From b23a23c9dbe1683f53a5daf73b7298f82801a3ae Mon Sep 17 00:00:00 2001 From: zhanghaichao Date: Fri, 28 Apr 2017 17:29:46 -0700 Subject: [PATCH] fixed error in beam_search example and documents --- .../paddle/trainer_config_helpers/layers.py | 47 +++++++++++-------- 1 file changed, 27 insertions(+), 20 deletions(-) diff --git a/python/paddle/trainer_config_helpers/layers.py b/python/paddle/trainer_config_helpers/layers.py index b9e3d264042..46fd752d527 100755 --- a/python/paddle/trainer_config_helpers/layers.py +++ b/python/paddle/trainer_config_helpers/layers.py @@ -1349,9 +1349,9 @@ def last_seq(input, """ Get Last Timestamp Activation of a sequence. - If stride > 0, this layer slides a window whose size is determined by stride, - and return the last value of the window as the output. Thus, a long sequence - will be shorten. Note that for sequence with sub-sequence, the default value + If stride > 0, this layer slides a window whose size is determined by stride, + and return the last value of the window as the output. Thus, a long sequence + will be shorten. Note that for sequence with sub-sequence, the default value of stride is -1. The simple usage is: @@ -1365,7 +1365,7 @@ def last_seq(input, :type name: basestring :param input: Input layer name. :type input: LayerOutput - :param stride: window size. + :param stride: window size. :type stride: Int :param layer_attr: extra layer attributes. :type layer_attr: ExtraLayerAttribute. @@ -1405,9 +1405,9 @@ def first_seq(input, """ Get First Timestamp Activation of a sequence. - If stride > 0, this layer slides a window whose size is determined by stride, - and return the first value of the window as the output. Thus, a long sequence - will be shorten. Note that for sequence with sub-sequence, the default value + If stride > 0, this layer slides a window whose size is determined by stride, + and return the first value of the window as the output. Thus, a long sequence + will be shorten. Note that for sequence with sub-sequence, the default value of stride is -1. The simple usage is: @@ -1421,7 +1421,7 @@ def first_seq(input, :type name: basestring :param input: Input layer name. :type input: LayerOutput - :param stride: window size. + :param stride: window size. :type stride: Int :param layer_attr: extra layer attributes. :type layer_attr: ExtraLayerAttribute. @@ -1561,7 +1561,7 @@ def seq_reshape_layer(input, bias_attr=None): """ A layer for reshaping the sequence. Assume the input sequence has T instances, - the dimension of each instance is M, and the input reshape_size is N, then the + the dimension of each instance is M, and the input reshape_size is N, then the output sequence has T*M/N instances, the dimension of each instance is N. Note that T*M/N must be an integer. @@ -2118,8 +2118,8 @@ def img_conv_layer(input, :param trans: true if it is a convTransLayer, false if it is a convLayer :type trans: bool :param layer_type: specify the layer_type, default is None. If trans=True, - layer_type has to be "exconvt" or "cudnn_convt", - otherwise layer_type has to be either "exconv" or + layer_type has to be "exconvt" or "cudnn_convt", + otherwise layer_type has to be either "exconv" or "cudnn_conv" :type layer_type: String :return: LayerOutput object. @@ -2337,9 +2337,9 @@ def spp_layer(input, .. code-block:: python - spp = spp_layer(input=data, - pyramid_height=2, - num_channels=16, + spp = spp_layer(input=data, + pyramid_height=2, + num_channels=16, pool_type=MaxPooling()) :param name: layer name. @@ -2433,7 +2433,7 @@ def img_cmrnorm_layer(input, The example usage is: .. code-block:: python - + norm = img_cmrnorm_layer(input=net, size=5) :param name: layer name. @@ -2494,7 +2494,7 @@ def batch_norm_layer(input, The example usage is: .. code-block:: python - + norm = batch_norm_layer(input=net, act=ReluActivation()) :param name: layer name. @@ -2795,11 +2795,11 @@ def seq_concat_layer(a, b, act=None, name=None, layer_attr=None, """ Concat sequence a with sequence b. - Inputs: + Inputs: - a = [a1, a2, ..., an] - b = [b1, b2, ..., bn] - Note that the length of a and b should be the same. - + Output: [a1, b1, a2, b2, ..., an, bn] The example usage is: @@ -3563,9 +3563,15 @@ def beam_search(step, simple_rnn += last_time_step_output return simple_rnn + generated_word_embedding = GeneratedInput( + size=target_dictionary_dim, + embedding_name="target_language_embedding", + embedding_size=word_vector_dim) + beam_gen = beam_search(name="decoder", step=rnn_step, - input=[StaticInput(encoder_last)], + input=[StaticInput(encoder_last), + generated_word_embedding], bos_id=0, eos_id=1, beam_size=5) @@ -3584,7 +3590,8 @@ def beam_search(step, You can refer to the first parameter of recurrent_group, or demo/seqToseq/seqToseq_net.py for more details. :type step: callable - :param input: Input data for the recurrent unit + :param input: Input data for the recurrent unit, which should include the + previously generated words as a GeneratedInput object. :type input: list :param bos_id: Index of the start symbol in the dictionary. The start symbol is a special token for NLP task, which indicates the -- GitLab