diff --git a/benchmark/IntelOptimizedPaddle.md b/benchmark/IntelOptimizedPaddle.md deleted file mode 100644 index 8b7dc5b7db800896eb4de2054ab5e584aed93999..0000000000000000000000000000000000000000 --- a/benchmark/IntelOptimizedPaddle.md +++ /dev/null @@ -1,112 +0,0 @@ -# Benchmark - -Machine: - -- Server: Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz, 2 Sockets, 20 Cores per socket -- Laptop: TBD - -System: CentOS release 6.3 (Final), Docker 1.12.1. - -PaddlePaddle: -- paddlepaddle/paddle:0.11.0 (for MKLML and MKL-DNN) - - MKL-DNN tag v0.11 - - MKLML 2018.0.1.20171007 -- paddlepaddle/paddle:0.11.0-openblas (for OpenBLAS) - - OpenBLAS v0.2.20 - -On each machine, we will test and compare the performance of training on single node using MKL-DNN / MKLML / OpenBLAS respectively. - -## Benchmark Model - -### Server - -#### Training -Test on batch size 64, 128, 256 on Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz -Pay attetion that the speed below includes forward, backward and parameter update time. So we can not directly compare the data with the benchmark of caffe `time` [command](https://github.com/PaddlePaddle/Paddle/blob/develop/benchmark/caffe/image/run.sh#L9), which only contain forward and backward. The updating time of parameter would become very heavy when the weight size are large, especially on alexnet. - -Input image size - 3 * 224 * 224, Time: images/second - -- VGG-19 - -| BatchSize | 64 | 128 | 256 | -|--------------|-------| -----| --------| -| OpenBLAS | 7.80 | 9.00 | 10.80 | -| MKLML | 12.12 | 13.70 | 16.18 | -| MKL-DNN | 28.46 | 29.83 | 30.44 | - - - - - ResNet-50 - -| BatchSize | 64 | 128 | 256 | -|--------------|-------| ------| -------| -| OpenBLAS | 25.22 | 25.68 | 27.12 | -| MKLML | 32.52 | 31.89 | 33.12 | -| MKL-DNN | 81.69 | 82.35 | 84.08 | - - - - - GoogLeNet - -| BatchSize | 64 | 128 | 256 | -|--------------|-------| ------| -------| -| OpenBLAS | 89.52 | 96.97 | 108.25 | -| MKLML | 128.46| 137.89| 158.63 | -| MKL-DNN     | 250.46| 264.83| 269.50 | - - - -- AlexNet - -| BatchSize | 64 | 128 | 256 | -|--------------|--------| ------ | -------| -| OpenBLAS | 45.62 | 72.79 | 107.22 | -| MKLML | 66.37 | 105.60 | 144.04 | -| MKL-DNN | 399.00 | 498.94 | 626.53 | - - - -#### Inference -Test on batch size 1, 2, 4, 8, 16 on Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz -- VGG-19 - -| BatchSize | 1 | 2 | 4 | 8 | 16 | -|-----------|-------|-------|-------|-------|-------| -| OpenBLAS | 1.10 | 1.96 | 3.62 | 3.63 | 2.25 | -| MKLML | 5.58 | 9.80 | 15.15 | 21.21 | 28.67 | -| MKL-DNN | 75.07 | 88.64 | 82.58 | 92.29 | 96.75 | - - - -- ResNet-50 - -| BatchSize | 1 | 2 | 4 | 8 | 16 | -|-----------|-------|--------|--------|--------|--------| -| OpenBLAS | 3.31 | 6.72 | 11.59 | 13.17 | 9.27 | -| MKLML | 6.33 | 12.02 | 22.88 | 40.53 | 63.09 | -| MKL-DNN | 107.83| 148.84 | 177.78 | 189.35 | 217.69 | - - - -- GoogLeNet - -| BatchSize | 1 | 2 | 4 | 8 | 16 | -|-----------|--------|--------|--------|--------|--------| -| OpenBLAS | 12.06 | 23.56 | 34.48 | 36.45 | 23.12 | -| MKLML | 22.74 | 41.56 | 81.22 | 133.47 | 210.53 | -| MKL-DNN | 175.10 | 272.92 | 450.70 | 512.00 | 600.94 | - - - -- AlexNet - -| BatchSize | 1 | 2 | 4 | 8 | 16 | -|-----------|--------|--------|--------|--------|--------| -| OpenBLAS | 3.53 | 6.23 | 15.04 | 26.06 | 31.62 | -| MKLML | 21.32 | 36.55 | 73.06 | 131.15 | 192.77 | -| MKL-DNN | 442.91 | 656.41 | 719.10 | 847.68 | 850.51 | - - - -### Laptop -TBD diff --git a/benchmark/README.md b/benchmark/README.md deleted file mode 100644 index 367013f0457f9bbb9ae1335ea63dce181316d444..0000000000000000000000000000000000000000 --- a/benchmark/README.md +++ /dev/null @@ -1,168 +0,0 @@ -# Benchmark - -Machine: - -- CPU: 12-core Intel(R) Xeon(R) CPU E5-2620 v2 @2.10GHz -- GPU: Tesla K40m -- cuDNN: v5.1 -- system: Docker 1.12.1, all platforms are tested in docker environment. - -Platforms: - -- PaddlePaddle: paddledev/paddle:gpu-devel-v0.9.0a0 -- Tensorflow: gcr.io/tensorflow/tensorflow:0.11.0rc0-gpu -- Caffe: kaixhin/cuda-caffe - -Several convolutional neural networks and recurrent neural networks are used to test. - -## Image - -### Benchmark Model - -AlexNet, GoogleNet and a small network used in Caffe. - -- [AlexNet](https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet): but the group size is one. - -- [GoogleNet](https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet): but remove