未验证 提交 b2e095c4 编写于 作者: C Chen Weihang 提交者: GitHub

[Cherry-pick] Add truncated_normal/unique/swish/unbind yaml and polish Getting...

[Cherry-pick] Add truncated_normal/unique/swish/unbind yaml and polish Getting tensor place impl (#41539)

* [Phi] Polish truncated normal kernel and add yaml (#41280)

* polish truncated normal kernel

* add yaml

* add truncated normal kernel and add yaml

* polish unittests and yaml

* import dygraph mehtod

* add unique yaml and final state api (#41460)

* fix get tensor backend set bug (#41478)

* [Phi] Add unbind yaml and final state api (#41277)

* add unbind yaml

* fix unittest

* [Phi] Add swish yaml and final state api (#41479)

* add swish yaml and final state api

* skip mkldnn test

* fix grad mkldnn test

* add cherry-pick lost code
上级 ae34db36
......@@ -475,6 +475,54 @@ std::tuple<Tensor, Tensor, Tensor> momentum_impl(
return api_output;
}
std::vector<Tensor> unbind_impl(const Tensor& input, int axis) {
auto kernel_key_set = ParseKernelKeyByInputArgs(input);
auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
Backend kernel_backend = kernel_key.backend();
DataLayout kernel_layout = kernel_key.layout();
DataType kernel_data_type = kernel_key.dtype();
auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
"unbind", {kernel_backend, kernel_layout, kernel_data_type});
VLOG(6) << "unbind API kernel key: [" << kernel_backend << ", "
<< kernel_layout << ", " << kernel_data_type << "]";
VLOG(6) << "unbind API kernel: " << kernel;
auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);
auto dense_input = PrepareData(input, kernel.InputAt(0), {});
// Calculate the number of out tensors
auto input_shape = input.dims();
if (axis < 0) {
axis = input_shape.size() + axis;
}
auto out_num = input_shape[axis];
std::vector<Tensor> out;
auto dense_outs = SetKernelOutput(out_num, kernel_backend, &out);
std::vector<phi::MetaTensor> meta_outs;
meta_outs.reserve(out_num);
std::vector<phi::MetaTensor*> meta_out_ptrs;
meta_out_ptrs.reserve(out_num);
for (int64_t i = 0; i < out_num; ++i) {
meta_outs.push_back(dense_outs[i]);
meta_out_ptrs.push_back(&meta_outs.back());
}
phi::UnbindInferMeta(MakeMetaTensor(*dense_input), axis, meta_out_ptrs);
using kernel_signature = void (*)(const phi::DeviceContext&,
const phi::DenseTensor&,
int,
std::vector<phi::DenseTensor*>&);
auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
(*kernel_fn)(*dev_ctx, *dense_input, axis, dense_outs);
return out;
}
////////////////// Backward(grad) api impls //////////////////////
// TODO(chenweihang): the original sum grad op can support higher-level
......
......@@ -14,6 +14,8 @@ limitations under the License. */
#pragma once
#include <vector>
#include "paddle/phi/api/include/tensor.h"
#include "paddle/phi/common/int_array.h"
#include "paddle/phi/common/place.h"
......@@ -73,6 +75,8 @@ std::tuple<Tensor, Tensor, Tensor> momentum_impl(
bool multi_precision,
float rescale_grad);
std::vector<Tensor> unbind_impl(const Tensor& input, int axis);
////////////////// Backward(grad) api impls //////////////////////
std::vector<Tensor> add_n_grad_impl(const std::vector<Tensor>& x,
......
......@@ -14,18 +14,46 @@ limitations under the License. */
