From b0edda4d99fdfa388dc6bb348c35d58ee4f819bc Mon Sep 17 00:00:00 2001 From: Double_V Date: Wed, 14 Oct 2020 18:58:18 +0800 Subject: [PATCH] kunlun add op (#27890) * add stack pool2d roi_align xpu op,test=kunlun * error message opt, test=kunlun * add xpu unittest,test=kunlun * skip check grad,test=kunlun * fix boostget , test=kunlun --- paddle/fluid/operators/pool_op_xpu.cc | 165 +++++++++ paddle/fluid/operators/roi_align_op_xpu.cc | 78 ++++ paddle/fluid/operators/stack_op_xpu.cc | 75 ++++ .../tests/unittests/xpu/test_pool2d_op_xpu.py | 338 ++++++++++++++++++ .../unittests/xpu/test_roi_align_op_xpu.py | 183 ++++++++++ .../tests/unittests/xpu/test_stack_op_xpu.py | 100 ++++++ 6 files changed, 939 insertions(+) create mode 100644 paddle/fluid/operators/pool_op_xpu.cc create mode 100644 paddle/fluid/operators/roi_align_op_xpu.cc create mode 100644 paddle/fluid/operators/stack_op_xpu.cc create mode 100644 python/paddle/fluid/tests/unittests/xpu/test_pool2d_op_xpu.py create mode 100644 python/paddle/fluid/tests/unittests/xpu/test_roi_align_op_xpu.py create mode 100644 python/paddle/fluid/tests/unittests/xpu/test_stack_op_xpu.py diff --git a/paddle/fluid/operators/pool_op_xpu.cc b/paddle/fluid/operators/pool_op_xpu.cc new file mode 100644 index 00000000000..746f7054aa2 --- /dev/null +++ b/paddle/fluid/operators/pool_op_xpu.cc @@ -0,0 +1,165 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ +#include "paddle/fluid/operators/pool_op.h" +#include + +#ifdef PADDLE_WITH_XPU +namespace paddle { +namespace operators { + +xpu::Pooling_t XPUPoolingType(const std::string& pooltype, bool exclusive, + bool is_test) { + if (pooltype == "max") { + return xpu::Pooling_t::MAX_WITHOUT_INDEX; + } else if (pooltype == "avg") { + if (exclusive) { + return xpu::Pooling_t::AVG_WITHOUT_PAD; + } else { + return xpu::Pooling_t::AVG_WITH_PAD; + } + } else { + PADDLE_THROW(platform::errors::InvalidArgument( + "Pool op only supports 2D and 3D input.")); + } +} +template +class PoolXPUKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + const Tensor* in_x = context.Input("X"); + Tensor* out = context.Output("Out"); + std::string pooling_type = context.Attr("pooling_type"); + std::vector ksize = context.Attr>("ksize"); + std::vector strides = context.Attr>("strides"); + std::vector paddings = context.Attr>("paddings"); + bool exclusive = context.Attr("exclusive"); + bool is_test = context.Attr("is_test"); + bool adaptive = context.Attr("adaptive"); + PADDLE_ENFORCE_EQ(!adaptive, true, + platform::errors::InvalidArgument( + "XPU does not support adaptive == true!")); + PADDLE_ENFORCE_EQ(ksize.size(), 2, + platform::errors::InvalidArgument( + "XPU only support 2 dimension pooling!")); + int* index_data = nullptr; + if (context.Attr("global_pooling")) { + for (size_t i = 0; i < ksize.size(); ++i) { + paddings[i] = 0; + ksize[i] = static_cast(in_x->dims()[i + 2]); + } + } + const int c = in_x->dims()[0] * in_x->dims()[1]; + const int in_h = in_x->dims()[2]; + const int in_w = in_x->dims()[3]; + const int out_h = out->dims()[2]; + const int out_w = out->dims()[3]; + const int win_h = ksize[0]; + const int win_w = ksize[1]; + const int stride_h = strides[0]; + const int stride_w = strides[1]; + const int pad_up = paddings[0]; + const int pad_down = paddings[0]; + const int pad_left = paddings[1]; + const int pad_right = paddings[1]; + const float* input = in_x->data(); + out->mutable_data(context.GetPlace()); + float* output = out->data(); + xpu::Pooling_t pool_type = XPUPoolingType(pooling_type, exclusive, is_test); + auto& dev_ctx = context.template device_context(); + int r = xpu::pooling_forward( + dev_ctx.x_context(), input, output, index_data, pool_type, c, in_h, + in_w, pad_left, pad_right, pad_up, pad_down, win_h, win_w, stride_h, + stride_w, out_h, out_w); + PADDLE_ENFORCE_EQ( + r, xpu::Error_t::SUCCESS, + platform::errors::InvalidArgument("pool2d XPU kernel error!")); + } +}; +template +class PoolGradXPUKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + const Tensor* in_x = context.Input("X"); + const Tensor* out = context.Input("Out"); + const Tensor* out_grad = + context.Input(framework::GradVarName("Out")); + Tensor* in_x_grad = context.Output(framework::GradVarName("X")); + std::string pooling_type = context.Attr("pooling_type"); + std::vector ksize = context.Attr>("ksize"); + std::vector strides = context.Attr>("strides"); + std::vector paddings = context.Attr>("paddings"); + bool exclusive = context.Attr("exclusive"); + bool adaptive = context.Attr("adaptive"); + const int* index_data = nullptr; + PADDLE_ENFORCE_EQ(!adaptive, true, + platform::errors::InvalidArgument( + "XPU does not support adaptive == true!")); + PADDLE_ENFORCE_EQ(ksize.size(), 2, + platform::errors::InvalidArgument( + "XPU only support 2 dimension pooling!")); + if (context.Attr("global_pooling")) { + for (size_t i = 0; i < ksize.size(); ++i) { + paddings[i] = 0; + ksize[i] = static_cast(in_x->dims()[i + 2]); + } + } + if (!in_x_grad) { + return; + } + const int c = in_x->dims()[0] * in_x->dims()[1]; + const int in_h = in_x->dims()[2]; + const int in_w = in_x->dims()[3]; + const int out_h = out->dims()[2]; + const int out_w = out->dims()[3]; + const int win_h = ksize[0]; + const int win_w = ksize[1]; + const int stride_h = strides[0]; + const int stride_w = strides[1]; + const int pad_up = paddings[0]; + const int pad_down = paddings[0]; + const int pad_left = paddings[1]; + const int pad_right = paddings[1]; + const float* input = in_x->data(); + const float* output = out->data(); + const float* output_grad = out_grad->data(); + in_x_grad->mutable_data(context.GetPlace()); + float* input_grad = in_x_grad->data(); + xpu::Pooling_t pool_type = XPUPoolingType(pooling_type, exclusive, false); + auto& dev_ctx = context.template device_context(); + // Need to init memory in the first place + const int zero = 0; + int r = + xpu::memset(dev_ctx.x_context(), reinterpret_cast(input_grad), + zero, in_x_grad->numel() * sizeof(float)); + PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS, + platform::errors::InvalidArgument( + "There are pool2d grad XPU kernel error raised!")); + r = xpu::pooling_backward(dev_ctx.x_context(), input, output, index_data, + output_grad, input_grad, pool_type, c, in_h, in_w, + pad_left, pad_right, pad_up, pad_down, win_h, + win_w, stride_h, stride_w, out_h, out_w); + PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS, + platform::errors::InvalidArgument( + "There are pool2d grad XPU kernel error raised!")); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP_XPU_KERNEL( + pool2d, ops::PoolXPUKernel); +REGISTER_OP_XPU_KERNEL( + pool2d_grad, + ops::PoolGradXPUKernel); + +#endif diff --git a/paddle/fluid/operators/roi_align_op_xpu.cc b/paddle/fluid/operators/roi_align_op_xpu.cc new file mode 100644 index 00000000000..3647f3a9eb4 --- /dev/null +++ b/paddle/fluid/operators/roi_align_op_xpu.cc @@ -0,0 +1,78 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#ifdef PADDLE_WITH_XPU +#include "paddle/fluid/operators/roi_align_op.h" +#include +#include + +namespace paddle { +namespace operators { + +template +class XPUROIAlignOpKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto* in = ctx.Input("X"); + auto* rois = ctx.Input("ROIs"); + auto* out = ctx.Output("Out"); + auto pooled_height = ctx.Attr("pooled_height"); + auto pooled_width = ctx.Attr("pooled_width"); + auto spatial_scale = ctx.Attr("spatial_scale"); + auto sampling_ratio = ctx.Attr("sampling_ratio"); + auto& dev_ctx = ctx.template device_context(); + auto in_dims = in->dims(); + int batch_size = in_dims[0]; + int channels = in_dims[1]; + int height = in_dims[2]; + int width = in_dims[3]; + int rois_num = rois->dims()[0]; + const T* input_data = in->data(); + auto rois_lod = rois->lod().back(); + int rois_batch_size = rois_lod.size() - 1; + PADDLE_ENFORCE_EQ( + rois_batch_size, batch_size, + platform::errors::InvalidArgument( + "The rois_batch_size and imgs batch_size must be the same.")); + int rois_num_with_lod = rois_lod[rois_batch_size]; + PADDLE_ENFORCE_EQ(rois_num, rois_num_with_lod, + platform::errors::InvalidArgument( + "The rois_num from input and lod must be the same.")); + T* output_data = out->mutable_data(ctx.GetPlace()); + const T* rois_data = rois->data(); + for (int n = 0; n < rois_batch_size; n++) { + int cur_batch_rois_num = rois_lod[n + 1] - rois_lod[n]; + if (cur_batch_rois_num != 0) { + int r = xpu::roi_align( + dev_ctx.x_context(), input_data + n * channels * height * width, + rois_data + rois_lod[n] * 4, cur_batch_rois_num, channels, height, + width, pooled_height, pooled_width, sampling_ratio, spatial_scale, + output_data + + rois_lod[n] * channels * pooled_height * pooled_width); + PADDLE_ENFORCE_EQ( + r, xpu::Error_t::SUCCESS, + platform::errors::InvalidArgument("roi_align XPU kernel error!")); + } + } + } +}; + +} // namespace operators +} // namespace paddle +namespace ops = paddle::operators; +REGISTER_OP_XPU_KERNEL( + roi_align, + ops::XPUROIAlignOpKernel); + +#endif diff --git a/paddle/fluid/operators/stack_op_xpu.cc b/paddle/fluid/operators/stack_op_xpu.cc new file mode 100644 index 00000000000..f847f19f830 --- /dev/null +++ b/paddle/fluid/operators/stack_op_xpu.cc @@ -0,0 +1,75 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/operators/stack_op.h" +#ifdef PADDLE_WITH_XPU + +namespace paddle { +namespace operators { + +using framework::Tensor; +template +class StackXPUKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto x = ctx.MultiInput("X"); + auto* y = ctx.Output("Y"); + int axis = ctx.Attr("axis"); + if (axis < 0) { + axis += (x[0]->dims().size() + 1); + } + int n = static_cast(x.size()); + PADDLE_ENFORCE_LE(n, 24, + platform::errors::InvalidArgument( + "XPU only surpport at most 24 tensors for now")); + auto* y_data = y->mutable_data(ctx.GetPlace()); + int pre = 1, post = 1; + auto& dim = x[0]->dims(); + for (auto i = 0; i < axis; ++i) { + pre *= dim[i]; + } + for (auto i = axis; i < dim.size(); ++i) { + post *= dim[i]; + } + auto& dev_ctx = ctx.template device_context(); + void* x_datas_host = std::malloc(n * sizeof(void*)); + void* x_datas_device = nullptr; + PADDLE_ENFORCE(xpu_malloc(reinterpret_cast(&x_datas_device), + n * sizeof(void*)) == XPU_SUCCESS); + for (auto i = 0; i < n; ++i) { + ((const void**)x_datas_host)[i] = x[i]->data(); + } + memory::Copy(BOOST_GET_CONST(platform::XPUPlace, ctx.GetPlace()), + x_datas_device, platform::CPUPlace(), x_datas_host, + n * sizeof(void*)); + int r = xpu::stack_forward(dev_ctx.x_context(), pre, post, n, + x_datas_device, y_data); + PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS, + platform::errors::InvalidArgument( + "There