experimental
::
DataType
::
FLOAT16
);
auto
*
mixed_data
=
mixed_tensor
.
mutable_data
<
float16
>
(
platform
::
CPUPlace
());
for
(
int
i
=
0
;
i
<
t
->
numel
();
i
++
)
{
mixed_data
[
i
]
=
static_cast
<
float16
>
(
data
[
i
]);
}
t
->
clear
();
paddle
::
framework
::
TensorCopySync
(
mixed_tensor
,
place
,
t
);
}
else
if
(
mixed_precision
==
phi
::
DataType
::
BFLOAT16
&&
!
weights_should_be_fp32
.
count
(
param_name
))
{
mixed_tensor
.
set_type
(
paddle
::
experimental
::
DataType
::
BFLOAT16
);
auto
*
mixed_data
=
mixed_tensor
.
mutable_data
<
bfloat16
>
(
platform
::
CPUPlace
());
for
(
int
i
=
0
;
i
<
t
->
numel
();
i
++
)
{
mixed_data
[
i
]
=
static_cast
<
bfloat16
>
(
data
[
i
]);
}
t
->
clear
();
paddle
::
framework
::
TensorCopySync
(
mixed_tensor
,
place
,
t
);
}
}
}
StrToBinary
(
mixed_model_file
,
mixed_program_desc
->
Proto
()
->
SerializeAsString
());
StrToBinary
(
mixed_params_file
,
SerializeParams
(
scope
,
parameters
));
}
bool
PhiKernelSupportPrecision
(
const
std
::
string
&
op_type
,
phi
::
Backend
backend
,
phi
::
DataType
data_type
,
...
...
@@ -56,10 +158,23 @@ bool GpuKernelSupportPrecision(
const
std
::
string
&
op_type
,
phi
::
DataType
data_type
,
phi
::
DataLayout
layout
=
phi
::
DataLayout
::
ALL_LAYOUT
)
{
bool
res
=
IsKernelSupportPrecision
(
op_type
,
phi
::
Backend
::
GPU
,
data_type
,
layout
);
res
|=
IsKernelSupportPrecision
(
op_type
,
phi
::
Backend
::
GPUDNN
,
data_type
,
layout
);
auto
phi_op_type
=
phi
::
TransToPhiKernelName
(
op_type
);
bool
res
=
PhiKernelSupportPrecision
(
phi_op_type
,
phi
::
Backend
::
GPU
,
data_type
,
layout
);
res
|=
PhiKernelSupportPrecision
(
phi_op_type
,
phi
::
Backend
::
GPUDNN
,
data_type
,
layout
);
if
(
!
res
)
{
auto
&
all_kernels
=
OperatorWithKernel
::
AllOpKernels
();
auto
it
=
all_kernels
.
find
(
op_type
);
if
(
it
!=
all_kernels
.
end
())
{
for
(
auto
&
kern_pair
:
it
->
second
)
{
if
(
platform
::
is_gpu_place
(
kern_pair
.
first
.
place_
))
{
res
=
true
;
}
}
}
}
return
res
;
}
...
...
@@ -90,30 +205,16 @@ bool OutShouldNotConvert(ir::Node* var_node) {
return
false
;
}
// Get weight names which appear in multiple block (block 0 and block n).
std
::
unordered_set
<
std
::
string
>
GetMultiBlockPersistableNames
(
framework
::
ProgramDesc
*
program_desc
)
{
std
::
unordered_set
<
std
::
string
>
special_weights
;
size_t
block_size
=
program_desc
->
Size
();
std
::
unordered_set
<
std
::
string
>
block_0_weights
;
for
(
auto
var
:
program_desc
->
Block
(
0
).
AllVars
())
{
if
(
var
->
Persistable
())
block_0_weights
.
insert
(
var
->
Name
());
}
for
(
size_t
i
=
1
;
i
<
block_size
;
++
i
)
{
// std::cout << program_desc->MutableBlock(i)->Proto()->DebugString() <<
// std::endl;;
auto
all_ops
=
program_desc
->
Block
(
i
).