#include "paddle/phi/api/lib/kernel_dispatch.h"
#include "paddle/phi/api/include/context_pool.h"
#include "paddle/phi/core/compat/convert_utils.h"
#ifdef _MSC_VER
#include <intrin.h>
#endif
#include "paddle/phi/api/include/context_pool.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/string_tensor_utils.h"
#include "paddle/phi/core/tensor_utils.h"
namespace paddle {
namespace experimental {
namespace detail {
// We need judge whether the allocation is nullptr,
// whether the allocation is initialized, wo we need GetHolder method
bool HasAllocation(const phi::TensorBase& t) {
if (phi::DenseTensor::classof(&t)) {
return phi::DenseTensorUtils::GetHolder(
static_cast<const phi::DenseTensor&>(t)) != nullptr;
} else if (phi::SelectedRows::classof(&t)) {
return phi::DenseTensorUtils::GetHolder(
static_cast<const phi::SelectedRows&>(t).value()) != nullptr;
} else if (phi::SparseCsrTensor::classof(&t)) {
return phi::DenseTensorUtils::GetHolder(
static_cast<const phi::SparseCsrTensor&>(t)
.non_zero_elements()) != nullptr;
} else if (phi::SparseCooTensor::classof(&t)) {
return phi::DenseTensorUtils::GetHolder(
static_cast<const phi::SparseCooTensor&>(t)
.non_zero_elements()) != nullptr;
} else if (phi::StringTensor::classof(&t)) {
return phi::StringTensorUtils::GetHolder(
static_cast<const phi::StringTensor&>(t)) != nullptr;
} else {
return false;
}
}
BackendSet GetTensorBackendSet(const phi::TensorBase& t) {
if (t.initialized()) {
if (HasAllocation(t)) {
BackendSet backend_set(phi::TransToPhiBackend(t.place()));
switch (t.layout()) {
case DataLayout::MKLDNN:
......
......@@ -23,6 +23,11 @@ class StringTensorUtils {
static StringTensorMeta* GetMutableMeta(StringTensor* tensor) {
return &(tensor->meta_);
}
static const std::shared_ptr<phi::Allocation>& GetHolder(
const StringTensor& tensor) {
return tensor.holder_;
}
};
} // namespace phi
......@@ -25,6 +25,11 @@ class DenseTensorUtils {
return &(tensor->meta_);
}
static const std::shared_ptr<phi::Allocation>& GetHolder(
const DenseTensor& tensor) {
return tensor.holder_;
}
static DenseTensor Slice(const DenseTensor& tensor,
int64_t begin_idx,
int64_t end_idx) {
......
......@@ -2429,7 +2429,7 @@ void TransposeGradInferMeta(const MetaTensor& x,
void UnbindInferMeta(const MetaTensor& x,
int axis,
std::vector<MetaTensor>* outs) {
std::vector<MetaTensor*> outs) {
auto in_dims = x.dims();
std::vector<int> out_dim;
axis = axis < 0 ? in_dims.size() + axis : axis;
......@@ -2438,11 +2438,11 @@ void UnbindInferMeta(const MetaTensor& x,
}
auto out_dims = phi::make_ddim(out_dim);
for (size_t i = 0; i < outs->size(); ++i) {
(*outs)[i].set_dtype(x.dtype());
(*outs)[i].set_dims(out_dims);
(*outs)[i].set_layout(x.layout());
(*outs)[i].share_lod(x);
for (size_t i = 0; i < outs.size(); ++i) {
outs[i]->set_dtype(x.dtype());
outs[i]->set_dims(out_dims);
outs[i]->set_layout(x.layout());
outs[i]->share_lod(x);
}
}
......
......@@ -365,7 +365,7 @@ void TrilTriuInferMeta(const MetaTensor& x,
void UnbindInferMeta(const MetaTensor& x,
int axis,
std::vector<MetaTensor>* outs);
std::vector<MetaTensor*> outs);
void UnchangedInferMeta(const MetaTensor& x, MetaTensor* out);
......
......@@ -21,10 +21,141 @@
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/fluid/framework/generator.h"
