Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
affddfaa
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
affddfaa
编写于
6月 23, 2021
作者:
Z
Zhanlue Yang
提交者:
GitHub
6月 23, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add new operation: BroadcastTensorsOp (#33294)
上级
f9420e83
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
963 addition
and
1 deletion
+963
-1
paddle/fluid/operators/broadcast_tensors_op.cc
paddle/fluid/operators/broadcast_tensors_op.cc
+253
-0
paddle/fluid/operators/broadcast_tensors_op.cu
paddle/fluid/operators/broadcast_tensors_op.cu
+132
-0
paddle/fluid/operators/broadcast_tensors_op.h
paddle/fluid/operators/broadcast_tensors_op.h
+282
-0
python/paddle/__init__.py
python/paddle/__init__.py
+3
-1
python/paddle/fluid/tests/unittests/test_broadcast_tensors_op.py
...paddle/fluid/tests/unittests/test_broadcast_tensors_op.py
+196
-0
python/paddle/tensor/__init__.py
python/paddle/tensor/__init__.py
+2
-0
python/paddle/tensor/manipulation.py
python/paddle/tensor/manipulation.py
+95
-0
未找到文件。
paddle/fluid/operators/broadcast_tensors_op.cc
0 → 100644
浏览文件 @
affddfaa
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/broadcast_tensors_op.h"
#include <algorithm>
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/var_type_inference.h"
namespace
paddle
{
namespace
operators
{
using
framework
::
Tensor
;
using
framework
::
DDim
;
class
BroadcastTensorsOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
OP_INOUT_CHECK
(
ctx
->
HasInputs
(
"X"
),
"Input"
,
"X"
,
"broadcast_tensors"
);
OP_INOUT_CHECK
(
ctx
->
HasOutputs
(
"Out"
),
"Output"
,
"Out"
,
"broadcast_tensors"
);
int
target_rank
=
0
;
const
auto
&
input_dims
=
ctx
->
GetInputsDim
(
"X"
);
// 1. Find Output rank = max(Inputs rank)
for
(
const
auto
&
input_ddim
:
input_dims
)
{
target_rank
=
std
::
max
(
target_rank
,
input_ddim
.
size
());
}
PADDLE_ENFORCE_GT
(
target_rank
,
0
,
platform
::
errors
::
InvalidArgument
(
"BroadcastTensorsOp requires at least one input tensor"
"to have rank greater than zero"
));
std
::
vector
<
int64_t
>
target_dims
(
target_rank
,
0
);
// 2. Output dim(axis=x) = max(Inputs dim(axis=x))
for
(
int
index
=
0
;
index
<
target_rank
;
index
++
)
{
// Loop axes in reverse order,
// For each axis, take the maximum as target size
// Fill size = 1 if shape vector exhausts
int
target_dim_size
=
1
;
for
(
const
auto
&
input_ddim
:
input_dims
)
{
// Reversed order
int
axis
=
static_cast
<
int
>
(
input_ddim
.
size
())
-
index
-
1
;
int
dim_size
=
1
;
if
(
axis
>=
0
)
{
dim_size
=
input_ddim
[
axis
];
}
// We performed bcast semantics check at python level
// So input tensors should all have legal shape
target_dim_size
=
std
::
max
(
target_dim_size
,
dim_size
);
}
target_dims
[
target_rank
-
index
-
1
]
=
target_dim_size
;
}
// 3. Set Output Dim
std
::
vector
<
DDim
>
output_ddims
;
for
(
size_t
i
=
0
;
i
<
input_dims
.
size
();
i
++
)
{
output_ddims
.
emplace_back
(
framework
::
make_ddim
(
target_dims
));
}
ctx
->
SetOutputsDim
(
"Out"
,
output_ddims
);
ctx
->
ShareAllLoD
(
"X"
,
/*->*/
"Out"
);
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
// Broadcast semantics enforces all input variables having the same
// DataType/VarType
// This condition is also checked during VarType Inference
// Here we simply copy input type to output
return
framework
::
OpKernelType
(
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"X"
),
ctx
.
GetPlace
());
}
};
class
BroadcastTensorsOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"A Varaible list. The shape and data type of the list elements"
"should be consistent. Variable can be multi-dimensional Tensor"
"or LoDTensor, and data types can be: bool, float16, float32, "
"float64, int32, "
"int64."
)
.
AsDuplicable
();
AddOutput
(
"Out"
,
"the sum of input :code:`x`. its shape and data types are "
"consistent with :code:`x`."
)
.