AllOps
();
for
(
auto
op
:
all_ops
)
{
for
(
auto
name
:
op
->
InputArgumentNames
())
{
if
(
block_0_weights
.
count
(
name
))
special_weights
.
insert
(
name
);
}
}
void
ProcessOutputNode
(
ir
::
Node
*
var_node
,
framework
::
proto
::
VarType
::
Type
to_type
)
{
if
(
!
NodeVarHasDtype
(
var_node
))
return
;
auto
*
out_var
=
var_node
->
Var
();
if
(
out_var
->
GetDataType
()
==
framework
::
proto
::
VarType
::
FP32
)
{
if
(
OutShouldNotConvert
(
var_node
))
return
;
out_var
->
SetDataType
(
to_type
);
}
return
special_weights
;
VLOG
(
3
)
<<
" out_node name "
<<
var_node
->
Name
()
<<
" data_type "
<<
out_var
->
GetDataType
()
;
}
// Just process special cases for weights conversion.
...
...
@@ -143,21 +244,8 @@ bool WeightsShouldNotConvert(ir::Node* var_node) {
}
}
// If cur_op's next is condition_flow op, then cur op should be fp32. Note, we
// now only convert to mixed in block 0.
for
(
auto
*
op_node
:
op_nodes
)
{
for
(
auto
var
:
op_node
->
outputs
)
{
for
(
auto
next_op
:
var
->
outputs
)
{
if
(
next_op
->
Op
()
->
HasAttr
(
"sub_block"
))
{
return
true
;
}
}
}
}
return
false
;
}
inline
bool
IsFloatVarType
(
framework
::
proto
::
VarType
::
Type
type
)
{
if
(
type
==
framework
::
proto
::
VarType
::
FP16
||
type
==
framework
::
proto
::
VarType
::
FP32
||
...
...
@@ -165,6 +253,56 @@ inline bool IsFloatVarType(framework::proto::VarType::Type type) {
return
true
;
return
false
;
}
void
ProcessInputNode
(
bool
support_precision
,
framework
::
ir
::
Graph
*
graph
,
ir
::
Node
*
in_node
,
ir
::
Node
*
op_node
,
int
*
suffix
,
framework
::
BlockDesc
*
block_desc
,
std
::
unordered_map
<
framework
::
ir
::
Node
*
,
framework
::
ir
::
Node
*>*
cast_map
,
framework
::
proto
::
VarType
::
Type
to_type
,
bool
is_main_block
,
std
::
unordered_map
<
std
::
string
,
framework
::
proto
::
VarType
::
Type
>*
vars_in_multi_block_map
)
{
if
(
!
NodeVarHasDtype
(
in_node
))
return
;
auto
*
in_var
=
in_node
->
Var
();
auto
in_var_type
=
in_var
->
GetDataType
();
if
(
!
is_main_block
&&
vars_in_multi_block_map
->
count
(
in_var
->
Name
()))
{
in_var_type
=
vars_in_multi_block_map
->
at
(
in_var
->
Name
());
}
if
(
support_precision
)
{
if
(
in_var
->
Persistable
()
&&
in_var_type
==
framework
::
proto
::
VarType
::
FP32
)
{
if
(
WeightsShouldNotConvert
(
in_node
))
return
;
in_var
->
SetDataType
(
to_type
);
}
else
if
(
!
in_var
->
Persistable
()
&&
IsFloatVarType
(
in_var_type
)
&&
in_var_type
!=
to_type
)
{
AddCastOp
(
graph
,
in_node
,
op_node
,
in_var_type
,
to_type
,
suffix
,
block_desc
,
cast_map
);
}
}
else
{
if
(
!
in_var
->
Persistable
()
&&
IsFloatVarType
(
in_var_type
)
&&
in_var_type
!=
to_type
)
{
AddCastOp
(
graph
,
in_node
,
op_node
,
in_var_type
,
to_type
,
suffix
,
block_desc
,
cast_map
);
}
}
VLOG
(
3
)
<<
" in_node name "
<<
in_var
->
Name
()
<<
" data_type "
<<
in_var
->
GetDataType
();
}
void
ConvertAllFp64ToFp32
(
framework
::
ir
::
Graph
*
graph
)
{
auto
op_nodes
=
framework
::
ir
::
TopologySortOperations
(
*
graph
);
...
...