namespace phi {
// reference: https://gist.github.com/lakshayg/d80172fe5ae3c5d2c2aedb53c250320e
template <typename T>
T Erfinv(T x) {
if (x < -1 || x > 1) {
return std::numeric_limits<T>::quiet_NaN();
} else if (x == 1.0) {
return std::numeric_limits<T>::infinity();
} else if (x == -1.0) {
return -std::numeric_limits<T>::infinity();
}
const T LN2 = 6.931471805599453094172321214581e-1;
const T A0 = 1.1975323115670912564578e0;
const T A1 = 4.7072688112383978012285e1;
const T A2 = 6.9706266534389598238465e2;
const T A3 = 4.8548868893843886794648e3;
const T A4 = 1.6235862515167575384252e4;
const T A5 = 2.3782041382114385731252e4;
const T A6 = 1.1819493347062294404278e4;
const T A7 = 8.8709406962545514830200e2;
const T B0 = 1.0000000000000000000e0;
const T B1 = 4.2313330701600911252e1;
const T B2 = 6.8718700749205790830e2;
const T B3 = 5.3941960214247511077e3;
const T B4 = 2.1213794301586595867e4;
const T B5 = 3.9307895800092710610e4;
const T B6 = 2.8729085735721942674e4;
const T B7 = 5.2264952788528545610e3;
const T C0 = 1.42343711074968357734e0;
const T C1 = 4.63033784615654529590e0;
const T C2 = 5.76949722146069140550e0;
const T C3 = 3.64784832476320460504e0;
const T C4 = 1.27045825245236838258e0;
const T C5 = 2.41780725177450611770e-1;
const T C6 = 2.27238449892691845833e-2;
const T C7 = 7.74545014278341407640e-4;
const T D0 = 1.4142135623730950488016887e0;
const T D1 = 2.9036514445419946173133295e0;
const T D2 = 2.3707661626024532365971225e0;
const T D3 = 9.7547832001787427186894837e-1;
const T D4 = 2.0945065210512749128288442e-1;
const T D5 = 2.1494160384252876777097297e-2;
const T D6 = 7.7441459065157709165577218e-4;
const T D7 = 1.4859850019840355905497876e-9;
const T E0 = 6.65790464350110377720e0;
const T E1 = 5.46378491116411436990e0;
const T E2 = 1.78482653991729133580e0;
const T E3 = 2.96560571828504891230e-1;
const T E4 = 2.65321895265761230930e-2;
const T E5 = 1.24266094738807843860e-3;
const T E6 = 2.71155556874348757815e-5;
const T E7 = 2.01033439929228813265e-7;
const T F0 = 1.414213562373095048801689e0;
const T F1 = 8.482908416595164588112026e-1;
const T F2 = 1.936480946950659106176712e-1;
const T F3 = 2.103693768272068968719679e-2;
const T F4 = 1.112800997078859844711555e-3;
const T F5 = 2.611088405080593625138020e-5;
const T F6 = 2.010321207683943062279931e-7;
const T F7 = 2.891024605872965461538222e-15;
T abs_x = abs(x);
if (abs_x <= 0.85) {
T r = 0.180625 - 0.25 * x * x;
T num =
(((((((A7 * r + A6) * r + A5) * r + A4) * r + A3) * r + A2) * r + A1) *
r +
A0);
T den =
(((((((B7 * r + B6) * r + B5) * r + B4) * r + B3) * r + B2) * r + B1) *
r +
B0);
return x * num / den;
}
T r = sqrt(LN2 - log(1.0 - abs_x));
T num, den;
if (r <= 5.0) {
r = r - 1.6;
num =
(((((((C7 * r + C6) * r + C5) * r + C4) * r + C3) * r + C2) * r + C1) *
r +
C0);
den =
(((((((D7 * r + D6) * r + D5) * r + D4) * r + D3) * r + D2) * r + D1) *
r +
D0);
} else {
r = r - 5.0;
num =
(((((((E7 * r + E6) * r + E5) * r + E4) * r + E3) * r + E2) * r + E1) *
r +
E0);
den =
(((((((F7 * r + F6) * r + F5) * r + F4) * r + F3) * r + F2) * r + F1) *
r +
F0);
}
if (x < 0) {
return -num / den;
} else {
return num / den;
}
}
template <typename T>