AsDuplicable
();
AddComment
(
R"DOC(This OP is used to broadcast a vector of inputs
with Tensor or LoDTensor type, following broadcast semantics.)DOC"
);
}
};
class
BroadcastTensorsOpVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
// We need at least two tensors to satisfy broadcast semantics
size_t
input_size
=
ctx
->
InputSize
(
"X"
);
PADDLE_ENFORCE_GT
(
input_size
,
0
,
platform
::
errors
::
InvalidArgument
(
"BroadcastTensorsOp should have at least one input variables,"
"but only received %d "
,
input_size
));
// BroadcastTensorsOp takes a vector of variables named "X"
// Here we loop through input variables,
// and check if their DataType/VarType are the same
auto
var_type
=
ctx
->
GetInputType
(
"X"
,
0
);
auto
data_type
=
ctx
->
GetInputDataType
(
"X"
,
0
);
for
(
size_t
ind
=
1
;
ind
<
input_size
;
ind
++
)
{
auto
cur_var_type
=
ctx
->
GetInputType
(
"X"
,
ind
);
PADDLE_ENFORCE_EQ
(
var_type
,
cur_var_type
,
platform
::
errors
::
InvalidArgument
(
"inputs to BroadcastTensorsOp should have the same variable type,"
"but detected %d v.s %d "
,
framework
::
ToTypeName
(
var_type
),
framework
::
ToTypeName
(
cur_var_type
)));
auto
cur_data_type
=
ctx
->
GetInputDataType
(
"X"
,
ind
);
PADDLE_ENFORCE_EQ
(
data_type
,
cur_data_type
,
platform
::
errors
::
InvalidArgument
(
"inputs to BroadcastTensorsOp should have the same data type,"
"but detected %d v.s %d "
,
framework
::
ToTypeName
(
var_type
),
framework
::
ToTypeName
(
cur_var_type
)));
}
// Outputs having the same DataType/VarType as inputs
ctx
->
SetOutputType
(
"Out"
,
var_type
,
framework
::
ALL_ELEMENTS
);
ctx
->
SetOutputDataType
(
"Out"
,
data_type
,
framework
::
ALL_ELEMENTS
);
}
};
/* ------ BroadcastTensorsGradOp ------ */
class
BroadcastTensorsGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
OP_INOUT_CHECK
(
ctx
->
HasOutputs
(
framework
::
GradVarName
(
"X"
)),
"Output"
,
"X@grad"
,
"broadcast_tensors"
);
OP_INOUT_CHECK
(
ctx
->
HasInputs
(
"X"
),
"Input"
,
"X"
,
"broadcast_tensors"
);
OP_INOUT_CHECK
(
ctx
->
HasInputs
(
framework
::
GradVarName
(
"Out"
)),
"Input"
,
"Out@grad"
,
"broadcast_tensors"
);
const
auto
&
forward_input_dims
=
ctx
->
GetInputsDim
(
"X"
);
ctx
->
SetOutputsDim
(
framework
::
GradVarName
(
"X"
),
forward_input_dims
);
ctx
->
ShareAllLoD
(
"X"
,
/*->*/
framework
::
GradVarName
(
"X"
));
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
framework
::
GradVarName
(
"Out"
)),
ctx
.
device_context
());
}
};
template
<
typename
T
>
class
BroadcastTensorsGradOpMaker
:
public
framework
::
SingleGradOpMaker
<
T
>
{
public:
using
framework
::
SingleGradOpMaker
<
T
>::
SingleGradOpMaker
;
void
Apply
(
GradOpPtr
<
T
>
grad_op
)
const
override
{
grad_op
->
SetType
(
"broadcast_tensors_grad"
);
// We need "X" only for backward shape inference
grad_op
->
SetInput
(
"X"
,
this
->
Input
(
"X"
));
grad_op
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
this
->
OutputGrad
(
"Out"
));
grad_op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
this
->
InputGrad
(
"X"
,
/* drop_empty_grad */
false
));
grad_op
->
SetAttrMap
(
this
->
Attrs
());
}
};
class
BroadcastTensorsGradOpVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
var_type
=
ctx
->
GetInputType
(
"X"
,
0
);
auto
data_type
=
ctx
->
GetInputDataType
(
"X"
,
0
);
ctx
->
SetOutputType
(
framework
::
GradVarName
(
"X"
),
var_type
,
framework
::
ALL_ELEMENTS
);
ctx
->
SetOutputDataType
(
framework
::
GradVarName
(
"X"
),
data_type
,
framework
::
ALL_ELEMENTS
);
}
};
DECLARE_NO_NEED_BUFFER_VARS_INFERER
(
BroadcastTensorsGradNoNeedBufVarsInferer
,
"X"
);
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OPERATOR
(
broadcast_tensors
,
ops
::
BroadcastTensorsOp
,
ops
::
BroadcastTensorsOpMaker
,
ops
::
BroadcastTensorsGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
BroadcastTensorsGradOpMaker
<
paddle
::
imperative
::
OpBase
>
,
ops
::
BroadcastTensorsOpVarTypeInference
);
REGISTER_OPERATOR
(
broadcast_tensors_grad
,
ops
::
BroadcastTensorsGradOp
,
ops
::
BroadcastTensorsGradOpVarTypeInference
,
ops
::
BroadcastTensorsGradNoNeedBufVarsInferer
);
REGISTER_OP_CPU_KERNEL
(
broadcast_tensors
,
ops
::
BroadcastTensorsOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
plat
::
float16
>
,
ops
::
BroadcastTensorsOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
BroadcastTensorsOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
BroadcastTensorsOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
bool
>
,
ops
::
BroadcastTensorsOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
,
ops
::
BroadcastTensorsOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
);
REGISTER_OP_CPU_KERNEL
(