@@ -239,6 +377,11 @@ void HandleSpecialOps(framework::OpDesc* op_desc) {
static_cast
<
int
>
(
framework
::
proto
::
VarType
::
FP32
))
op_desc
->
SetAttr
(
"dtype"
,
static_cast
<
int
>
(
framework
::
proto
::
VarType
::
FP16
));
}
else
if
(
op_desc
->
Type
()
==
"fill_constant_batch_size_like"
)
{
if
(
PADDLE_GET_CONST
(
int
,
op_desc
->
GetAttr
(
"dtype"
))
==
static_cast
<
int
>
(
framework
::
proto
::
VarType
::
FP32
))
op_desc
->
SetAttr
(
"dtype"
,
static_cast
<
int
>
(
framework
::
proto
::
VarType
::
FP16
));
}
}
...
...
@@ -260,26 +403,47 @@ void FixCastAttr(framework::ir::Graph* graph) {
}
}
// If op's output var is condition flow op's input, then the op must be fp32
// precision.
bool
NextOpIncludesConditionFlowOp
(
framework
::
ir
::
Node
*
cur_op_node
)
{
auto
cur_op_outs
=
cur_op_node
->
outputs
;
for
(
auto
out_var
:
cur_op_outs
)
{
for
(
auto
next_op_node
:
out_var
->
outputs
)
{
if
(
next_op_node
->
Op
()
->
HasAttr
(
"sub_block"
))
{
return
true
;
}
void
FindVarsInMultiBlock
(
framework
::
ProgramDesc
*
program_desc
,
std
::
unordered_map
<
std
::
string
,
framework
::
proto
::
VarType
::
Type
>*
vars_in_multi_block_map
)
{
std
::
set
<
std
::
string
>
vars_in_multi_block
;
std
::
set
<
std
::
string
>
main_block_var_names_set
;
for
(
auto
op
:
program_desc
->
Block
(
0
).
AllOps
())
{
auto
in_names
=
op
->
InputArgumentNames
();
main_block_var_names_set
.
insert
(
in_names
.
begin
(),
in_names
.
end
());
}
for
(
size_t
i
=
1
;
i
<
program_desc
->
Size
();
++
i
)
{
std
::
set
<
std
::
string
>
block_var_names_set
;
for
(
auto
op
:
program_desc
->
Block
(
i
).
AllOps
())
{
auto
in_names
=
op
->
InputArgumentNames
();
block_var_names_set
.
insert
(
in_names
.
begin
(),
in_names
.
end
());
}
std
::
set_intersection
(
main_block_var_names_set
.
begin
(),
main_block_var_names_set
.
end
(),
block_var_names_set
.
begin
(),
block_var_names_set
.
end
(),
std
::
inserter
(
vars_in_multi_block
,
vars_in_multi_block
.
begin
()));
}
for
(
auto
name
:
vars_in_multi_block
)
{
vars_in_multi_block_map
->
emplace
(
name
,
framework
::
proto
::
VarType
::
FP32
);
}
return
false
;
}
void
ConvertTensorDtype
(
framework
::
ProgramDesc
*
program_desc
,
framework
::
ir
::
Graph
*
graph
,
const
std
::
unordered_set
<
std
::
string
>&
blacklist
,
bool
keep_io_types
,
phi
::
Backend
backend
,
phi
::
DataType
tensor_dtype
)
{
void
ConvertTensorDtype
(
framework
::
ProgramDesc
*
program_desc
,
framework
::
ir
::
Graph
*
graph
,
const
std
::
unordered_set
<
std
::
string
>&
blacklist
,
bool
keep_io_types
,
phi
::
Backend
backend
,
phi
::
DataType
tensor_dtype
,
bool
is_main_block
,
std
::
unordered_map
<
std
::
string
,
framework
::
proto
::
VarType
::
Type
>*
vars_in_multi_block_map
)
{
framework
::
proto
::
VarType
::
Type
to_type
;
if
(
tensor_dtype
==
phi
::
DataType
::
FLOAT16
)
{
to_type
=
framework
::
proto
::
VarType
::
FP16
;
...
...