struct TruncatedNormal {
T mean, std;
T a_normal_cdf;
T b_normal_cdf;
TruncatedNormal(T mean, T std) : mean(mean), std(std) {
auto normal_cdf = [](T x) {
return (1.0 + std::erf(x / std::sqrt(2.0))) / 2.0;
};
a_normal_cdf = normal_cdf(-2.0);
b_normal_cdf = normal_cdf(2.0);
}
T operator()(T value) const {
auto p = a_normal_cdf + (b_normal_cdf - a_normal_cdf) * value;
return std::sqrt(2.0) * Erfinv(2 * p - 1) * std + mean;
}
};
template <typename T, typename Context>
void TruncatedGaussianRandomKernel(const Context& dev_ctx,
const std::vector<int>& shape,
......@@ -42,7 +173,13 @@ void TruncatedGaussianRandomKernel(const Context& dev_ctx,
TruncatedNormal<T> truncated_normal(mean, std);
int64_t size = tensor->numel();
auto engine = paddle::framework::GetCPURandomEngine(seed);
std::shared_ptr<std::mt19937_64> engine;
if (seed) {
engine = std::make_shared<std::mt19937_64>();
engine->seed(seed);
} else {
engine = dev_ctx.GetGenerator()->GetCPUEngine();
}
for (int64_t i = 0; i < size; ++i) {
data[i] = truncated_normal(dist(*engine));
}
......
......@@ -24,8 +24,6 @@
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/fluid/framework/generator.h"
namespace phi {
template <typename T>
......@@ -106,8 +104,7 @@ void TruncatedGaussianRandomKernel(const Context& dev_ctx,
thrust::counting_iterator<int64_t> index_sequence_begin(0);
int64_t size = tensor->numel();
int device_id = dev_ctx.GetPlace().GetDeviceId();
auto gen_cuda = paddle::framework::GetDefaultCUDAGenerator(device_id);
auto gen_cuda = dev_ctx.GetGenerator();
if (gen_cuda->GetIsInitPy() && seed_flag) {
auto seed_offset = gen_cuda->IncrementOffset(1);
......
......@@ -14,149 +14,11 @@
#pragma once
#include <limits>
#include <random>
#include "paddle/phi/common/int_array.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/device_context.h"
#include "paddle/phi/infermeta/nullary.h"
namespace phi {
// reference: https://gist.github.com/lakshayg/d80172fe5ae3c5d2c2aedb53c250320e
template <typename T>
T Erfinv(T x) {
if (x < -1 || x > 1) {
return std::numeric_limits<T>::quiet_NaN();
} else if (x == 1.0) {
return std::numeric_limits<T>::infinity();
} else if (x == -1.0) {
return -std::numeric_limits<T>::infinity();
}
const T LN2 = 6.931471805599453094172321214581e-1;
const T A0 = 1.1975323115670912564578e0;
const T A1 = 4.7072688112383978012285e1;
const T A2 = 6.9706266534389598238465e2;
const T A3 = 4.8548868893843886794648e3;
const T A4 = 1.6235862515167575384252e4;
const T A5 = 2.3782041382114385731252e4;
const T A6 = 1.1819493347062294404278e4;
const T A7 = 8.8709406962545514830200e2;
const T B0 = 1.0000000000000000000e0;
const T B1 = 4.2313330701600911252e1;
const T B2 = 6.8718700749205790830e2;
const T B3 = 5.3941960214247511077e3;
const T B4 = 2.1213794301586595867e4;
const T B5 = 3.9307895800092710610e4;
const T B6 = 2.8729085735721942674e4;
const T B7 = 5.2264952788528545610e3;
const T C0 = 1.42343711074968357734e0;
const T C1 = 4.63033784615654529590e0;
const T C2 = 5.76949722146069140550e0;
const T C3 = 3.64784832476320460504e0;
const T C4 = 1.27045825245236838258e0;
const T C5 = 2.41780725177450611770e-1;
const T C6 = 2.27238449892691845833e-2;
const T C7 = 7.74545014278341407640e-4;
const T D0 = 1.4142135623730950488016887e0;