broadcast_tensors_grad
,
ops
::
BroadcastTensorsGradOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
plat
::
float16
>
,
ops
::
BroadcastTensorsGradOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
BroadcastTensorsGradOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
BroadcastTensorsGradOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
,
ops
::
BroadcastTensorsGradOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
);
paddle/fluid/operators/broadcast_tensors_op.cu
0 → 100644
浏览文件 @
affddfaa
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/broadcast_tensors_op.h"
#include <algorithm>
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/operators/reduce_ops/cub_reduce.h"
namespace
paddle
{
namespace
operators
{
using
framework
::
Tensor
;
using
framework
::
DDim
;
template
<
typename
Tout
>
struct
IdentityFunctor
{
HOSTDEVICE
explicit
inline
IdentityFunctor
()
{}
template
<
typename
U
>
HOSTDEVICE
inline
Tout
operator
()(
const
U
&
x
)
const
{
return
static_cast
<
Tout
>
(
x
);
}
};
template
<
typename
T
>
class
CUDABroadcastTensorsGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
// Find reduce dimensions
const
auto
&
in_tensors
=
context
.
MultiInput
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
out_tensors
=
context
.
MultiOutput
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
size_t
num_ins
=
in_tensors
.
size
();
PADDLE_ENFORCE_GT
(
num_ins
,
1
,
platform
::
errors
::
InvalidArgument
(
"Expected at least 2 input tensors, but only received d%."
,
in_tensors
.
size
()));
PADDLE_ENFORCE_EQ
(
num_ins
,
out_tensors
.
size
(),
platform
::
errors
::
InvalidArgument
(
"BroadcastTensorsOp expects equal number of inputs and outputs,"
"but received: %d inputs v.s %d outputs"
,
num_ins
,
out_tensors
.
size
()));
// For each In-Out tensor pair,
// Prepare and apply broadcast dims array
for
(
size_t
i
=
0
;
i
<
num_ins
;
i
++
)
{
auto
*
input_tensor
=
in_tensors
[
i
];
auto
*
output_tensor
=
out_tensors
[
i
];
const
DDim
&
input_dims
=
input_tensor
->
dims
();
const
DDim
&
output_dims
=
output_tensor
->
dims
();
int
in_rank
=
input_dims
.
size
();
int
out_rank
=
output_dims
.
size
();
// Collect reduce_dims
// Example:
// dX = [1,1,1,1]
// dOut = [1,1,1,4]
//
// reduce_dims = [3] // reduce along the broadcasted axis
std
::
vector
<
int
>
reduce_dims_vec
;
for
(
int
j
=
0
;
j
<
in_rank
;
j
++
)
{
int
out_axis
=
out_rank
-
j
-
1
;
int
in_axis
=
in_rank
-
j
-
1
;
if
(
out_axis
<
0
||
output_dims
[
out_axis
]
!=
input_dims
[
in_axis
])
{
reduce_dims_vec
.
push_back
(
in_axis
);
}
}
bool
just_copy
=
(
reduce_dims_vec
.
size
()
==
0
);
output_tensor
->
mutable_data
<
T
>
(
context
.
GetPlace
());
if
(
just_copy
)
{
// Turns out to be a No-Op, simply copy tensors
framework
::
TensorCopy
(
*
input_tensor
,
context
.
GetPlace
(),
context
.
device_context
(),
output_tensor
);
}
else
{
// reduce_sum implementation on CUDA
auto
stream
=
context
.
cuda_device_context
().
stream
();
TensorReduce
<
T
,
T
,
cub
::
Sum
,
IdentityFunctor
<
T
>>
(
*
input_tensor
,
output_tensor
,
reduce_dims_vec
,
static_cast
<
T
>
(
0
),
cub
::
Sum
(),
IdentityFunctor
<
T
>
(),
stream
);
}
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_CUDA_KERNEL
(
broadcast_tensors
,
ops
::
BroadcastTensorsOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
plat
::
float16
>
,
ops
::
BroadcastTensorsOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
BroadcastTensorsOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
BroadcastTensorsOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
bool
>
,
ops
::
BroadcastTensorsOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
>
,
ops
::
BroadcastTensorsOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
);
REGISTER_OP_CUDA_KERNEL
(
broadcast_tensors_grad
,
ops
::
CUDABroadcastTensorsGradOpKernel
<
plat
::
float16
>
,
ops
::
CUDABroadcastTensorsGradOpKernel
<
float
>
,
ops
::
CUDABroadcastTensorsGradOpKernel
<
double
>
,
ops
::
CUDABroadcastTensorsGradOpKernel
<
int
>
,
ops
::
CUDABroadcastTensorsGradOpKernel
<
int64_t
>
);
paddle/fluid/operators/broadcast_tensors_op.h
0 → 100644
浏览文件 @
affddfaa
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/eigen/eigen_function.h"
#include "paddle/fluid/operators/math/math_function.h"
#define SWITCH_OUT_RANK_CASE(n) \
case n: { \
ApplyBroadcast<n>(context, in_tensors[i], out_tensors[i]); \
break; \
}
namespace
paddle
{
namespace
operators
{
using
framework
::
Tensor
;
using
framework
::
DDim
;
using
framework
::
EigenTensor
;
template
<
typename
DeviceContext
,
typename
T
>
class
BroadcastTensorsOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
auto
&
in_tensors
=
context
.