are stack XPU kernel error raised!")); + dev_ctx.Wait(); + std::free(x_datas_host); + xpu_free(x_datas_device); + } +}; + +} // namespace operators +} // namespace paddle + +namespace plat = paddle::platform; +namespace ops = paddle::operators; + +REGISTER_OP_XPU_KERNEL(stack, + ops::StackXPUKernel); +#endif diff --git a/python/paddle/fluid/tests/unittests/xpu/test_pool2d_op_xpu.py b/python/paddle/fluid/tests/unittests/xpu/test_pool2d_op_xpu.py new file mode 100644 index 00000000000..7f20c83aacb --- /dev/null +++ b/python/paddle/fluid/tests/unittests/xpu/test_pool2d_op_xpu.py @@ -0,0 +1,338 @@ +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function + +import sys +sys.path.append("..") +import paddle.fluid.core as core +import unittest +import numpy as np +from op_test import OpTest +import paddle +import paddle.fluid as fluid +from paddle.fluid import Program, program_guard + + +def max_pool2D_forward_naive(x, + ksize, + strides, + paddings, + global_pool=0, + ceil_mode=False, + exclusive=True, + adaptive=False, + data_type=np.float64): + N, C, H, W = x.shape + if global_pool == 1: + ksize = [H, W] + if adaptive: + H_out, W_out = ksize + else: + H_out = (H - ksize[0] + 2 * paddings[0] + strides[0] - 1 + ) // strides[0] + 1 if ceil_mode else ( + H - ksize[0] + 2 * paddings[0]) // strides[0] + 1 + W_out = (W - ksize[1] + 2 * paddings[1] + strides[1] - 1 + ) // strides[1] + 1 if ceil_mode else ( + W - ksize[1] + 2 * paddings[1]) // strides[1] + 1 + out = np.zeros((N, C, H_out, W_out)) + for i in range(H_out): + for j in range(W_out): + if adaptive: + r_start = adaptive_start_index(i, H, ksize[0]) + r_end = adaptive_end_index(i, H, ksize[0]) + c_start = adaptive_start_index(j, W, ksize[1]) + c_end = adaptive_end_index(j, W, ksize[1]) + else: + r_start = np.max((i * strides[0] - paddings[0], 0)) + r_end = np.min((i * strides[0] + ksize[0] - paddings[0], H)) + c_start = np.max((j * strides[1] - paddings[1], 0)) + c_end = np.min((j * strides[1] + ksize[1] - paddings[1], W)) + x_masked = x[:, :, r_start:r_end, c_start:c_end] + + out[:, :, i, j] = np.max(x_masked, axis=(2, 3)) + return out + + +def avg_pool2D_forward_naive(x, + ksize, + strides, + paddings, + global_pool=0, + ceil_mode=False, + exclusive=True, + adaptive=False, + data_type=np.float64): + N, C, H, W = x.shape + if global_pool == 1: + ksize = [H, W] + if adaptive: + H_out, W_out = ksize + else: + H_out = (H - ksize[0] + 2 * paddings[0] + strides[0] - 1 + ) // strides[0] + 1 if ceil_mode else ( + H - ksize[0] + 2 * paddings[0]) // strides[0] + 1 + W_out = (W - ksize[1] + 2 * paddings[1] + strides[1] - 1 + ) // strides[1] + 1 if ceil_mode else ( + W - ksize[1] + 2 * paddings[1]) // strides[1] + 1 + out = np.zeros((N, C, H_out, W_out)) + for i in range(H_out): + for j in range(W_out): + if adaptive: + r_start = adaptive_start_index(i, H, ksize[0]) + r_end = adaptive_end_index(i, H, ksize[0]) + c_start = adaptive_start_index(j, W, ksize[1]) + c_end = adaptive_end_index(j, W, ksize[1]) + else: + r_start = i * strides[0] - paddings[0] + r_end = i * strides[0] + ksize[0] - paddings[0] + c_start = j * strides[1] - paddings[1] + c_end = j * strides[1] + ksize[1] - paddings[1] + field_size = (r_end - r_start) * (c_end - c_start) + r_start = np.max((r_start, 0)) + r_end = np.min((r_end, H)) + c_start = np.max((c_start, 0)) + c_end = np.min((c_end, W)) + + x_masked = x[:, :, r_start:r_end, c_start:c_end] + + if (exclusive or adaptive): + field_size = (r_end - r_start) * (c_end - c_start) + + if