@@ -287,25 +451,27 @@ void ConvertTensorDtype(framework::ProgramDesc* program_desc,
to_type
=
framework
::
proto
::
VarType
::
BF16
;
}
else
{
PADDLE_THROW
(
paddle
::
platform
::
errors
::
InvalidArgument
(
"mixed_precision currently not supported dtype %d, we now only support "
"mixed_precision currently not supported dtype %d, we now only "
"support "
"fp16 and bf16."
,
static_cast
<
int
>
(
tensor_dtype
)));
}
auto
weight_name_in_multi_block
=
GetMultiBlockPersistableNames
(
program_desc
);
auto
*
block_desc
=
framework
::
ir
::
TopologySortOperations
(
*
graph
)[
0
]
->
Op
()
->
Block
();
int
num_low_precision
=
0
;
int
suffix
=
0
;
framework
::
BlockDesc
*
block_desc
{
nullptr
};
std
::
vector
<
framework
::
ir
::
Node
*>
output_nodes
;
std
::
unordered_map
<
framework
::
ir
::
Node
*
,
framework
::
ir
::
Node
*>
cast_map
;
auto
op_nodes
=
framework
::
ir
::
TopologySortOperations
(
*
graph
);
for
(
auto
*
op_node
:
op_nodes
)
{
if
(
!
op_node
->
IsOp
())
continue
;
auto
op_type
=
op_node
->
Op
()
->
Type
();
auto
phi_op_type
=
phi
::
TransToPhiKernelName
(
op_type
);
VLOG
(
3
)
<<
"-------------------- op_type "
<<
op_type
<<
", phi_type "
<<
phi
::
TransToPhiKernelName
(
op_type
);
// 1. set input dtype.
if
(
op_type
==
"feed"
)
{
block_desc
=
op_node
->
Op
()
->
Block
();
auto
feed_var
=
op_node
->
outputs
[
0
]
->
Var
();
if
(
!
keep_io_types
&&
feed_var
->
GetDataType
()
==
framework
::
proto
::
VarType
::
FP32
)
{
...
...
@@ -319,71 +485,73 @@ void ConvertTensorDtype(framework::ProgramDesc* program_desc,
continue
;
}
else
if
(
op_node
->
Op
()
->
HasAttr
(
"sub_block"
))
{
// NOLINT
// sub_block op's output dtype should be same as input dtype, if have the
// same name.
std
::
unordered_map
<
std
::
string
,
framework
::
ir
::
Node
*>
in_name_to_node
;
for
(
auto
*
in
:
op_node
->
inputs
)
{
if
(
NodeVarHasDtype
(
in
))
{
in_name_to_node
[
in
->
Name
()]
=
in
;
}
}
for
(
auto
out
:
op_node
->
outputs
)
{
if
(
NodeVarHasDtype
(
out
))
{
if
(
in_name_to_node
.
count
(
out
->
Name
()))
out
->
Var
()
->
SetDataType
(
in_name_to_node
[
out
->
Name
()]
->
Var
()
->
GetDataType
());
}
}
continue
;
}
// 2. if op support fp16/bf16 and not in blacklist.
// - cast weight to fp16/bf16.
// - add cast op if the input dtype is not fp16/bf16.
// - set output dtype.
else
if
(
blacklist
.
count
(
phi_op_type
)
==
0
&&
// NOLINT
!
NextOpIncludesConditionFlowOp
(
op_node
))
{
else
if
(
blacklist
.
count
(
op_type
)
==
0
)
{
// NOLINT
bool
support_precision
=
OpSupportPrecision
(
phi_op_type
,
backend
,
tensor_dtype
,
blacklist
);
VLOG
(
2
)
<<
"op_type "
<<
op_type
<<
", phi_op_type "
<<
phi_op_type
<<
" support low precision "
<<
support_precision
<<
", "
OpSupportPrecision
(
op_type
,
backend
,
tensor_dtype
,
blacklist
);
VLOG
(
2
)
<<
"op_type "
<<
op_type
<<
", phi_op_type "
<<
phi
::
TransToPhiKernelName
(
op_type
)
<<
" support low precision "
<<
support_precision
<<
", "
<<
reinterpret_cast
<
void
*>
(
op_node
->
Op
()
->
Block
());
for
(
auto
in_node
:
op_node
->
inputs
)
{
if
(
weight_name_in_multi_block
.