MultiInput
<
Tensor
>
(
"X"
);
auto
out_tensors
=
context
.
MultiOutput
<
Tensor
>
(
"Out"
);
size_t
num_ins
=
in_tensors
.
size
();
PADDLE_ENFORCE_GT
(
num_ins
,
1
,
platform
::
errors
::
InvalidArgument
(
"Expected at least 2 input tensors, but only received d%."
,
in_tensors
.
size
()));
PADDLE_ENFORCE_EQ
(
num_ins
,
out_tensors
.
size
(),
platform
::
errors
::
InvalidArgument
(
"BroadcastTensorsOp expects equal number of inputs and outputs,"
"but received: %d inputs v.s %d outputs"
,
num_ins
,
out_tensors
.
size
()));
// Eigen has no support for dynamic ranked tensor
// Thus we perform static expansion for each possible ranks
for
(
size_t
i
=
0
;
i
<
num_ins
;
i
++
)
{
int
out_rank
=
out_tensors
[
i
]
->
dims
().
size
();
switch
(
out_rank
)
{
SWITCH_OUT_RANK_CASE
(
1
)
SWITCH_OUT_RANK_CASE
(
2
)
SWITCH_OUT_RANK_CASE
(
3
)
SWITCH_OUT_RANK_CASE
(
4
)
SWITCH_OUT_RANK_CASE
(
5
)
default:
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Target tensor rank out of range"
"Maximum supported rank for broadcast is: 5"
));
}
}
}
}
template
<
int
OutRank
>
void
ApplyBroadcast
(
const
framework
::
ExecutionContext
&
context
,
const
Tensor
*
input_tensor
,
Tensor
*
output_tensor
)
const
{
const
auto
&
input_dims
=
input_tensor
->
dims
();
const
auto
&
output_dims
=
output_tensor
->
dims
();
int
in_rank
=
input_dims
.
size
();
int
out_rank
=
output_dims
.
size
();
// 1. Collect bcast_dims, each element of which indicates how many
// times we need to replicate along the corresponding dimension
// 2. Collect new_input_dims_vec. Eigen::broadcast requires same rank for
// both input and output tensors, so we need to initialize input X with
// expanded dims: "new_input_dims_vec"
Eigen
::
DSizes
<
Eigen
::
DenseIndex
,
OutRank
>
bcast_dims
;
std
::
vector
<
int64_t
>
new_input_dims_vec
(
out_rank
);
for
(
int
j
=
0
;
j
<
out_rank
;
j
++
)
{
int
out_axis
=
out_rank
-
j
-
1
;
int
in_axis
=
in_rank
-
j
-
1
;
bcast_dims
[
out_axis
]
=
output_dims
[
out_axis
];
new_input_dims_vec
[
out_axis
]
=
1
;
if
(
in_axis
>=
0
&&
input_dims
[
in_axis
]
==
output_dims
[
out_axis
])
{
bcast_dims
[
out_axis
]
=
1
;
new_input_dims_vec
[
out_axis
]
=
input_dims
[
in_axis
];
}
}
auto
new_input_dims
=
framework
::
make_ddim
(
new_input_dims_vec
);
// Initialize input X with new_input_dims_vec, so it's rank-aligned with the
// output
auto
x
=
EigenTensor
<
T
,
OutRank
>::
From
(
*
input_tensor
,
new_input_dims
);
output_tensor
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
y
=
EigenTensor
<
T
,
OutRank
>::
From
(
*
output_tensor
,
output_dims
);
auto
&
place
=
*
context
.
template
device_context
<
DeviceContext
>().