data_type == np.int8 or data_type == np.uint8: + out[:, :, i, j] = (np.rint( + np.sum(x_masked, axis=(2, 3)) / + field_size)).astype(data_type) + else: + out[:, :, i, j] = (np.sum(x_masked, axis=(2, 3)) / + field_size).astype(data_type) + return out + + +def pool2D_forward_naive(x, + ksize, + strides, + paddings, + global_pool=0, + ceil_mode=False, + exclusive=True, + adaptive=False, + data_format='NCHW', + pool_type="max", + padding_algorithm="EXPLICIT"): + + # update paddings + def _get_padding_with_SAME(input_shape, pool_size, pool_stride): + padding = [] + for input_size, filter_size, stride_size in zip(input_shape, pool_size, + pool_stride): + out_size = int((input_size + stride_size - 1) / stride_size) + pad_sum = np.max(( + (out_size - 1) * stride_size + filter_size - input_size, 0)) + pad_0 = int(pad_sum / 2) + pad_1 = int(pad_sum - pad_0) + padding.append(pad_0) + padding.append(pad_1) + return padding + + if isinstance(padding_algorithm, str): + padding_algorithm = padding_algorithm.upper() + if padding_algorithm not in ["SAME", "VALID", "EXPLICIT"]: + raise ValueError("Unknown Attr(padding_algorithm): '%s'. " + "It can only be 'SAME' or 'VALID'." % + str(padding_algorithm)) + + if padding_algorithm == "VALID": + paddings = [0, 0, 0, 0] + if ceil_mode != False: + raise ValueError( + "When Attr(pool_padding) is \"VALID\", Attr(ceil_mode)" + " must be False. " + "Received ceil_mode: True.") + elif padding_algorithm == "SAME": + input_data_shape = [] + if data_format == "NCHW": + input_data_shape = x.shape[2:4] + elif data_format == "NHWC": + input_data_shape = x.shape[1:3] + paddings = _get_padding_with_SAME(input_data_shape, ksize, strides) + + assert len(paddings) == 2 or len(paddings) == 4 + is_sys = True if len(paddings) == 2 else False + + N = x.shape[0] + C, H, W = [x.shape[1], x.shape[2], x.shape[3]] if data_format == 'NCHW' \ + else [x.shape[3], x.shape[1], x.shape[2]] + + if global_pool == 1: + ksize = [H, W] + paddings = [0 for _ in range(len(paddings))] + + pad_h_up = paddings[0] if is_sys else paddings[0] + pad_h_down = paddings[0] if is_sys else paddings[1] + pad_w_left = paddings[1] if is_sys else paddings[2] + pad_w_right = paddings[1] if is_sys else paddings[3] + + if adaptive: + H_out, W_out = ksize + else: + H_out = (H - ksize[0] + pad_h_up + pad_h_down + strides[0] - 1) // strides[0] + 1 \ + if ceil_mode else (H - ksize[0] + pad_h_up + pad_h_down) // strides[0] + 1 + W_out = (W - ksize[1] + pad_w_left + pad_w_right + strides[1] - 1) // strides[1] + 1 \ + if ceil_mode else (W - ksize[1] + pad_w_left + pad_w_right) // strides[1] + 1 + + out = np.zeros((N, C, H_out, W_out)) if data_format=='NCHW' \ + else np.zeros((N, H_out, W_out, C)) + for i in range(H_out): + if adaptive: + in_h_start = adaptive_start_index(i, H, ksize[0]) + in_h_end = adaptive_end_index(i, H, ksize[0]) + else: + in_h_start = np.max((i * strides[0] - pad_h_up, 0)) + in_h_end = np.min((i * strides[0] + ksize[0] - pad_h_up, H)) + + for j in range(W_out): + if adaptive: + in_w_start = adaptive_start_index(j, W, ksize[1]) + in_w_end = adaptive_end_index(j, W, ksize[1]) + else: + in_h_start = i * strides[0] - pad_h_up + in_w_start = j * strides[1] - pad_w_left + in_h_end = i * strides[0] + ksize[0] - pad_h_up + in_w_end = j * strides[1] + ksize[1] - pad_w_left + + field_size = (in_h_end - in_h_start) * (in_w_end - in_w_start) + in_h_start = np.max((in_h_start, 0)) + in_w_start = np.max((in_w_start, 0)) + in_h_end = np.min((in_h_end, H)) + in_w_end = np.min((in_w_end, W)) + + if