From b1224da8d9386348fac2dac1a61e0b95ed0b518c Mon Sep 17 00:00:00 2001 From: chengduo Date: Tue, 10 Apr 2018 13:58:25 +0800 Subject: [PATCH] Move reduceSum to elementwise_op_function.h (#9773) * add cuda_device_functions.h * move reduceSum to elementwise_op_function.h --- .../fluid/operators/elementwise_op_function.h | 100 +++++++++++++----- paddle/fluid/platform/cuda_helper.h | 48 --------- 2 files changed, 75 insertions(+), 73 deletions(-) diff --git a/paddle/fluid/operators/elementwise_op_function.h b/paddle/fluid/operators/elementwise_op_function.h index 0b4238436ff..415182201a7 100644 --- a/paddle/fluid/operators/elementwise_op_function.h +++ b/paddle/fluid/operators/elementwise_op_function.h @@ -13,14 +13,15 @@ See the License for the specific language governing permissions and limitations under the License. */ #pragma once +#include #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/platform/transform.h" #ifdef __NVCC__ +#include #include -#include "paddle/fluid/platform/cuda_helper.h" constexpr int ELEMWISE_MAX_BLOCK_DIM = 1024; #endif @@ -43,35 +44,35 @@ namespace operators { */ inline void get_mid_dims(const framework::DDim& x_dims, const framework::DDim& y_dims, const int axis, - int& pre, int& n, int& post) { - pre = 1; - n = 1; - post = 1; + int* pre, int* n, int* post) { + *pre = 1; + *n = 1; + *post = 1; for (int i = 0; i < axis; ++i) { - pre *= x_dims[i]; + (*pre) *= x_dims[i]; } for (int i = 0; i < y_dims.size(); ++i) { PADDLE_ENFORCE_EQ(x_dims[i + axis], y_dims[i], "Broadcast dimension mismatch."); - n *= y_dims[i]; + (*n) *= y_dims[i]; } for (int i = axis + y_dims.size(); i < x_dims.size(); ++i) { - post *= x_dims[i]; + (*post) *= x_dims[i]; } } -inline void trim_trailing_singular_dims(framework::DDim& dims) { +inline void trim_trailing_singular_dims(framework::DDim* dims) { // Remove trailing dimensions of size 1 for y - auto actual_dims_size = dims.size(); + auto actual_dims_size = dims->size(); for (; actual_dims_size != 0; --actual_dims_size) { - if (dims[actual_dims_size - 1] != 1) break; + if ((*dims)[actual_dims_size - 1] != 1) break; } - if (actual_dims_size != dims.size()) { - auto actual_dims = framework::vectorize(dims); + if (actual_dims_size != dims->size()) { + auto actual_dims = framework::vectorize(*dims); actual_dims.resize(actual_dims_size); - dims = framework::make_ddim(actual_dims); + *dims = framework::make_ddim(actual_dims); } } @@ -159,7 +160,7 @@ class RowwiseTransformIterator RowwiseTransformIterator, const T*> super_t; HOSTDEVICE RowwiseTransformIterator(const T* x, int n) - : super_t(x), begin_(x), n_(n){}; + : super_t(x), begin_(x), n_(n) {} friend class thrust::iterator_core_access; private: @@ -179,7 +180,7 @@ class MidWiseTransformIterator MidWiseTransformIterator, const T*> super_t; HOSTDEVICE MidWiseTransformIterator(const T* x, int n, int post) - : super_t(x), begin_(x), n_(n), post_(post){}; + : super_t(x), begin_(x), n_(n), post_(post) {} friend class thrust::iterator_core_access; private: @@ -333,6 +334,55 @@ static void ElemwiseGradBroadcast1CPU(const T* x, const T* y, const T* out, } } #ifdef __NVCC__ + +// __shfl_down has been deprecated as of CUDA 9.0. +#if CUDA_VERSION < 9000 +template +__forceinline__ __device__ T __shfl_down_sync(unsigned, T val, int delta) { + return __shfl_down(val, delta); +} +#define CREATE_SHFL_MASK(mask, predicate) mask = 0u; +#else +#define FULL_WARP_MASK 0xFFFFFFFF +#define CREATE_SHFL_MASK(mask, predicate) \ + mask = __ballot_sync(FULL_WARP_MASK, (predicate)) +#endif + +template +__device__ T reduceSum(T val, int tid, int len) { + // TODO(zcd): The warp size should be taken from the + // parameters of the GPU but not specified as 32 simply. + // To make the reduceSum more efficiently, + // I use Warp-Level Parallelism and assume the Warp size + // is 32 which may be different for different GPU, + // but most card's warp size is 32. + __shared__ T shm[32]; + const int warpSize = 32; + unsigned mask = 0u; + CREATE_SHFL_MASK(mask, tid < len); + + for (int offset = warpSize / 2; offset > 0; offset /= 2) + val += __shfl_down_sync(mask, val, offset); + + if (tid < warpSize) shm[tid] = 0; + + __syncthreads(); + + if (tid % warpSize == 0) { + shm[tid / warpSize] = val; + } + + CREATE_SHFL_MASK(mask, tid < warpSize); + + if (tid < warpSize) { + val = shm[tid]; + for (int offset = warpSize / 2; offset > 0; offset /= 2) + val += __shfl_down_sync(mask, val, offset); + } + + return val; +} + template static __global__ void ElemwiseGradBroadcast1CUDAKernel( const T* x, const T* y, const T* out, const T* dout, int h, int w, @@ -355,7 +405,7 @@ static __global__ void ElemwiseGradBroadcast1CUDAKernel( if (dy) { h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h; - val = platform::reduceSum(val, tid, h); + val = reduceSum(val, tid, h); if (threadIdx.x == 0) { dy[j] = val; } @@ -432,7 +482,7 @@ static __global__ void ElemwiseGradBroadcast2CUDAKernel( if (dy) { int h = pre * post; h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h; - val = platform::reduceSum(val, tid, h); + val = reduceSum(val, tid, h); if (threadIdx.x == 0) { dy[j] = val; } @@ -472,11 +522,11 @@ void ElemwiseGradCompute(const framework::ExecutionContext& ctx, auto y_dim = y.dims(); axis = (axis == -1 ? x_dim.size() - y_dim.size() : axis); - trim_trailing_singular_dims(y_dim); + trim_trailing_singular_dims(&y_dim); axis = (y_dim.size() == 0) ? x_dim.size() : axis; int pre, n, post; - get_mid_dims(x_dim, y_dim, axis, pre, n, post); + get_mid_dims(x_dim, y_dim, axis, &pre, &n, &post); if (post == 1) { int h = pre; int w = n; @@ -514,7 +564,7 @@ void ElemwiseGradCompute(const framework::ExecutionContext& ctx, } } } -}; +} template @@ -543,11 +593,11 @@ void ElementwiseGradCompute(const framework::ExecutionContext& ctx, } axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis); - trim_trailing_singular_dims(y_dims); + trim_trailing_singular_dims(&y_dims); axis = (y_dims.size() == 0) ? x_dims.size() : axis; int pre, n, post; - get_mid_dims(x_dims, y_dims, axis, pre, n, post); + get_mid_dims(x_dims, y_dims, axis, &pre, &n, &post); if (post == 1) { broadcastfunctor f; @@ -582,11 +632,11 @@ void ElementwiseComputeEx(const framework::ExecutionContext& ctx, axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis); PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(), "Axis should be in range [0, x_dims)"); - trim_trailing_singular_dims(y_dims); + trim_trailing_singular_dims(&y_dims); axis = (y_dims.size() == 0) ? x_dims.size() : axis; int pre, n, post; - get_mid_dims(x_dims, y_dims, axis, pre, n, post); + get_mid_dims(x_dims, y_dims, axis, &pre, &n, &post); if (post == 1) { functor.RunRowWise(n, pre); return; diff --git a/paddle/fluid/platform/cuda_helper.h b/paddle/fluid/platform/cuda_helper.h index a4ea4f21e3c..881d611d4ac 100644 --- a/paddle/fluid/platform/cuda_helper.h +++ b/paddle/fluid/platform/cuda_helper.h @@ -62,53 +62,5 @@ CUDA_ATOMIC_WRAPPER(Add, double) { } #endif -// __shfl_down has been deprecated as of CUDA 9.0. -#if CUDA_VERSION < 9000 -template -__forceinline__ __device__ T __shfl_down_sync(unsigned, T val, int delta) { - return __shfl_down(val, delta); -} -#define CREATE_SHFL_MASK(mask, predicate) mask = 0u; -#else -#define FULL_WARP_MASK 0xFFFFFFFF -#define CREATE_SHFL_MASK(mask, predicate) \ - mask = __ballot_sync(FULL_WARP_MASK, (predicate)) -#endif - -template -__device__ T reduceSum(T val, int tid, int len) { - // TODO(zcd): The warp size should be taken from the - // parameters of the GPU but not specified as 32 simply. - // To make the reduceSum more efficiently, - // I use Warp-Level Parallelism and assume the Warp size - // is 32 which may be different for different GPU, - // but most card's warp size is 32. - __shared__ T shm[32]; - const int warpSize = 32; - unsigned mask = 0u; - CREATE_SHFL_MASK(mask, tid < len); - - for (int offset = warpSize / 2; offset > 0; offset /= 2) - val += __shfl_down_sync(mask, val, offset); - - if (tid < warpSize) shm[tid] = 0; - - __syncthreads(); - - if (tid % warpSize == 0) { - shm[tid / warpSize] = val; - } - - CREATE_SHFL_MASK(mask, tid < warpSize); - - if (tid < warpSize) { - val = shm[tid]; - for (int offset = warpSize / 2; offset > 0; offset /= 2) - val += __shfl_down_sync(mask, val, offset); - } - - return val; -} - } // namespace platform } // namespace paddle -- GitLab