loss1 and loss2 when testing benchmark. - -- [SmallNet](https://github.com/BVLC/caffe/blob/master/examples/cifar10/cifar10\_quick\_train\_test.prototxt) - - -### Single-GPU - -- AlexNet: input - 3 * 227 * 227, Time: ms/batch - -| BatchSize | 64 | 128 | 256 | 512 | -|--------------|-----| -----| ------| -----| -| PaddlePaddle | 195 | 334 | 602 | 1629 | -| TensorFlow | 223 | 364 | 645 | 1235 | -| Caffe | 324 | 627 | 1232 | 2513 | - -**Notation** - -All platforms use cuDNN-v5.1. We see that caffe is slower in this experiment, because its workspace limit size of cuDNN-conv interface is 8 * 1024 * 1024, which is smaller in PaddlePaddle and TensorFlow. Note that Caffe will be faster if increasing the workspace limit size. - -- GoogletNet: input - 3 * 224 * 224, Time: ms/batch - - -| BatchSize | 64 | 128 | 256 | -|--------------|-------| -------| --------| -| PaddlePaddle | 613 | 1149 | 2348 | -| TensorFlow | 644 | 1176 | 2219 | -| Caffe | 694 | 1364 | out of memory | - -- SmallNet: input - 3 * 32 * 32, Time ms/batch - -| BatchSize | 64 | 128 | 256 | 512 | -|--------------|--------| -------- | --------|---------| -| PaddlePaddle | 10.463 | 18.184 | 33.113 | 63.039 | -| TensorFlow | 9 | 15 | 28 | 59 | -| Caffe | 9.373 | 16.6606 | 31.4797 | 59.719 | - -**Notation** - -All the single-GPU experiments in caffe use `caffe time` to calculate elapsed time, which does not include parameter updating time. However, both PaddlePaddle and TensorFlow experiments contain the parameter updating time. As compared with the total time, this part is relatively little on single machine, we can ignore it. - -In Tensorflow, they implement algorithm searching method instead of using the algorithm searching interface in cuDNN. - -### Multi-GPU: 4 GPUs - -- AlexNet, ms / batch - -| total-BatchSize | 128 * 4 | 256 * 4 | -|------------------|----------| -----------| -| PaddlePaddle | 347 | 622 | -| TensorFlow | 377 | 675 | -| Caffe | 1229 | 2435 | - -For example, if `total-BatchSize = 128 * 4`, the speedup ratio is calculated by - -``` - time_at_1gpu_batch_128 * 4 / time_at_4gpu_total_batch_512 -= (334 * 4)/347 -= 3.85 -``` - - - - -- GoogleNet, ms / batch - -| total-BatchSize | 128 * 4 | 256 * 4 | -|-------------------|--------------| ----------- | -| PaddlePaddle | 1178 | 2367 | -| TensorFlow | 1210 | 2292 | -| Caffe | 2007 | out of memory | - - - - -## RNN -We use lstm network for text classfication to test benchmark. - -### Dataset -- [IMDB](http://www.iro.umontreal.ca/~lisa/deep/data/imdb.pkl) -- Sequence length is 100. In fact, PaddlePaddle supports training with variable-length sequence, but TensorFlow needs to pad. Thus, we also pad sequence length to 100 in PaddlePaddle in order to compare. -- Dictionary size=30000 -- Peephole connection is used in `lstmemory` by default in PaddlePaddle. It is also configured in TensorFlow. - -### Single-GPU - -#### LSTM in Text Classification - -Testing `2 lstm layer + fc` network with different hidden size and batch size. - -- Batch size = 64, ms / batch - -| hidden_size | 256 | 512 | 1280 | -|--------------|-------| -------| --------| -| PaddlePaddle | 83 | 184 | 641 | -| TensorFlow | 175 | 280 | 818 | - -- Batch size = 128, ms / batch - -| hidden_size | 256 | 512 | 1280 | -|--------------|------- | -------| --------| -| PaddlePaddle | 110 | 261 | 1007 | -| TensorFlow | 181 | 361 | 1237 | - - -- Batch size = 256, ms / batch - -| hidden_size | 256 | 512 | 1280 | -|--------------|-------| -------| --------| -| PaddlePaddle | 170 | 414 | 1655 | -| TensorFlow | 238 | 536 | 1905 | - - - -#### Seq2Seq - -The benchmark of sequence-to-sequence network will be added later. - - -### Multi GPU: 4 GPUs - -#### LSTM in Text Classification - -- hidden_size = 256, ms / batch - -| batch_size | 256 | 512 | -|--------------| -------| --------| -| PaddlePaddle | 90 | 118 | -| TensorFlow | 226 | 118 | - - -- hidden_size = 512, ms / batch - -| batch_size | 256 | 512 | -|--------------| -------| --------| -| PaddlePaddle | 189 | 268 | -| TensorFlow | 297 | 383 | - - - - -#### Seq2Seq - -The benchmark of sequence-to-sequence network will be added later. diff --git a/benchmark/fluid/Dockerfile b/benchmark/fluid/Dockerfile index 2e1e0d376899fd664866621263db62258e7c3869..81ea870050fe5db4a60fee40221991e38de6bd2e 100644 --- a/benchmark/fluid/Dockerfile +++ b/benchmark/fluid/Dockerfile @@ -15,9 +15,6 @@ RUN ln -s /usr/lib/x86_64-linux-gnu/libcudnn.so.7 /usr/lib/libcudnn.so && ln -s RUN pip install -U pip RUN pip install -U kubernetes paddlepaddle -RUN sh -c 'echo "import paddle.v2 as paddle\npaddle.dataset.cifar.train10()\npaddle.dataset.flowers.fetch()" | python' -RUN sh -c 'echo "import paddle.v2 as paddle\npaddle.dataset.mnist.train()\npaddle.dataset.mnist.test()\npaddle.dataset.imdb.fetch()" | python' -RUN sh -c 'echo "import paddle.v2 as paddle\npaddle.dataset.imikolov.fetch()" | python' RUN pip uninstall -y paddlepaddle && mkdir /workspace ADD https://raw.githubusercontent.com/PaddlePaddle/cloud/develop/docker/paddle_k8s /usr/bin diff --git a/benchmark/paddle/image/check_env.sh b/benchmark/fluid/check_env.sh similarity index 100% rename from benchmark/paddle/image/check_env.sh rename to benchmark/fluid/check_env.sh diff --git a/benchmark/paddle/image/alexnet.py b/benchmark/paddle/image/alexnet.py deleted file mode 100644 index 9efc3f0494e4a817a7357f29e684f621bce1921e..0000000000000000000000000000000000000000 --- a/benchmark/paddle/image/alexnet.py +++ /dev/null @@ -1,93 +0,0 @@ -# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from paddle.trainer_config_helpers import * - -height = 227 -width = 227 -num_class = 1000 -batch_size = get_config_arg('batch_size', int, 128) -gp = get_config_arg('layer_num', int, 1) -is_infer = get_config_arg("is_infer", bool, False) -num_samples = get_config_arg('num_samples', int, 2560) - -args = { - 'height': height, - 'width': width, - 'color': True, - 'num_class': num_class, - 'is_infer': is_infer, - 'num_samples': num_samples -} -define_py_data_sources2( - "train.list" if not is_infer else None, - "test.list" if is_infer else None, - module="provider", - obj="process", - args=args) - -settings( - batch_size=batch_size, - learning_rate=0.01 / batch_size, - learning_method=MomentumOptimizer(0.9), - regularization=L2Regularization(0.0005 * batch_size)) - -# conv1 -net = data_layer('data', size=height * width * 3) -net = img_conv_layer( - input=net, - filter_size=11, - num_channels=3, - num_filters=96, - stride=4, - padding=1) -net = img_cmrnorm_layer(input=net, size=5, scale=0.0001, power=0.75) -net = img_pool_layer(input=net, pool_size=3, stride=2) - -# conv2 -net = img_conv_layer( - input=net, filter_size=5, num_filters=256, stride=1, padding=2, groups=gp) -net = img_cmrnorm_layer(input=net, size=5, scale=0.0001, power=0.75) -net = img_pool_layer(input=net, pool_size=3, stride=2) - -# conv3 -net = img_conv_layer( - input=net, filter_size=3, num_filters=384, stride=1, padding=1) -# conv4 -net = img_conv_layer( - input=net, filter_size=3, num_filters=384, stride=1, padding=1, groups=gp) - -# conv5 -net = img_conv_layer( - input=net, filter_size=3, num_filters=256, stride=1, padding=1, groups=gp) -net = img_pool_layer(input=net, pool_size=3, stride=2) - -net = fc_layer( - input=net, - size=4096, - act=ReluActivation(), - layer_attr=ExtraAttr(drop_rate=0.5)) -net = fc_layer( - input=net, - size=4096, - act=ReluActivation(), - layer_attr=ExtraAttr(drop_rate=0.5)) -net = fc_layer(input=net, size=1000, act=SoftmaxActivation()) - -if is_infer: - outputs(net) -else: - lab = data_layer('label', num_class) - loss = cross_entropy(input=net, label=lab) - outputs(loss) diff --git a/benchmark/paddle/image/googlenet.py b/benchmark/paddle/image/googlenet.py deleted file mode 100644 index 2a850ccb7f2c75b467554181fc5f4aa8f2b97a09..0000000000000000000000000000000000000000 --- a/benchmark/paddle/image/googlenet.py +++ /dev/null @@ -1,245 +0,0 @@ -#!/usr/bin/env python -from paddle.trainer_config_helpers import * - -height = 224 -width = 224 -num_class = 1000 -batch_size = get_config_arg('batch_size', int, 128) -use_gpu = get_config_arg('use_gpu', bool, True) -is_infer = get_config_arg("is_infer", bool, False) -num_samples = get_config_arg('num_samples', int, 2560) - -args = { - 'height': height, - 'width': width, - 'color': True, - 'num_class': num_class, - 'is_infer': is_infer, - 'num_samples': num_samples -} -define_py_data_sources2( - "train.list" if not is_infer else None, - "test.list" if is_infer else None, - module="provider", - obj="process", - args=args) - -settings( - batch_size=batch_size, - learning_rate=0.01 / batch_size, - learning_method=MomentumOptimizer(0.9), - regularization=L2Regularization(0.0005 * batch_size)) - -conv_projection = conv_projection if use_gpu else img_conv_layer - -def inception2(name, input, channels, \ - filter1, - filter3R, filter3, - filter5R, filter5, - proj): - - conv1 = name + '_1' - conv3r = name + '_3r' - conv3 = name + '_3' - conv5r = name + '_5r' - conv5 = name + '_5' - maxpool = name + '_max' - convproj = name + '_proj' - - cov1 = img_conv_layer( - name=conv1, - input=input, - filter_size=1, - num_channels=channels, - num_filters=filter1, - stride=1, - padding=0) - - cov3r = img_conv_layer( - name=conv3r, - input=input, - filter_size=1, - num_channels=channels, - num_filters=filter3R, - stride=1, - padding=0) - cov3 = img_conv_layer( - name=conv3, - input=cov3r, - filter_size=3, - num_filters=filter3, - stride=1, - padding=1) - - cov5r = img_conv_layer( - name=conv5r, - input=input, - filter_size=1, - num_channels=channels, - num_filters=filter5R, - stride=1, - padding=0) - cov5 = img_conv_layer( - name=conv5, - input=cov5r, - filter_size=5, - num_filters=filter5, - stride=1, - padding=2) - - pool1 = img_pool_layer( - name=maxpool, - input=input, - pool_size=3, - num_channels=channels, - stride=1, - padding=1) - covprj = img_conv_layer( - name=convproj, - input=pool1, - filter_size=1, - num_filters=proj, - stride=1, - padding=0) - - cat = concat_layer(name=name, input=[cov1, cov3, cov5, covprj]) - return cat - -def inception(name, input, channels, \ - filter1, - filter3R, filter3, - filter5R, filter5, - proj): - - cov1 = conv_projection( - input=input, - filter_size=1, - num_channels=channels, - num_filters=filter1, - stride=1, - padding=0) - - cov3r = img_conv_layer( - name=name + '_3r', - input=input, - filter_size=1, - num_channels=channels, - num_filters=filter3R, - stride=1, - padding=0) - cov3 = conv_projection( - input=cov3r, filter_size=3, num_filters=filter3, stride=1, padding=1) - - cov5r = img_conv_layer( - name=name + '_5r', - input=input, - filter_size=1, - num_channels=channels, - num_filters=filter5R, - stride=1, - padding=0) - cov5 = conv_projection( - input=cov5r, filter_size=5, num_filters=filter5, stride=1, padding=2) - - pool1 = img_pool_layer( - name=name + '_max', - input=input, - pool_size=3, - num_channels=channels, - stride=1, - padding=1) - covprj = conv_projection( - input=pool1, filter_size=1, num_filters=proj, stride=1, padding=0) - - cat = concat_layer( - name=name, - input=[cov1, cov3, cov5, covprj], - bias_attr=True if use_gpu else False, - act=ReluActivation()) - return cat - - -data = data_layer(name="input", size=3 * height * width) - -# stage 1 -conv1 = img_conv_layer( - name="conv1", - input=data, - filter_size=7, - num_channels=3, - num_filters=64, - stride=2, - padding=3) -pool1 = img_pool_layer( - name="pool1", input=conv1, pool_size=3, num_channels=64, stride=2) - -# stage 2 -conv2_1 = img_conv_layer( - name="conv2_1", - input=pool1, - filter_size=1, - num_filters=64, - stride=1, - padding=0) -conv2_2 = img_conv_layer( - name="conv2_2", - input=conv2_1, - filter_size=3, - num_filters=192, - stride=1, - padding=1) -pool2 = img_pool_layer( - name="pool2", input=conv2_2, pool_size=3, num_channels=192, stride=2) - -# stage 3 -ince3a = inception("ince3a", pool2, 192, 64, 96, 128, 16, 32, 32) -ince3b = inception("ince3b", ince3a, 256, 128, 128, 192, 32, 96, 64) -pool3 = img_pool_layer( - name="pool3", input=ince3b, num_channels=480, pool_size=3, stride=2) - -# stage 4 -ince4a = inception("ince4a", pool3, 480, 192, 96, 208, 16, 48, 64) -ince4b = inception("ince4b", ince4a, 512, 160, 112, 224, 24, 64, 64) -ince4c = inception("ince4c", ince4b, 512, 128, 128, 256, 24, 64, 64) -ince4d = inception("ince4d", ince4c, 512, 112, 144, 288, 32, 64, 64) -ince4e = inception("ince4e", ince4d, 528, 256, 160, 320, 32, 128, 128) -pool4 = img_pool_layer( - name="pool4", input=ince4e, num_channels=832, pool_size=3, stride=2) - -# stage 5 -ince5a = inception("ince5a", pool4, 832, 256, 160, 320, 32, 128, 128) -ince5b = inception("ince5b", ince5a, 832, 384, 192, 384, 48, 128, 128) -pool5 = img_pool_layer( - name="pool5", - input=ince5b, - num_channels=1024, - pool_size=7, - stride=7, - pool_type=AvgPooling()) - -# We remove loss1 and loss2 for all system when testing benchmark -# output 1 -# pool_o1 = img_pool_layer(name="pool_o1", input=ince4a, num_channels=512, pool_size=5, stride=3, pool_type=AvgPooling()) -# conv_o1 = img_conv_layer(name="conv_o1", input=pool_o1, filter_size=1, num_filters=128, stride=1, padding=0) -# fc_o1 = fc_layer(name="fc_o1", input=conv_o1, size=1024, layer_attr=ExtraAttr(drop_rate=0.7), act=ReluActivation()) -# out1 = fc_layer(name="output1", input=fc_o1, size=1000, act=SoftmaxActivation()) -# loss1 = cross_entropy(name='loss1', input=out1, label=lab, coeff=0.3) - -# output 2 -#pool_o2 = img_pool_layer(name="pool_o2", input=ince4d, num_channels=528, pool_size=5, stride=3, pool_type=AvgPooling()) -#conv_o2 = img_conv_layer(name="conv_o2", input=pool_o2, filter_size=1, num_filters=128, stride=1, padding=0) -#fc_o2 = fc_layer(name="fc_o2", input=conv_o2, size=1024, layer_attr=ExtraAttr(drop_rate=0.7), act=ReluActivation()) -#out2 = fc_layer(name="output2", input=fc_o2, size=1000, act=SoftmaxActivation()) -#loss2 = cross_entropy(name='loss2', input=out2, label=lab, coeff=0.3) - -# output 3 -dropout = dropout_layer(name="dropout", input=pool5, dropout_rate=0.4) -out3 = fc_layer( - name="output3", input=dropout, size=1000, act=SoftmaxActivation()) - -if is_infer: - outputs(out3) -else: - lab = data_layer(name="label", size=num_class) - loss3 = cross_entropy(name='loss3', input=out3, label=lab) - outputs(loss3) diff --git a/benchmark/paddle/image/plotlog.py b/benchmark/paddle/image/plotlog.py deleted file mode 100644 index 8679d4f272d1b7aaf8d5a397f07698a6b70e4fcd..0000000000000000000000000000000000000000 --- a/benchmark/paddle/image/plotlog.py +++ /dev/null @@ -1,114 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import sys -import argparse -import matplotlib.pyplot as plt - - -def parse_args(): - parser = argparse.ArgumentParser('Parse Log') - parser.add_argument( - '--file_path', '-f', type=str, help='the path of the log file') - parser.add_argument( - '--sample_rate', - '-s', - type=float, - default=1.0, - help='the rate to take samples from log') - parser.add_argument( - '--log_period', '-p', type=int, default=1, help='the period of log') - - args = parser.parse_args() - return args - - -def parse_file(file_name): - loss = [] - error = [] - with open(file_name) as f: - for i, line in enumerate(f): - line = line.strip() - if not line.startswith('pass'): - continue - line_split = line.split(' ') - if len(line_split) != 5: - continue - - loss_str = line_split[2][:-1] - cur_loss = float(loss_str.split('=')[-1]) - loss.append(cur_loss) - - err_str = line_split[3][:-1] - cur_err = float(err_str.split('=')[-1]) - error.append(cur_err) - - accuracy = [1.0 - err for err in error] - - return loss, accuracy - - -def sample(metric, sample_rate): - interval = int(1.0 / sample_rate) - if interval > len(metric): - return metric[:1] - - num = len(metric) / interval - idx = [interval * i for i in range(num)] - metric_sample = [metric[id] for id in idx] - return metric_sample - - -def plot_metric(metric, - batch_id, - graph_title, - line_style='b-', - line_label='y', - line_num=1): - plt.figure() - plt.title(graph_title) - if line_num == 1: - plt.plot(batch_id, metric, line_style, label=line_label) - else: - for i in range(line_num): - plt.plot(batch_id, metric[i], line_style[i], label=line_label[i]) - plt.xlabel('batch') - plt.ylabel(graph_title) - plt.legend() - plt.savefig(graph_title + '.jpg') - plt.close() - - -def main(): - args = parse_args() - assert args.sample_rate > 0. and args.sample_rate <= 1.0, "The sample rate should in the range (0, 1]." - - loss, accuracy = parse_file(args.file_path) - batch = [args.log_period * i for i in range(len(loss))] - - batch_sample = sample(batch, args.sample_rate) - loss_sample = sample(loss, args.sample_rate) - accuracy_sample = sample(accuracy, args.sample_rate) - - plot_metric(loss_sample, batch_sample, 'loss', line_label='loss') - plot_metric( - accuracy_sample, - batch_sample, - 'accuracy', - line_style='g-', - line_label='accuracy') - - -if __name__ == '__main__': - main() diff --git a/benchmark/paddle/image/provider.py b/benchmark/paddle/image/provider.py deleted file mode 100644 index 6ad817ccefab3e44a8f962e907ba2110a6ed4a45..0000000000000000000000000000000000000000 --- a/benchmark/paddle/image/provider.py +++ /dev/null @@ -1,47 +0,0 @@ -# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import io, os -import random -import numpy as np -from paddle.trainer.PyDataProvider2 import * - - -def initHook(settings, height, width, color, num_class, **kwargs): - settings.height = height - settings.width = width - settings.color = color - settings.num_class = num_class - if settings.color: - settings.data_size = settings.height * settings.width * 3 - else: - settings.data_size = settings.height * settings.width - settings.is_infer = kwargs.get('is_infer', False) - settings.num_samples = kwargs.get('num_samples', 2560) - if settings.is_infer: - settings.slots = [dense_vector(settings.data_size)] - else: - settings.slots = [dense_vector(settings.data_size), integer_value(1)] - - -@provider( - init_hook=initHook, min_pool_size=-1, cache=CacheType.CACHE_PASS_IN_MEM) -def process(settings, file_list): - for i in xrange(settings.num_samples): - img = np.random.rand(1, settings.data_size).reshape(-1, 1).flatten() - if settings.is_infer: - yield img.astype('float32') - else: - lab = random.randint(0, settings.num_class - 1) - yield img.astype('float32'), int(lab) diff --git a/benchmark/paddle/image/resnet.py b/benchmark/paddle/image/resnet.py deleted file mode 100644 index 2846e4763f1cda4602f03af5ec649d57ee6cf0d8..0000000000000000000000000000000000000000 --- a/benchmark/paddle/image/resnet.py +++ /dev/null @@ -1,230 +0,0 @@ -#!/usr/bin/env python -from paddle.trainer_config_helpers import * - -height = 224 -width = 224 -num_class = 1000 -batch_size = get_config_arg('batch_size', int, 64) -layer_num = get_config_arg("layer_num", int, 50) -is_infer = get_config_arg("is_infer", bool, False) -num_samples = get_config_arg('num_samples', int, 2560) - -args = { - 'height': height, - 'width': width, - 'color': True, - 'num_class': num_class, - 'is_infer': is_infer, - 'num_samples': num_samples -} -define_py_data_sources2( - "train.list" if not is_infer else None, - "test.list" if is_infer else None, - module="provider", - obj="process", - args=args) - -settings( - batch_size=batch_size, - learning_rate=0.01 / batch_size, - learning_method=MomentumOptimizer(0.9), - regularization=L2Regularization(0.0005 * batch_size)) - - -#######################Network Configuration ############# -def conv_bn_layer(name, - input, - filter_size, - num_filters, - stride, - padding, - channels=None, - active_type=ReluActivation()): - """ - A wrapper for conv layer with batch normalization layers. - Note: - conv layer has no activation. - """ - - tmp = img_conv_layer( - name=name + "_conv", - input=input, - filter_size=filter_size, - num_channels=channels, - num_filters=num_filters, - stride=stride, - padding=padding, - act=LinearActivation(), - bias_attr=False) - return batch_norm_layer( - name=name + "_bn", - input=tmp, - act=active_type, - use_global_stats=is_infer) - - -def bottleneck_block(name, input, num_filters1, num_filters2): - """ - A wrapper for bottlenect building block in ResNet. - Last conv_bn_layer has no activation. - Addto layer has activation of relu. - """ - last_name = conv_bn_layer( - name=name + '_branch2a', - input=input, - filter_size=1, - num_filters=num_filters1, - stride=1, - padding=0) - last_name = conv_bn_layer( - name=name + '_branch2b', - input=last_name, - filter_size=3, - num_filters=num_filters1, - stride=1, - padding=1) - last_name = conv_bn_layer( - name=name + '_branch2c', - input=last_name, - filter_size=1, - num_filters=num_filters2, - stride=1, - padding=0, - active_type=LinearActivation()) - - return addto_layer( - name=name + "_addto", input=[input, last_name], act=ReluActivation()) - - -def mid_projection(name, input, num_filters1, num_filters2, stride=2): - """ - A wrapper for middile projection in ResNet. - projection shortcuts are used for increasing dimensions, - and other shortcuts are identity - branch1: projection shortcuts are used for increasing - dimensions, has no activation. - branch2x: bottleneck building block, shortcuts are identity. - """ - # stride = 2 - branch1 = conv_bn_layer( - name=name + '_branch1', - input=input, - filter_size=1, - num_filters=num_filters2, - stride=stride, - padding=0, - active_type=LinearActivation()) - - last_name = conv_bn_layer( - name=name + '_branch2a', - input=input, - filter_size=1, - num_filters=num_filters1, - stride=stride, - padding=0) - last_name = conv_bn_layer( - name=name + '_branch2b', - input=last_name, - filter_size=3, - num_filters=num_filters1, - stride=1, - padding=1) - - last_name = conv_bn_layer( - name=name + '_branch2c', - input=last_name, - filter_size=1, - num_filters=num_filters2, - stride=1, - padding=0, - active_type=LinearActivation()) - - return addto_layer( - name=name + "_addto", input=[branch1, last_name], act=ReluActivation()) - - -img = data_layer(name='image', size=height * width * 3) - - -def