eigen_device
();
EigenBroadcast
<
std
::
decay_t
<
decltype
(
place
)
>
,
T
,
OutRank
>::
Eval
(
place
,
y
,
x
,
bcast_dims
);
}
};
#define SWITCH_RESHAPE_DIMS(n) \
case n: { \
Eigen::DSizes<Eigen::DenseIndex, n> reshape_dims; \
for (size_t i = 0; i < reshape_dims_vec.size(); ++i) { \
reshape_dims[i] = reshape_dims_vec[i]; \
} \
dX.device(place) = \
dOut.reshape(reshape_dims).sum(reduce_dims).reshape(dX.dimensions()); \
break; \
}
#define UPPER_SWITCH_REDUCE_DIMS(m) \
case m: { \
Eigen::DSizes<Eigen::DenseIndex, m> reduce_dims; \
for (size_t i = 0; i < reduce_dims_vec.size(); ++i) { \
reduce_dims[i] = reduce_dims_vec[i]; \
} \
switch (reshape_size) {
#define LOWER_SWITCH_REDUCE_DIMS \
default: { \
PADDLE_THROW(platform::errors::InvalidArgument( \
"Detected reshape size: %d out of range" \
"Minimum value should be larger than reduce size %d" \
"While maximum supported is: 5", \
reshape_size, reduce_size)); \
} \
} \
break; \
}
/* ----- GradOpKernel ----- */
template
<
typename
DeviceContext
,
typename
T
>
class
BroadcastTensorsGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
// Find reduce dimensions
const
auto
&
in_tensors
=
context
.
MultiInput
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
out_tensors
=
context
.
MultiOutput
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
size_t
num_ins
=
in_tensors
.
size
();
PADDLE_ENFORCE_GT
(
num_ins
,
1
,
platform
::
errors
::
InvalidArgument
(
"Expected at least 2 input tensors, but only received d%."
,
in_tensors
.
size
()));
PADDLE_ENFORCE_EQ
(
num_ins
,
out_tensors
.
size
(),
platform
::
errors
::
InvalidArgument
(
"BroadcastTensorsOp expects equal number of inputs and outputs,"
"but received: %d inputs v.s %d outputs"
,
num_ins
,
out_tensors
.
size
()));
// For each In-Out tensor pair,
// Prepare and apply broadcast dims array
for
(
size_t
i
=
0
;
i
<
num_ins
;
i
++
)
{
const
auto
*
input_tensor
=
in_tensors
[
i
];
auto
*
output_tensor
=
out_tensors
[
i
];
const
auto
&
input_dims
=
input_tensor
->
dims
();
const
auto
&
output_dims
=
output_tensor
->
dims
();
int
in_rank
=
input_dims
.
size
();
int
out_rank
=
output_dims
.
size
();
// BroadcastTensorsGrad is simply a reduce_sum along broadcasted axes
// Here we perform the following Eigen operations:
// dOut(Flattened) -> reshape(reshape_dims) -> reduce(reduce_dims) ->
// reshape(dX_shape) -> dX
// Note the last "reshape(dX_shape)" will be performed implicitly,
// and we only need to collect reduce_dims and reshape_dims
std
::
vector
<
int
>
reduce_dims_vec
;
std
::
vector
<
int
>
reshape_dims_vec
;
for
(
int
j
=
0
;
j
<
in_rank
;
j
++
)
{
int
out_axis
=
out_rank
-
j
-
1
;
int
in_axis
=
in_rank
-
j
-
1
;
reshape_dims_vec
.
push_back
(
input_dims
[
j
]);
if
(
out_axis
<
0
||
output_dims
[
out_axis
]
!=
input_dims
[
in_axis
])
{
reduce_dims_vec
.
push_back
(
in_axis
);
}
}
size_t
reduce_size
=
reduce_dims_vec
.
size
();
size_t
reshape_size
=
reshape_dims_vec
.
size
();
bool
just_copy
=
(
reduce_dims_vec
.
size
()
==
0
);
output_tensor
->
mutable_data
<
T
>
(
context
.
GetPlace
());
if
(
just_copy
)
{
// If this turns out to be a No-Op, simply perform a tensor copy
framework
::
TensorCopy
(
*
input_tensor
,
context
.
GetPlace
(),
context
.
device_context
(),
output_tensor
);
}
else
{
PADDLE_ENFORCE_GE
(
reduce_dims_vec
.
size
(),
1
,
platform
::
errors
::
InvalidArgument
(
"The number of dimensions of the input "
"'Out@GRAD' for Op(broadcast_tensors)"
" must be greater than or equal to 1, but "
"the value received is %d."
,
reduce_dims_vec
.
size
()));
PADDLE_ENFORCE_LE
(
reduce_dims_vec
.
size
(),
5
,
platform
::
errors
::
InvalidArgument
(
"The number of dimensions of the input 'Out@GRAD' "
"for Op(broadcast_tensors) must be less than or equal "
"to 5, but the value received is %d."