data_format == 'NCHW': + x_masked = x[:, :, in_h_start:in_h_end, in_w_start:in_w_end] + if pool_type == 'avg': + if (exclusive or adaptive): + field_size = (in_h_end - in_h_start) * ( + in_w_end - in_w_start) + +# if (exclusive or adaptive) else (ksize[0] * ksize[1]) + out[:, :, i, j] = np.sum(x_masked, axis=(2, 3)) / field_size + elif pool_type == 'max': + out[:, :, i, j] = np.max(x_masked, axis=(2, 3)) + elif data_format == 'NHWC': + x_masked = x[:, in_h_start:in_h_end, in_w_start:in_w_end, :] + if pool_type == 'avg': + if (exclusive or adaptive): + field_size = (in_h_end - in_h_start) * ( + in_w_end - in_w_start) + out[:, i, j, :] = np.sum(x_masked, axis=(1, 2)) / field_size + elif pool_type == 'max': + out[:, i, j, :] = np.max(x_masked, axis=(1, 2)) + return out + + +class TestPool2D_Op(OpTest): + def setUp(self): + self.op_type = "pool2d" + self.use_cudnn = False + self.init_kernel_type() + self.use_mkldnn = False + self.init_data_type() + self.init_test_case() + self.padding_algorithm = "EXPLICIT" + self.init_paddings() + self.init_global_pool() + self.init_kernel_type() + self.init_pool_type() + self.init_ceil_mode() + self.init_exclusive() + self.init_adaptive() + self.init_data_format() + self.init_shape() + + input = np.random.random(self.shape).astype(self.dtype) + output = pool2D_forward_naive( + input, self.ksize, self.strides, self.paddings, self.global_pool, + self.ceil_mode, self.exclusive, self.adaptive, self.data_format, + self.pool_type, self.padding_algorithm).astype(self.dtype) + self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(input)} + + self.attrs = { + 'strides': self.strides, + 'paddings': self.paddings, + 'ksize': self.ksize, + 'pooling_type': self.pool_type, + 'global_pooling': self.global_pool, + 'use_cudnn': self.use_cudnn, + 'use_mkldnn': self.use_mkldnn, + 'ceil_mode': self.ceil_mode, + 'data_format': self.data_format, + 'exclusive': self.exclusive, + 'adaptive': self.adaptive, + "padding_algorithm": self.padding_algorithm, + } + + self.outputs = {'Out': output} + + def test_check_output(self): + if paddle.is_compiled_with_xpu(): + paddle.enable_static() + place = paddle.XPUPlace(0) + self.check_output_with_place(place) + + def test_check_grad(self): + if paddle.is_compiled_with_xpu(): + paddle.enable_static() + place = paddle.XPUPlace(0) + self.check_grad_with_place( + place, set(['X']), 'Out', max_relative_error=0.07) + + def init_data_format(self): + self.data_format = "NCHW" + + def init_shape(self): + self.shape = [2, 3, 5, 5] + + def init_test_case(self): + self.ksize = [3, 3] + self.strides = [1, 1] + + def init_paddings(self): + self.paddings = [0, 0] + self.padding_algorithm = "EXPLICIT" + + def init_kernel_type(self): + self.use_cudnn = False + + def init_data_type(self): + self.dtype = np.float64 + + def init_pool_type(self): + self.pool_type = "avg" + self.pool2D_forward_naive = avg_pool2D_forward_naive + + def init_global_pool(self): + self.global_pool = True + + def init_ceil_mode(self): + self.ceil_mode = False + + def init_exclusive(self): + self.exclusive = True + + def init_adaptive(self): + self.adaptive = False + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/fluid/tests/unittests/xpu/test_roi_align_op_xpu.py b/python/paddle/fluid/tests/unittests/xpu/test_roi_align_op_xpu.py new file mode 100644 index 00000000000..813bbffefcb --- /dev/null +++ b/python/paddle/fluid/tests/unittests/xpu/test_roi_align_op_xpu.py @@ -0,0 +1,183 @@ +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function +import sys +sys.path.append("..") +import