count
(
in_node
->
Name
()))
support_precision
=
false
;
}
if
(
support_precision
)
{
HandleSpecialOps
(
op_node
->
Op
());
++
num_low_precision
;
auto
inputs
=
op_node
->
inputs
;
// Process inputs.
for
(
auto
*
in_node
:
inputs
)
{
if
(
in_node
->
IsCtrlVar
())
continue
;
auto
*
in_var
=
in_node
->
Var
();
if
(
in_var
->
Persistable
()
&&
in_var
->
GetDataType
()
==
framework
::
proto
::
VarType
::
FP32
)
{
if
(
WeightsShouldNotConvert
(
in_node
))
continue
;
in_var
->
SetDataType
(
to_type
);
}
else
if
(
!
in_var
->
Persistable
()
&&
IsFloatVarType
(
in_var
->
GetDataType
())
&&
in_var
->
GetDataType
()
!=
to_type
)
{
AddCastOp
(
graph
,
in_node
,
op_node
,
in_var
->
GetDataType
(),
to_type
,
&
suffix
,
block_desc
,
&
cast_map
);
}
ProcessInputNode
(
true
,
graph
,
in_node
,
op_node
,
&
suffix
,
block_desc
,
&
cast_map
,
to_type
,
is_main_block
,
vars_in_multi_block_map
);
}
// Process outputs.
for
(
auto
*
out_node
:
op_node
->
outputs
)
{
if
(
out_node
->
IsCtrlVar
())
continue
;
auto
*
out_var
=
out_node
->
Var
();
if
(
out_var
->
GetDataType
()
==
framework
::
proto
::
VarType
::
FP32
)
{
if
(
OutShouldNotConvert
(
out_node
))
continue
;
out_var
->
SetDataType
(
to_type
);
}
ProcessOutputNode
(
out_node
,
to_type
);
}
}
else
{
auto
inputs
=
op_node
->
inputs
;
for
(
auto
*
in_node
:
inputs
)
{
if
(
in_node
->
IsCtrlVar
())
continue
;
auto
*
in_var
=
in_node
->
Var
();
if
(
!
in_var
->
Persistable
()
&&
IsFloatVarType
(
in_var
->
GetDataType
())
&&
in_var
->
GetDataType
()
!=
framework
::
proto
::
VarType
::
FP32
)
{
AddCastOp
(
graph
,
in_node
,
op_node
,
in_var
->
GetDataType
(),
framework
::
proto
::
VarType
::
FP32
,
&
suffix
,
block_desc
,
&
cast_map
);
}
ProcessInputNode
(
false
,
graph
,
in_node
,
op_node
,
&
suffix
,
block_desc
,
&
cast_map
,
framework
::
proto
::
VarType
::
FP32
,
is_main_block
,
vars_in_multi_block_map
);
}
}
}
...
...
@@ -409,8 +577,8 @@ void ConvertTensorDtype(framework::ProgramDesc* program_desc,
}
}
// 4. if output_op's dtype is not compatible to output dtype, then just
insert
// cast.
// 4. if output_op's dtype is not compatible to output dtype, then just
//
insert
cast.
for
(
auto
*
node
:
output_nodes
)
{
if
(
node
->
IsCtrlVar
())
continue
;
auto
var
=
node
->
Var
();
...
...
@@ -438,22 +606,31 @@ void ConvertTensorDtype(framework::ProgramDesc* program_desc,
}
}
if
(
is_main_block
)
{
for
(
auto
node
:
graph
->
Nodes
())
{
if
(
vars_in_multi_block_map
->
count
(
node
->
Name
()))
{
vars_in_multi_block_map
->
at
(
node
->
Name
())
=
node
->
Var
()
->
GetDataType
();
}
}
}
if
(
num_low_precision
)
LOG
(
INFO
)
<<
"--- detected "
<<
num_low_precision
<<
" low precision ops"
;
}
}
// namespace
bool
OpSupportPrecision
(
const
std
::
string
&
phi_
op_type
,
bool
OpSupportPrecision
(
const
std
::
string
&
op_type
,
phi
::
Backend
backend
,
phi
::
DataType
precision
,
const
std
::
unordered_set
<
std
::
string
>&
blacklist
)
{
auto
phi_op_type
=
phi
::
TransToPhiKernelName
(
op_type
);
bool
support_precision
=
false
;
if
(
blacklist
.