const T D1 = 2.9036514445419946173133295e0;
const T D2 = 2.3707661626024532365971225e0;
const T D3 = 9.7547832001787427186894837e-1;
const T D4 = 2.0945065210512749128288442e-1;
const T D5 = 2.1494160384252876777097297e-2;
const T D6 = 7.7441459065157709165577218e-4;
const T D7 = 1.4859850019840355905497876e-9;
const T E0 = 6.65790464350110377720e0;
const T E1 = 5.46378491116411436990e0;
const T E2 = 1.78482653991729133580e0;
const T E3 = 2.96560571828504891230e-1;
const T E4 = 2.65321895265761230930e-2;
const T E5 = 1.24266094738807843860e-3;
const T E6 = 2.71155556874348757815e-5;
const T E7 = 2.01033439929228813265e-7;
const T F0 = 1.414213562373095048801689e0;
const T F1 = 8.482908416595164588112026e-1;
const T F2 = 1.936480946950659106176712e-1;
const T F3 = 2.103693768272068968719679e-2;
const T F4 = 1.112800997078859844711555e-3;
const T F5 = 2.611088405080593625138020e-5;
const T F6 = 2.010321207683943062279931e-7;
const T F7 = 2.891024605872965461538222e-15;
T abs_x = abs(x);
if (abs_x <= 0.85) {
T r = 0.180625 - 0.25 * x * x;
T num =
(((((((A7 * r + A6) * r + A5) * r + A4) * r + A3) * r + A2) * r + A1) *
r +
A0);
T den =
(((((((B7 * r + B6) * r + B5) * r + B4) * r + B3) * r + B2) * r + B1) *
r +
B0);
return x * num / den;
}
T r = sqrt(LN2 - log(1.0 - abs_x));
T num, den;
if (r <= 5.0) {
r = r - 1.6;
num =
(((((((C7 * r + C6) * r + C5) * r + C4) * r + C3) * r + C2) * r + C1) *
r +
C0);
den =
(((((((D7 * r + D6) * r + D5) * r + D4) * r + D3) * r + D2) * r + D1) *
r +
D0);
} else {
r = r - 5.0;
num =
(((((((E7 * r + E6) * r + E5) * r + E4) * r + E3) * r + E2) * r + E1) *
r +
E0);
den =
(((((((F7 * r + F6) * r + F5) * r + F4) * r + F3) * r + F2) * r + F1) *
r +
F0);
}
if (x < 0) {
return -num / den;
} else {
return num / den;
}
}
template <typename T>
struct TruncatedNormal {
T mean, std;
T a_normal_cdf;
T b_normal_cdf;
TruncatedNormal(T mean, T std) : mean(mean), std(std) {
auto normal_cdf = [](T x) {
return (1.0 + std::erf(x / std::sqrt(2.0))) / 2.0;
};
a_normal_cdf = normal_cdf(-2.0);
b_normal_cdf = normal_cdf(2.0);
}
T operator()(T value) const {
auto p = a_normal_cdf + (b_normal_cdf - a_normal_cdf) * value;
return std::sqrt(2.0) * Erfinv(2 * p - 1) * std + mean;
}
};
template <typename T, typename Context>
void TruncatedGaussianRandomKernel(const Context& dev_ctx,
const std::vector<int>& shape,
......
......@@ -17,7 +17,7 @@ from __future__ import print_function
import math
from . import framework
from . import core
from .framework import _non_static_mode, default_main_program
from .framework import _non_static_mode, in_dygraph_mode, _in_legacy_dygraph, default_main_program, _current_expected_place
import numpy as np
from .core import VarDesc
from . import unique_name
......@@ -417,7 +417,18 @@ class TruncatedNormalInitializer(Initializer):
out_dtype = var.dtype
out_var = var
if framework._non_static_mode():
if in_dygraph_mode():
out_var = _C_ops.final_state_truncated_gaussian_random(
var.shape, self._mean, self._std_dev, self._seed, out_dtype,
_current_expected_place())
if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
var_tmp = _C_ops.final_state_cast(out_var, var.dtype)
var_tmp._share_underline_tensor_to(var)
else:
out_var._share_underline_tensor_to(var)
return None
if _in_legacy_dygraph():
out_var = _C_ops.truncated_gaussian_random(
'shape', var.shape, 'dtype', out_dtype, 'mean', self._mean,
'std', self._std_dev, 'seed', self._seed)
......
......@@ -113,6 +113,7 @@ class TestMKLDNNSwishDim2(TestSwish):
super(TestMKLDNNSwishDim2, self).setUp()
self.attrs["use_mkldnn"] = True
self.check_eager = False
def init_dtype(self):
self.dtype = np.float32
......@@ -284,6 +285,7 @@ class TestMKLDNNSwishDim4(TestSwish):
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
self.outputs = {'Out': out}
self.attrs = {"use_mkldnn": True, "beta": beta}
self.check_eager = False
def init_dtype(self):
self.dtype = np.float32
......
......@@ -25,6 +25,7 @@ import paddle.nn.functional as F
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid import compiler, Program, program_guard
from paddle.fluid.framework import _test_eager_guard
paddle.enable_static()
......@@ -2928,7 +2929,9 @@ def ref_swish(x):
class TestSwish(TestActivation):
def setUp(self):
self.op_type = "swish"
self.python_api = paddle.nn.functional.swish
self.init_dtype()
self.check_eager = True
np.random.seed(1024)
x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
......@@ -2940,7 +2943,10 @@ class TestSwish(TestActivation):
def test_check_grad(self):
if self.dtype == np.float16:
return
self.check_grad(['X'], 'Out')
check_eager = False
if hasattr(self, 'check_eager'):
check_eager = self.check_eager
self.check_grad(['X'], 'Out', check_eager=check_eager)
class TestSwishAPI(unittest.TestCase):
......@@ -2975,6 +2981,10 @@ class TestSwishAPI(unittest.TestCase):
self.assertEqual(np.allclose(out_ref, r.numpy()), True)
paddle.enable_static()
def test_dygraph_final_state_api(self):
with _test_eager_guard():
self.test_dygraph_api()
def test_fluid_api(self):
paddle.enable_static()
with fluid.program_guard(fluid.Program()):
......
......@@ -17,10 +17,13 @@ from __future__ import print_function
import unittest
import numpy
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from op_test import OpTest
from paddle.fluid.op import Operator
from paddle.fluid.executor import Executor
from paddle.fluid.framework import _test_eager_guard
class TestTrunctedGaussianRandomOp(unittest.TestCase):
......@@ -33,15 +36,16 @@ class TestTrunctedGaussianRandomOp(unittest.TestCase):
"std": 1.,
"seed": 10,
}
self.outputs = ["Out"]
def test_cpu(self):
self.gaussian_random_test(place=fluid.CPUPlace())
self.gaussian_random_test_eager(place=fluid.CPUPlace())
def test_gpu(self):
if core.is_compiled_with_cuda():
self.gaussian_random_test(place=fluid.CUDAPlace(0))
self.gaussian_random_test_eager(place=fluid.CUDAPlace(0))
def gaussian_random_test(self, place):
......@@ -64,6 +68,17 @@ class TestTrunctedGaussianRandomOp(unittest.TestCase):
self.assertAlmostEqual(numpy.mean(tensor), .0, delta=0.1)
self.assertAlmostEqual(numpy.var(tensor), 0.773, delta=0.1)
# TruncatedNormal.__call__ has no return value, so here call _C_ops api
# directly
def gaussian_random_test_eager(self, place):
with fluid.dygraph.guard(place):
with _test_eager_guard():
out = paddle._C_ops.final_state_truncated_gaussian_random(
self.attrs["shape"], self.attrs["mean"], self.attrs["std"],