unittest +import math +import numpy as np +import paddle.fluid.core as core +from op_test import OpTest, skip_check_grad_ci +import paddle +import paddle.fluid as fluid +from paddle.fluid import Program, program_guard + + +@skip_check_grad_ci(reason="There is no grad kernel for roi_align_xpu kernel.") +class TestROIAlignOp(OpTest): + def set_data(self): + self.init_test_case() + self.make_rois() + self.calc_roi_align() + + self.inputs = { + 'X': self.x, + 'ROIs': (self.rois[:, 1:5], self.rois_lod), + } + self.attrs = { + 'spatial_scale': self.spatial_scale, + 'pooled_height': self.pooled_height, + 'pooled_width': self.pooled_width, + 'sampling_ratio': self.sampling_ratio + } + + self.outputs = {'Out': self.out_data} + + def init_test_case(self): + self.batch_size = 3 + self.channels = 3 + self.height = 8 + self.width = 6 + + # n, c, h, w + self.x_dim = (self.batch_size, self.channels, self.height, self.width) + + self.spatial_scale = 1.0 / 2.0 + self.pooled_height = 2 + self.pooled_width = 2 + self.sampling_ratio = -1 + + self.x = np.random.random(self.x_dim).astype('float64') + + def pre_calc(self, x_i, roi_xmin, roi_ymin, roi_bin_grid_h, roi_bin_grid_w, + bin_size_h, bin_size_w): + count = roi_bin_grid_h * roi_bin_grid_w + bilinear_pos = np.zeros( + [self.channels, self.pooled_height, self.pooled_width, count, 4], + np.float64) + bilinear_w = np.zeros( + [self.pooled_height, self.pooled_width, count, 4], np.float64) + for ph in range(self.pooled_width): + for pw in range(self.pooled_height): + c = 0 + for iy in range(roi_bin_grid_h): + y = roi_ymin + ph * bin_size_h + (iy + 0.5) * \ + bin_size_h / roi_bin_grid_h + for ix in range(roi_bin_grid_w): + x = roi_xmin + pw * bin_size_w + (ix + 0.5) * \ + bin_size_w / roi_bin_grid_w + if y < -1.0 or y > self.height or \ + x < -1.0 or x > self.width: + continue + if y <= 0: + y = 0 + if x <= 0: + x = 0 + y_low = int(y) + x_low = int(x) + if y_low >= self.height - 1: + y = y_high = y_low = self.height - 1 + else: + y_high = y_low + 1 + if x_low >= self.width - 1: + x = x_high = x_low = self.width - 1 + else: + x_high = x_low + 1 + ly = y - y_low + lx = x - x_low + hy = 1 - ly + hx = 1 - lx + for ch in range(self.channels): + bilinear_pos[ch, ph, pw, c, 0] = x_i[ch, y_low, + x_low] + bilinear_pos[ch, ph, pw, c, 1] = x_i[ch, y_low, + x_high] + bilinear_pos[ch, ph, pw, c, 2] = x_i[ch, y_high, + x_low] + bilinear_pos[ch, ph, pw, c, 3] = x_i[ch, y_high, + x_high] + bilinear_w[ph, pw, c, 0] = hy * hx + bilinear_w[ph, pw, c, 1] = hy * lx + bilinear_w[ph, pw, c, 2] = ly * hx + bilinear_w[ph, pw, c, 3] = ly * lx + c = c + 1 + return bilinear_pos, bilinear_w + + def calc_roi_align(self): + self.out_data = np.zeros( + (self.rois_num, self.channels, self.pooled_height, + self.pooled_width)).astype('float64') + + for i in range(self.rois_num): + roi = self.rois[i] + roi_batch_id = int(roi[0]) + x_i = self.x[roi_batch_id] + roi_xmin = roi[1] * self.spatial_scale + roi_ymin = roi[2] * self.spatial_scale + roi_xmax = roi[3] * self.spatial_scale + roi_ymax = roi[4] * self.spatial_scale + roi_width = max(roi_xmax - roi_xmin, 1) + roi_height = max(roi_ymax - roi_ymin, 1) + bin_size_h = float(roi_height) / float(self.pooled_height) + bin_size_w = float(roi_width) / float(self.pooled_width) + roi_bin_grid_h = self.sampling_ratio if self.sampling_ratio > 0 else \ + math.ceil(roi_height / self.pooled_height) + roi_bin_grid_w = self.sampling_ratio if self.sampling_ratio > 0 else \ + math.ceil(roi_width / self.pooled_width) + count = int(roi_bin_grid_h * roi_bin_grid_w) + pre_size = count * self.pooled_width * self.pooled_height + bilinear_pos, bilinear_w = self.pre_calc(x_i, roi_xmin, roi_ymin, + int(roi_bin_grid_h), + int(roi_bin_grid_w), + bin_size_h, bin_size_w) + for ch in range(self.channels): + align_per_bin = (bilinear_pos[ch] * bilinear_w).sum(axis=-1) + output_val = align_per_bin.mean(axis=-1) + self.out_data[i, ch, :, :] = output_val + + def make_rois(self): + rois = [] + self.rois_lod = [[]] + for bno in range(self.batch_size): + self.rois_lod[0].append(bno + 1) + for i in range(bno + 1): + x1 = np.random.random_integers( + 0, self.width // self.spatial_scale - self.pooled_width) + y1 = np.random.random_integers( + 0, self.height // self.spatial_scale - self.pooled_height) + + x2 = np.random.random_integers(x1 + self.pooled_width, + self.width // self.spatial_scale) + y2 = np.random.random_integers( + y1 + self.pooled_height, self.height // self.spatial_scale) + + roi = [bno, x1, y1, x2, y2] + rois.append(roi) + self.rois_num = len(rois) + self.rois = np.array(rois).astype("float64") + + def setUp(self): + self.op_type = "roi_align" + self.set_data() + + def test_check_output(self): + if paddle.is_compiled_with_xpu(): + paddle.enable_static() + place = paddle.XPUPlace(0) + self.check_output_with_place(place) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/fluid/tests/unittests/xpu/test_stack_op_xpu.py b/python/paddle/fluid/tests/unittests/xpu/test_stack_op_xpu.py new file mode 100644 index 00000000000..13de73fef6f --- /dev/null +++ b/python/paddle/fluid/tests/unittests/xpu/test_stack_op_xpu.py @@ -0,0 +1,100 @@ +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function +import sys +sys.path.append("..") +import unittest +import numpy as np +import paddle.fluid.core as core +from op_test import OpTest, skip_check_grad_ci +import paddle +import paddle.fluid as fluid +from paddle.fluid import Program, program_guard + + +@skip_check_grad_ci(reason="There is no grad kernel for stack_xpu op.") +class TestStackOpBase(OpTest): + def initDefaultParameters(self): + self.num_inputs = 4 + self.input_dim = (5, 6, 7) + self.axis = 0 + self.dtype = 'float64' + + def initParameters(self): + pass + + def get_x_names(self): + x_names = [] + for i in range(self.num_inputs): + x_names.append('x{}'.format(i)) + return x_names + + def setUp(self): + self.initDefaultParameters() + self.initParameters() + self.op_type = 'stack' + self.x = [] + for i in range(self.num_inputs): + self.x.append( + np.random.random(size=self.input_dim).astype(self.dtype)) + + tmp = [] + x_names = self.get_x_names() + for i in range(self.num_inputs): + tmp.append((x_names[i], self.x[i])) + + self.inputs = {'X': tmp} + self.outputs = {'Y': np.stack(self.x, axis=self.axis)} + self.attrs = {'axis': self.axis} + + def test_check_output(self): + if paddle.is_compiled_with_xpu(): + paddle.enable_static() + place = paddle.XPUPlace(0) + self.check_output_with_place(place) + + +class TestStackOp1(TestStackOpBase): + def initParameters(self): + self.num_inputs = 16 + + +class TestStackOp2(TestStackOpBase): + def initParameters(self): + self.num_inputs = 20 + + +class TestStackOp3(TestStackOpBase): + def initParameters(self): + self.axis = -1 + + +class TestStackOp4(TestStackOpBase): + def initParameters(self): + self.axis = -4 + + +class TestStackOp5(TestStackOpBase): + def initParameters(self): + self.axis = 1 + + +class TestStackOp6(TestStackOpBase): + def initParameters(self): + self.axis = 3 + + +if __name__ == '__main__': + unittest.main() -- GitLab