,
reduce_dims_vec
.
size
()));
// Overall:
// dOut(Flattened) -> reshape(reshape_dims) -> reduce(reduce_dims) ->
// reshape(dX_shape) -> dX
auto
dX
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
output_tensor
);
auto
dOut
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
input_tensor
);
auto
&
place
=
*
context
.
template
device_context
<
DeviceContext
>().
eigen_device
();
// Expand ReduceSize and ReshapeSize into static values
switch
(
reduce_size
)
{
UPPER_SWITCH_REDUCE_DIMS
(
1
)
SWITCH_RESHAPE_DIMS
(
1
)
SWITCH_RESHAPE_DIMS
(
2
)
SWITCH_RESHAPE_DIMS
(
3
)
SWITCH_RESHAPE_DIMS
(
4
)
SWITCH_RESHAPE_DIMS
(
5
)
LOWER_SWITCH_REDUCE_DIMS
UPPER_SWITCH_REDUCE_DIMS
(
2
)
SWITCH_RESHAPE_DIMS
(
2
)
SWITCH_RESHAPE_DIMS
(
3
)
SWITCH_RESHAPE_DIMS
(
4
)
SWITCH_RESHAPE_DIMS
(
5
)
LOWER_SWITCH_REDUCE_DIMS
UPPER_SWITCH_REDUCE_DIMS
(
3
)
SWITCH_RESHAPE_DIMS
(
3
)
SWITCH_RESHAPE_DIMS
(
4
)
SWITCH_RESHAPE_DIMS
(
5
)
LOWER_SWITCH_REDUCE_DIMS
UPPER_SWITCH_REDUCE_DIMS
(
4
)
SWITCH_RESHAPE_DIMS
(
4
)
SWITCH_RESHAPE_DIMS
(
5
)
LOWER_SWITCH_REDUCE_DIMS
UPPER_SWITCH_REDUCE_DIMS
(
5
)
SWITCH_RESHAPE_DIMS
(
5
)
LOWER_SWITCH_REDUCE_DIMS
default:
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Detected reduce size: %d out of range"
"While maximum supported is: 5"
,
reduce_size
));
}
}
}
}
}
};
}
// namespace operators
}
// namespace paddle
python/paddle/__init__.py
浏览文件 @
affddfaa
...
...
@@ -118,6 +118,7 @@ from .tensor.logic import equal_all # noqa: F401
from
.tensor.logic
import
is_tensor
# noqa: F401
from
.tensor.manipulation
import
cast
# noqa: F401
from
.tensor.manipulation
import
concat
# noqa: F401
from
.tensor.manipulation
import
broadcast_tensors
# noqa: F401
from
.tensor.manipulation
import
expand
# noqa: F401
from
.tensor.manipulation
import
broadcast_to
# noqa: F401
from
.tensor.manipulation
import
expand_as
# noqa: F401
...
...
@@ -505,5 +506,6 @@ __all__ = [ # noqa
'trunc'
,
'digamma'
,
'standard_normal'
,
'diagonal'
'diagonal'
,
'broadcast_tensors'
,
]
python/paddle/fluid/tests/unittests/test_broadcast_tensors_op.py
0 → 100644
浏览文件 @
affddfaa
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle
import
paddle.fluid.core
as
core
from
op_test
import
OpTest
from
test_collective_base
import
TestDistBase
import
random
random
.
seed
(
2021
)
paddle
.
enable_static
()
def
find_output_shape
(
input_list
):
"""Infer output tensor shape according to bcast semantics"""
output_rank
=
0
for
x
in
input_list
:
rank
=
len
(
x
.
shape
)
output_rank
=
max
(
output_rank
,
rank
)
output_shape
=
[
0
for
i
in
range
(
output_rank
)]
for
i
in
range
(
output_rank
):
for
x
in
input_list
:
shape
=
list
(
reversed
(
x
.
shape
))
size
=
1
if
i
<
len
(
shape
):
size
=
shape
[
i
]
output_shape
[
i
]
=
max
(
output_shape
[
i
],
size
)
return
list
(
reversed
(
output_shape
))
def
make_inputs_outputs
(
input_shapes
,
dtype
):
"""Automatically generate formatted inputs and outputs from input_shapes"""
input_list
=
[
np
.
random
.
random
(
shape
).
astype
(
dtype
)
for
shape
in
input_shapes
]
output_shape
=
find_output_shape
(
input_list
)
output_list
=
[
x
+
np
.
zeros
(
output_shape
).
astype
(
x
.
dtype
)
for
x
in
input_list
]
output_formatted
=
{
"Out"
:
[(
f
"out
{
i
}
"
,
output_list
[
i
])
for
i
in
range
(
len
(
output_list
))]
}
input_formatted
=
{
"X"
:
[(
f
"x
{
i
}
"
,
input_list
[
i
])
for
i
in
range
(
len
(
input_list
))]
}
return
input_formatted
,
output_formatted
def
gen_rank_diff_test
(
dtype
):
input_shapes
=
[(
2
,
60
,
1
),
(
6
,
2
,
1
,
10
)]
return
make_inputs_outputs
(
input_shapes
,
dtype
)
def
gen_no_broadcast_test
(
dtype
):
input_shapes
=
[(
12
,
1
,
10
,
1
),
(
12
,
1
,
10
,
1
)]
return
make_inputs_outputs
(
input_shapes
,
dtype
)
def
gen_mixed_tensors_test
(
dtype
):
input_shapes
=
[(
2
,
60
,
1
),
(
2
,
2
,
1
,
30
),
(
1
,
2
,
60
,
1
)]
return
make_inputs_outputs
(
input_shapes
,
dtype
)
class
TestCPUBroadcastTensorsOp
(
OpTest
):
def
set_place
(
self
):
self
.
place
=
core
.