count
(
phi_
op_type
)
==
0
)
{
if
(
blacklist
.
count
(
op_type
)
==
0
)
{
if
(
backend
==
phi
::
Backend
::
GPU
)
support_precision
=
GpuKernelSupportPrecision
(
phi_
op_type
,
precision
);
support_precision
=
GpuKernelSupportPrecision
(
op_type
,
precision
);
else
support_precision
=
Is
KernelSupportPrecision
(
phi_op_type
,
backend
,
precision
);
Phi
KernelSupportPrecision
(
phi_op_type
,
backend
,
precision
);
}
return
support_precision
;
}
...
...
@@ -521,102 +698,41 @@ void ConvertToMixedPrecision(const std::string& model_file,
framework
::
Scope
scope
;
auto
program_desc
=
inference
::
Load
(
&
executor
,
&
scope
,
model_file
,
params_file
);
auto
graph
=
std
::
unique_ptr
<
framework
::
ir
::
Graph
>
(
auto
main_
graph
=
std
::
unique_ptr
<
framework
::
ir
::
Graph
>
(
new
framework
::
ir
::
Graph
(
*
program_desc
));
ConvertAllFp64ToFp32
(
graph
.
get
());
ConvertTensorDtype
(
program_desc
.
get
(),
graph
.
get
(),
black_list
,
keep_io_types
,
backend
,
mixed_precision
);
FixCastAttr
(
graph
.
get
());
framework
::
ProgramDesc
mixed_program_desc
;
framework
::
ir
::
GraphToProgram
(
*
graph
,
&
mixed_program_desc
);
auto
parameters
=
scope
.
LocalVarNames
();
std
::
sort
(
parameters
.
begin
(),
parameters
.
end
());
auto
serialize_params
=
[](
framework
::
Scope
*
scope
,
const
std
::
vector
<
std
::
string
>&
params
)
->
std
::
string
{
std
::
ostringstream
os
;
phi
::
CPUContext
ctx
;
for
(
const
auto
&
param
:
params
)
{
VLOG
(
3
)
<<
"Serialize param: "
<<
param
;
PADDLE_ENFORCE_NOT_NULL
(
scope
->
FindVar
(
param
),
platform
::
errors
::
NotFound
(
"Block should already have a '%s' variable"
,
param
));
auto
*
tensor
=
scope
->
FindVar
(
param
)
->
GetMutable
<
framework
::
LoDTensor
>
();
framework
::
SerializeToStream
(
os
,
*
tensor
,
ctx
);
}
return
os
.
str
();
};
std
::
unordered_set
<
std
::
string
>
weights_should_be_fp32
;
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
!
(
node
->
IsVar
()
&&
!
node
->
IsCtrlVar
()))
continue
;
if
(
node
->
Var
()
->
GetType
()
==
paddle
::
framework
::
proto
::
VarType
::
SELECTED_ROWS
||
node
->
Var
()
->
GetType
()
==
paddle
::
framework
::
proto
::
VarType
::
LOD_TENSOR
||
node
->
Var
()
->
GetType
()
==
paddle
::
framework
::
proto
::
VarType
::
LOD_TENSOR_ARRAY
||
node
->
Var
()
->
GetType
()
==
paddle
::
framework
::
proto
::
VarType
::
STRINGS
||
node
->
Var
()
->
GetType
()
==
paddle
::
framework
::
proto
::
VarType
::
VOCAB
)
{
if
(
node
->
Var
()
->
Persistable
()
&&
node
->
Var
()
->
GetDataType
()
==
paddle
::
framework
::
proto
::
VarType
::
FP32
)
{
VLOG
(
2
)
<<
"weights keep to fp32: "
<<
node
->
Name
();
weights_should_be_fp32
.
insert
(
node
->
Name
());
}
}
}
for
(
const
auto
&
param_name
:
parameters
)
{
auto
*
var
=
scope
.