deep_res_net(res2_num=3, res3_num=4, res4_num=6, res5_num=3): - """ - A wrapper for 50,101,152 layers of ResNet. - res2_num: number of blocks stacked in conv2_x - res3_num: number of blocks stacked in conv3_x - res4_num: number of blocks stacked in conv4_x - res5_num: number of blocks stacked in conv5_x - """ - # For ImageNet - # conv1: 112x112 - tmp = conv_bn_layer( - "conv1", - input=img, - filter_size=7, - channels=3, - num_filters=64, - stride=2, - padding=3) - tmp = img_pool_layer(name="pool1", input=tmp, pool_size=3, stride=2) - - # conv2_x: 56x56 - tmp = mid_projection( - name="res2_1", input=tmp, num_filters1=64, num_filters2=256, stride=1) - for i in xrange(2, res2_num + 1, 1): - tmp = bottleneck_block( - name="res2_" + str(i), input=tmp, num_filters1=64, num_filters2=256) - - # conv3_x: 28x28 - tmp = mid_projection( - name="res3_1", input=tmp, num_filters1=128, num_filters2=512) - for i in xrange(2, res3_num + 1, 1): - tmp = bottleneck_block( - name="res3_" + str(i), - input=tmp, - num_filters1=128, - num_filters2=512) - - # conv4_x: 14x14 - tmp = mid_projection( - name="res4_1", input=tmp, num_filters1=256, num_filters2=1024) - for i in xrange(2, res4_num + 1, 1): - tmp = bottleneck_block( - name="res4_" + str(i), - input=tmp, - num_filters1=256, - num_filters2=1024) - - # conv5_x: 7x7 - tmp = mid_projection( - name="res5_1", input=tmp, num_filters1=512, num_filters2=2048) - for i in xrange(2, res5_num + 1, 1): - tmp = bottleneck_block( - name="res5_" + str(i), - input=tmp, - num_filters1=512, - num_filters2=2048) - - tmp = img_pool_layer( - name='avgpool', - input=tmp, - pool_size=7, - stride=1, - pool_type=AvgPooling()) - - return fc_layer(input=tmp, size=num_class, act=SoftmaxActivation()) - - -if layer_num == 50: - resnet = deep_res_net(3, 4, 6, 3) -elif layer_num == 101: - resnet = deep_res_net(3, 4, 23, 3) -elif layer_num == 152: - resnet = deep_res_net(3, 8, 36, 3) -else: - print("Wrong layer number.") - -if is_infer: - outputs(resnet) -else: - lbl = data_layer(name="label", size=num_class) - loss = cross_entropy(name='loss', input=resnet, label=lbl) - outputs(loss) diff --git a/benchmark/paddle/image/run.sh b/benchmark/paddle/image/run.sh deleted file mode 100755 index 5b58a8d773aab795e5439b0f0e5d81bec66b5f56..0000000000000000000000000000000000000000 --- a/benchmark/paddle/image/run.sh +++ /dev/null @@ -1,53 +0,0 @@ -#!/bin/bash - -set -e - -function train() { - cfg=$1 - thread=$2 - bz=$3 - args="batch_size=$3" - prefix=$4 - paddle train --job=time \ - --config=$cfg \ - --use_gpu=True \ - --trainer_count=$thread \ - --log_period=10 \ - --test_period=100 \ - --config_args=$args \ - > logs/$prefix-${thread}gpu-$bz.log 2>&1 -} - -if [ ! -d "train.list" ]; then - echo " " > train.list -fi -if [ ! -d "logs" ]; then - mkdir logs -fi - -#========single-gpu=========# -# alexnet -train alexnet.py 1 64 alexnet -train alexnet.py 1 128 alexnet -train alexnet.py 1 256 alexnet -train alexnet.py 1 512 alexnet - -# googlenet -train googlenet.py 1 64 googlenet -train googlenet.py 1 128 googlenet -train googlenet.py 1 256 googlenet - -# smallnet -train smallnet_mnist_cifar.py 1 64 smallnet -train smallnet_mnist_cifar.py 1 128 smallnet -train smallnet_mnist_cifar.py 1 256 smallnet -train smallnet_mnist_cifar.py 1 512 smallnet - - -############################ -#========multi-gpus=========# -train alexnet.py 4 512 alexnet -train alexnet.py 4 1024 alexnet - -train googlenet.py 4 512 googlenet -train googlenet.py 4 1024 googlenet diff --git a/benchmark/paddle/image/run_mkl_infer.sh b/benchmark/paddle/image/run_mkl_infer.sh deleted file mode 100755 index 0fad5e04cc992a3ec97591d3833957bb7517a8f3..0000000000000000000000000000000000000000 --- a/benchmark/paddle/image/run_mkl_infer.sh +++ /dev/null @@ -1,89 +0,0 @@ -#!