CPUPlace
()
def
set_dtypes
(
self
):
self
.
dtypes
=
[
'float64'
]
def
setUp
(
self
):
self
.
op_type
=
"broadcast_tensors"
self
.
use_mkldnn
=
False
self
.
attrs
=
{
'use_mkldnn'
:
self
.
use_mkldnn
}
self
.
test_gen_func_list
=
[
gen_rank_diff_test
,
gen_no_broadcast_test
,
gen_mixed_tensors_test
]
self
.
set_place
()
self
.
set_dtypes
()
def
run_test
(
self
,
test_func
,
args
):
for
dtype
in
self
.
dtypes
:
for
gen_func
in
self
.
test_gen_func_list
:
self
.
inputs
,
self
.
outputs
=
gen_func
(
dtype
)
test_func
(
**
args
)
def
test_check_output
(
self
):
self
.
run_test
(
self
.
check_output_with_place
,
{
"place"
:
self
.
place
,
"atol"
:
1e-1
})
def
test_check_grad_normal
(
self
):
self
.
run_test
(
self
.
check_grad_with_place
,
{
"place"
:
self
.
place
,
"inputs_to_check"
:
[
'x0'
,
'x1'
],
"output_names"
:
[
'out0'
,
'out1'
],
"max_relative_error"
:
0.05
,
})
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestCUDABroadcastTensorsOp
(
TestCPUBroadcastTensorsOp
):
def
set_place
(
self
):
self
.
place
=
core
.
CUDAPlace
(
0
)
def
set_dtypes
(
self
):
self
.
dtypes
=
[
'float64'
]
if
core
.
is_float16_supported
(
self
.
place
):
self
.
dtypes
.
append
(
'float16'
)
class
TestBroadcastTensorsAPI
(
unittest
.
TestCase
):
def
test_api
(
self
):
def
test_static
():
inputs
=
[
paddle
.
fluid
.
layers
.
data
(
shape
=
[
4
,
1
,
4
,
1
],
dtype
=
'float32'
,
name
=
"x0"
),
paddle
.
fluid
.
layers
.
data
(
shape
=
[
1
,
4
,
1
,
4
],
dtype
=
'float32'
,
name
=
"x1"
)
]
paddle
.
broadcast_tensors
(
inputs
)
def
test_dynamic
():
paddle
.
disable_static
()
try
:
inputs
=
[
paddle
.
to_tensor
(
np
.
random
.
random
([
4
,
1
,
4
,
1
]).
astype
(
"float32"
)),
paddle
.
to_tensor
(
np
.
random
.
random
([
1
,
4
,
1
,
4
]).
astype
(
"float32"
))
]
paddle
.
broadcast_tensors
(
inputs
)
finally
:
paddle
.
enable_static
()
test_static
()
test_dynamic
()
class
TestRaiseBroadcastTensorsError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
def
test_type
():
inputs
=
[
paddle
.
fluid
.
layers
.
data
(
shape
=
[
1
,
1
,
1
,
1
],
dtype
=
'float32'
,
name
=
"x4"
),
paddle
.
fluid
.
layers
.
data
(
shape
=
[
1
,
4
,
1
,
1
],
dtype
=
'float64'
,
name
=
"x5"
)
]
paddle
.
broadcast_tensors
(
inputs
)
def
test_dtype
():
inputs
=
[
paddle
.
fluid
.
layers
.
data
(
shape
=
[
1
,
1
,
1
,
1
],
dtype
=
'int8'
,
name
=
"x6"
),
paddle
.
fluid
.
layers
.
data
(
shape
=
[
1
,
4
,
1
,
1
],
dtype
=
'int8'
,
name
=
"x7"
)
]
paddle
.
broadcast_tensors
(
inputs
)
def
test_bcast_semantics
():
inputs
=
[
paddle
.
fluid
.
layers
.
data
(
shape
=
[
1
,
3
,
1
,
1
],
dtype
=
'float32'
,
name
=
"x9"
),
paddle
.
fluid
.
layers
.
data
(
shape
=
[
1
,
8
,
1
,
1
],
dtype
=
'float32'
,
name
=
"x10"
)
]
paddle
.
broadcast_tensors
(
inputs
)
self
.
assertRaises
(
TypeError
,
test_type
)
self
.
assertRaises
(
TypeError
,
test_dtype
)
self
.
assertRaises
(
TypeError
,
test_bcast_semantics
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/tensor/__init__.py
浏览文件 @
affddfaa
...