FindLocalVar
(
param_name
);
if
(
var
->
IsType
<
framework
::
LoDTensor
>
()
||
var
->
IsType
<
framework
::
Tensor
>
())
{
auto
*
t
=
var
->
GetMutable
<
framework
::
LoDTensor
>
();
framework
::
Tensor
mixed_tensor
;
mixed_tensor
.
Resize
(
t
->
dims
());
auto
*
data
=
t
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
if
(
mixed_precision
==
phi
::
DataType
::
FLOAT16
&&
!
weights_should_be_fp32
.
count
(
param_name
))
{
mixed_tensor
.
set_type
(
paddle
::
experimental
::
DataType
::
FLOAT16
);
auto
*
mixed_data
=
mixed_tensor
.
mutable_data
<
float16
>
(
platform
::
CPUPlace
());
for
(
int
i
=
0
;
i
<
t
->
numel
();
i
++
)
{
mixed_data
[
i
]
=
static_cast
<
float16
>
(
data
[
i
]);
}
t
->
clear
();
paddle
::
framework
::
TensorCopySync
(
mixed_tensor
,
place
,
t
);
}
else
if
(
mixed_precision
==
phi
::
DataType
::
BFLOAT16
&&
!
weights_should_be_fp32
.
count
(
param_name
))
{
mixed_tensor
.
set_type
(
paddle
::
experimental
::
DataType
::
BFLOAT16
);
auto
*
mixed_data
=
mixed_tensor
.
mutable_data
<
bfloat16
>
(
platform
::
CPUPlace
());
for
(
int
i
=
0
;
i
<
t
->
numel
();
i
++
)
{
mixed_data
[
i
]
=
static_cast
<
bfloat16
>
(
data
[
i
]);
}
t
->
clear
();
paddle
::
framework
::
TensorCopySync
(
mixed_tensor
,
place
,
t
);
}
}
std
::
unordered_map
<
std
::
string
,
framework
::
proto
::
VarType
::
Type
>
vars_in_multi_block_map
;
FindVarsInMultiBlock
(
program_desc
.
get
(),
&
vars_in_multi_block_map
);
for
(
size_t
i
=
0
;
i
<
main_graph
->
SubGraphsSize
();
++
i
)
{
auto
graph
=
main_graph
->
GetSubGraph
(
i
);
VLOG
(
2
)
<<
" -------- handle subgraph "
<<
i
<<
", has "
<<
graph
->
Nodes
().
size
()
<<
" nodes"
;
program_desc
->
Block
(
i
).
LocalVarNames
();
ConvertAllFp64ToFp32
(
graph
);
ConvertTensorDtype
(
program_desc
.
get
(),
graph
,
black_list
,
keep_io_types
,
backend
,
mixed_precision
,
i
==
0
,
&
vars_in_multi_block_map
);
FixCastAttr
(
graph
);
}
auto
StrToBinary
=
[](
const
std
::
string
&
path
,
const
std
::
string
&
str
)
{
std
::
ofstream
file
(
path
.
c_str
(),
std
::
ios
::
binary
);
file
.
write
(
str
.
c_str
(),
str
.
size
());
file
.
close
();
};
StrToBinary
(
mixed_model_file
,
mixed_program_desc
.
Proto
()
->
SerializeAsString
());
StrToBinary
(
mixed_params_file
,
serialize_params
(
&
scope
,
parameters
));
framework
::
ProgramDesc
mixed_program_desc
;
framework
::
ir
::
GraphToProgram
(
*
main_graph
,
&
mixed_program_desc
);
SaveMixedModel
(
main_graph
.
get
(),
&
scope
,
&
mixed_program_desc
,
mixed_model_file
,
mixed_params_file
,
mixed_precision
);
}
}
// namespace analysis
...
...
paddle/fluid/inference/api/analysis_config.cc
浏览文件 @
b4a4eef2
...
...
@@ -410,6 +410,10 @@ AnalysisConfig::AnalysisConfig(const AnalysisConfig &other) {
pass_builder_
->
DeletePass
(
ps
);
}
}
for
(
auto
&
delete_pass
:
other
.
pass_builder
()
->
GetAllDeletedPasses
())
{
pass_builder_
->
DeletePass
(
delete_pass
);
}
}
void
AnalysisConfig
::
EnableCUDNN
()
{
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录