self.attrs["seed"], core.VarDesc.VarType.FP32, place)
self.assertAlmostEqual(numpy.mean(out.numpy()), .0, delta=0.1)
self.assertAlmostEqual(numpy.var(out.numpy()), 0.773, delta=0.1)
if __name__ == "__main__":
unittest.main()
......@@ -17,9 +17,11 @@ from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest, convert_float_to_uint16
import paddle
import paddle.fluid as fluid
import paddle.tensor as tensor
from paddle.fluid import compiler, Program, program_guard, core
from paddle.fluid.framework import _test_eager_guard
class TestUnbind(unittest.TestCase):
......@@ -39,6 +41,25 @@ class TestUnbind(unittest.TestCase):
assert np.array_equal(res_1, input_1[0, 0:100])
assert np.array_equal(res_2, input_1[1, 0:100])
def test_unbind_dygraph(self):
with fluid.dygraph.guard():
np_x = np.random.random([2, 3]).astype("float32")
x = paddle.to_tensor(np_x)
x.stop_gradient = False
[res_1, res_2] = paddle.unbind(x, 0)
self.assertTrue(np.array_equal(res_1, np_x[0, 0:100]))
self.assertTrue(np.array_equal(res_2, np_x[1, 0:100]))
out = paddle.add_n([res_1, res_2])
np_grad = np.ones(x.shape, np.float32)
out.backward()
self.assertTrue(np.array_equal(x.grad.numpy(), np_grad))
def test_unbind_dygraph_final_state(self):
with _test_eager_guard():
self.test_unbind_dygraph()
class TestLayersUnbind(unittest.TestCase):
def test_layers_unbind(self):
......@@ -157,6 +178,7 @@ class TestUnbindOp4(TestUnbindOp):
class TestUnbindBF16Op(OpTest):
def setUp(self):
self._set_op_type()
self.python_api = paddle.unbind
self.dtype = self.get_dtype()
self.axis = 0
self.num = 3
......
......@@ -21,6 +21,7 @@ import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.op import Operator
from paddle.fluid.framework import _test_eager_guard
class TestUniqueOp(OpTest):
......@@ -251,6 +252,12 @@ class TestUniqueAPI(unittest.TestCase):
self.assertTrue((counts.numpy() == np_counts).all(), True)
paddle.enable_static()
def test_dygraph_final_state_api(self):
with _test_eager_guard():
self.test_dygraph_api_out()
self.test_dygraph_api_attr()
self.test_dygraph_attr_dtype()
def test_static_graph(self):
with paddle.static.program_guard(paddle.static.Program(),
paddle.static.Program()):
......
......@@ -1175,8 +1175,9 @@ def swish(x, name=None):
x = paddle.to_tensor(np.array([-2., 0., 1.]))
out = F.swish(x) # [-0.238406, 0., 0.731059]
"""
if in_dynamic_mode():
if in_dygraph_mode():
return _C_ops.final_state_swish(x, 1.0)
if _in_legacy_dygraph():
return _C_ops.swish(x, 'beta', 1.0)
check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'swish')
......
......@@ -1211,11 +1211,16 @@ def unique(x,
else:
axis = [axis]
attr_dtype = convert_np_dtype_to_dtype_(dtype)
if paddle.in_dynamic_mode():
if _non_static_mode():
if in_dygraph_mode():
out, indices, inverse, counts = _C_ops.final_state_unique(
x, return_index, return_inverse, return_counts, axis,
attr_dtype)
if _in_legacy_dygraph():
out, inverse, indices, counts = _C_ops.unique(
x, 'dtype', attr_dtype, 'return_index', return_index,
'return_inverse', return_inverse, 'return_counts', return_counts,
'axis', axis, "is_sorted", True)
'return_inverse', return_inverse, 'return_counts',
return_counts, 'axis', axis, "is_sorted", True)
outs = [out]
if return_index:
outs.append(indices)
......@@ -1464,6 +1469,9 @@ def unbind(input, axis=0):
# x3.shape [3, 5]
"""
if in_dygraph_mode():
return _C_ops.final_state_unbind(input, axis)
if not isinstance(axis, (int)):
raise TypeError("The type of 'axis' must be int, but received %s." %
(type(axis)))
......@@ -1472,7 +1480,7 @@ def unbind(input, axis=0):
input_shape = input.shape
axis_ = axis if axis >= 0 else len(input_shape) + axis
num = input_shape[axis_]
if paddle.in_dynamic_mode():
if _in_legacy_dygraph():
return _C_ops.unbind(input, num, 'axis', axis)
helper = LayerHelper("unbind", **locals())
......
......@@ -1744,6 +1744,17 @@
data_type : x
backward : sum_grad
# The python API paddle.nn.functional.swish has no `bete` argument, it may be removed later
- api : swish
args : (Tensor x, float beta=1.0)
output : Tensor(out)
infer_meta :
func : UnchangedInferMeta
param : [x]
kernel :
func : swish
backward : swish_grad
# take_along_axis
- api : take_along_axis
args : (Tensor x, Tensor index, int axis)
......@@ -1861,6 +1872,25 @@
func : trunc
backward : trunc_grad
# python API: paddle.nn.initializer.TruncatedNormal
- api : truncated_gaussian_random
args : (int[] shape, float mean, float std, int seed, DataType dtype=DataType::FLOAT32, Place place={})
output : Tensor
infer_meta :
func : TruncatedGaussianRandomInferMeta
param : [shape, mean, std, seed, dtype]
kernel :
func : truncated_gaussian_random
param : [shape, mean, std, seed, dtype]
backend : place
data_type : dtype
- api : unbind
args : (Tensor input, int axis)
output : Tensor[]
invoke : unbind_impl(input, axis)
backward : unbind_grad
# unfold
- api : unfold
args : (Tensor x, int[] kernel_sizes, int[] strides, int[] paddings, int[] dilations)
......@@ -1871,6 +1901,16 @@
func : unfold
backward : unfold_grad
# The `axis` argument of Python API paddle.unique is not vector
- api : unique
args : (Tensor x, bool return_index, bool return_inverse, bool return_counts, int[] axis, DataType dtype=DataType::INT64)
output : Tensor(out), Tensor(indices), Tensor(inverse), Tensor(counts)
infer_meta :
func : UniqueInferMeta
kernel :
func : unique
data_type : x
- api : unsqueeze
args : (Tensor x, IntArray axes)
output : Tensor(xshape), Tensor(out)
......
......@@ -1317,6 +1317,16 @@
kernel :
func : sum_grad
- backward_api : swish_grad
forward : swish (Tensor x, float beta=1.0) -> Tensor(out)
args : (Tensor x, Tensor out_grad, float bete=1.0)
output : Tensor(x_grad)
infer_meta :
func : GeneralUnaryGradInferMeta
param : [x]
kernel :
func : swish_grad
- backward_api : take_along_axis_grad
forward : take_along_axis (Tensor x, Tensor index, int axis) -> Tensor(out)
args : (Tensor x, Tensor index, Tensor out_grad, int axis)
......@@ -1429,6 +1439,12 @@
kernel :
func : trunc_grad
- backward_api : unbind_grad
forward : unbind (Tensor input, int axis) -> Tensor[](out)
args : (Tensor[] out_grad, int axis)
output : Tensor(input_grad)
invoke : stack(out_grad, axis)
- backward_api : unfold_grad
forward : unfold (Tensor x, int[] kernel_sizes, int[] strides, int[] paddings, int[] dilations) -> Tensor(out)
args : (Tensor x, Tensor out_grad, int[] kernel_sizes, int[] strides, int[] paddings, int[] dilations)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册