...
@@ -66,6 +66,7 @@ from .manipulation import cast # noqa: F401
from
.manipulation
import
concat
# noqa: F401
from
.manipulation
import
expand
# noqa: F401
from
.manipulation
import
broadcast_to
# noqa: F401
from
.manipulation
import
broadcast_tensors
# noqa: F401
from
.manipulation
import
expand_as
# noqa: F401
from
.manipulation
import
tile
# noqa: F401
from
.manipulation
import
flatten
# noqa: F401
...
...
@@ -363,6 +364,7 @@ tensor_method_func = [ #noqa
'bitwise_or'
,
'bitwise_xor'
,
'bitwise_not'
,
'broadcast_tensors'
,
]
#this list used in math_op_patch.py for magic_method bind
...
...
python/paddle/tensor/manipulation.py
浏览文件 @
affddfaa
...
...
@@ -120,6 +120,101 @@ def concat(x, axis=0, name=None):
return
paddle
.
fluid
.
layers
.
concat
(
input
=
x
,
axis
=
axis
,
name
=
name
)
def
broadcast_tensors
(
input
,
name
=
None
):
"""
This OP broadcast a list of tensors following broadcast semantics
.. note::
If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting`.
Args:
input(list|tuple): ``input`` is a Tensor list or Tensor tuple which is with data type bool,
float16, float32, float64, int32, int64. All the Tensors in ``input`` must have same data type.
Currently we only support tensors with rank no greater than 5.
name (str, optional): The default value is None. Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name`.
Returns:
list(Tensor): The list of broadcasted tensors following the same order as ``input``.
Examples:
.. code-block:: python
import paddle
x1 = paddle.rand([1, 2, 3, 4]).astype('float32')
x2 = paddle.rand([1, 2, 1, 4]).astype('float32')
x3 = paddle.rand([1, 1, 3, 1]).astype('float32')
out1, out2, out3 = paddle.broadcast_tensors(input=[x1, x2, x3])
# out1, out2, out3: tensors broadcasted from x1, x2, x3 with shape [1,2,3,4]
"""
num_inputs
=
len
(
input
)
if
in_dygraph_mode
():
return
core
.
ops
.
broadcast_tensors
(
input
,
num_inputs
)
check_type
(
input
,
'input'
,
(
list
,
tuple
),
'broadcast_tensors'
)
if
num_inputs
<
1
:
raise
TypeError
(
"At least 1 tensor is needed to perform broadcast_tensors"
)
# Check input types
for
id
,
x
in
enumerate
(
input
):
check_variable_and_dtype
(
x
,
'input['
+
str
(
id
)
+
']'
,
[
'bool'
,
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'broadcast_tensors'
)
if
x
.
dtype
!=
input
[
0
].
dtype
:
raise
TypeError
(
"All the Tensors in the input must have the same data type."
)
# Check bcast semantics
output_shape_r_last_tensor_index
=
[]
output_shape_r
=
[]
# Use while loop due to weird behaviour of "range()"
j
=
0
while
j
<
len
(
input
):
tensor
=
input
[
j
]
shape
=
list
(
reversed
(
tensor
.
shape
))
i
=
0
while
i
<
len
(
shape
):
if
len
(
output_shape_r
)
<=
i
:
output_shape_r
.
append
(
shape
[
i
])
output_shape_r_last_tensor_index
.
append
(
j
)
else
:
invalid
=
(
output_shape_r
[
i
]
!=
shape
[
i
]
and
output_shape_r
[
i
]
!=
1
and
shape
[
i
]
!=
1
)
if
invalid
:
last_index
=
output_shape_r_last_tensor_index
[
i
]
raise
TypeError
(
"Input tensors to broadcast_tensors does not follow bcast semantics"
f
"Tensor
{
last_index
}
conflicts with Tensor
{
j
}
in reversed dimension
{
i
}
"
)
if
output_shape_r
[
i
]
<=
shape
[
i
]:
output_shape_r
[
i
]
=
shape
[
i
]
output_shape_r_last_tensor_index
[
i
]
=
j
i
+=
1
# while i < len(shape)
j
+=
1
# while j < len(input)
helper
=
LayerHelper
(
'broadcast_tensors'
,
**
locals
())
i
=
0
out
=
[]
while
i
<
num_inputs
:
out
.
append
(
helper
.
create_variable_for_type_inference
(
dtype
=
helper
.
input_dtype
(
)))
i
+=
1
inputs
=
{
'X'
:
input
}
helper
.
append_op
(
type
=
'broadcast_tensors'
,
inputs
=
inputs
,
outputs
=
{
'Out'
:
out
},
attrs
=
{})
return
out
def
flip
(
x
,
axis
,
name
=
None
):
"""
Reverse the order of a n-D tensor along given axis in axis.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录