/bin/bash - -set -e - -function clock_to_seconds() { - hours=`echo $1 | awk -F ':' '{print $1}'` - mins=`echo $1 | awk -F ':' '{print $2}'` - secs=`echo $1 | awk -F ':' '{print $3}'` - echo `awk 'BEGIN{printf "%.2f",('$secs' + '$mins' * 60 + '$hours' * 3600)}'` -} - -function infer() { - unset OMP_NUM_THREADS MKL_NUM_THREADS OMP_DYNAMIC KMP_AFFINITY - topology=$1 - layer_num=$2 - bs=$3 - use_mkldnn=$4 - if [ $4 == "True" ]; then - thread=1 - log="logs/infer-${topology}-${layer_num}-mkldnn-${bs}.log" - elif [ $4 == "False" ]; then - thread=`nproc` - if [ $thread -gt $bs ]; then - thread=$bs - fi - log="logs/infer-${topology}-${layer_num}-${thread}mklml-${bs}.log" - else - echo "Wrong input $4, use True or False." - exit 0 - fi - - models_in="models/${topology}-${layer_num}/pass-00000/" - if [ ! -d $models_in ]; then - echo "Training model ${topology}_${layer_num}" - paddle train --job=train \ - --config="${topology}.py" \ - --use_mkldnn=True \ - --use_gpu=False \ - --trainer_count=1 \ - --num_passes=1 \ - --save_dir="models/${topology}-${layer_num}" \ - --config_args="batch_size=128,layer_num=${layer_num},num_samples=256" \ - > /dev/null 2>&1 - echo "Done" - fi - log_period=$((256 / bs)) - paddle train --job=test \ - --config="${topology}.py" \ - --use_mkldnn=$use_mkldnn \ - --use_gpu=False \ - --trainer_count=$thread \ - --log_period=$log_period \ - --config_args="batch_size=${bs},layer_num=${layer_num},is_infer=True" \ - --init_model_path=$models_in \ - 2>&1 | tee ${log} - - # calculate the last 5 logs period time of 1280 samples, - # the time before are burning time. - start=`tail ${log} -n 7 | head -n 1 | awk -F ' ' '{print $2}' | xargs` - end=`tail ${log} -n 2 | head -n 1 | awk -F ' ' '{print $2}' | xargs` - start_sec=`clock_to_seconds $start` - end_sec=`clock_to_seconds $end` - fps=`awk 'BEGIN{printf "%.2f",(1280 / ('$end_sec' - '$start_sec'))}'` - echo "Last 1280 samples start: ${start}(${start_sec} sec), end: ${end}(${end_sec} sec;" >> ${log} - echo "FPS: $fps images/sec" 2>&1 | tee -a ${log} -} - -if [ ! -f "train.list" ]; then - echo " " > train.list -fi -if [ ! -f "test.list" ]; then - echo " " > test.list -fi -if [ ! -d "logs" ]; then - mkdir logs -fi -if [ ! -d "models" ]; then - mkdir -p models -fi - -# inference benchmark -for use_mkldnn in True False; do - for batchsize in 1 2 4 8 16; do - infer vgg 19 $batchsize $use_mkldnn - infer resnet 50 $batchsize $use_mkldnn - infer googlenet v1 $batchsize $use_mkldnn - infer alexnet 2 $batchsize $use_mkldnn - done -done diff --git a/benchmark/paddle/image/run_mkl_train.sh b/benchmark/paddle/image/run_mkl_train.sh deleted file mode 100755 index 1583bf134a276a08aa2f8e84dc63adbb205a83d6..0000000000000000000000000000000000000000 --- a/benchmark/paddle/image/run_mkl_train.sh +++ /dev/null @@ -1,54 +0,0 @@ -#!/bin/bash - -set -e - -function train() { - unset OMP_NUM_THREADS MKL_NUM_THREADS OMP_DYNAMIC KMP_AFFINITY - topology=$1 - layer_num=$2 - bs=$3 - use_mkldnn=$4 - if [ $4 == "True" ]; then - thread=1 - log="logs/train-${topology}-${layer_num}-mkldnn-${bs}.log" - elif [ $4 == "False" ]; then - thread=`nproc` - # each trainer_count use only 1 core to avoid conflict - log="logs/train-${topology}-${layer_num}-${thread}mklml-${bs}.log" - else - echo "Wrong input $4, use True or False." - exit 0 - fi - args="batch_size=${bs},layer_num=${layer_num}" - config="${topology}.py" - paddle train --job=time \ - --config=$config \ - --use_mkldnn=$use_mkldnn \ - --use_gpu=False \ - --trainer_count=$thread \ - --log_period=10 \ - --test_period=100 \ - --config_args=$args \ - 2>&1 | tee ${log} - - avg_time=`tail ${log} -n 1 | awk -F ' ' '{print $8}' | sed 's/avg=//'` - fps=`awk 'BEGIN{printf "%.2f",('$bs' / '$avg_time' * 1000)}'` - echo "FPS: $fps images/sec" 2>&1 | tee -a ${log} -} - -if [ ! -f "train.list" ]; then - echo " " > train.list -fi -if [ ! -d "logs" ]; then - mkdir logs -fi - -# training benchmark -for use_mkldnn in True False; do - for batchsize in 64 128 256; do - train vgg 19 $batchsize $use_mkldnn - train resnet 50 $batchsize $use_mkldnn - train googlenet v1 $batchsize $use_mkldnn - train alexnet 2 $batchsize $use_mkldnn - done -done diff --git a/benchmark/paddle/image/run_openblas_infer.sh b/benchmark/paddle/image/run_openblas_infer.sh deleted file mode 100755 index 987381cabc2e793886099212660723c122b73bb0..0000000000000000000000000000000000000000 --- a/benchmark/paddle/image/run_openblas_infer.sh +++ /dev/null @@ -1,71 +0,0 @@ -#!/bin/bash - -set -e - -function clock_to_seconds() { - hours=`echo $1 | awk -F ':' '{print $1}'` - mins=`echo $1 | awk -F ':' '{print $2}'` - secs=`echo $1 | awk -F ':' '{print $3}'` - echo `awk 'BEGIN{printf "%.2f",('$secs' + '$mins' * 60 + '$hours' * 3600)}'` -} - -function infer() { - export OPENBLAS_MAIN_FREE=1 - topology=$1 - layer_num=$2 - bs=$3 - trainers=`nproc` - if [ $trainers -gt $bs ]; then - trainers=$bs - fi - log="logs/infer-${topology}-${layer_num}-${trainers}openblas-${bs}.log" - threads=$((`nproc` / trainers)) - if [ $threads -eq 0 ]; then - threads=1 - fi - export OPENBLAS_NUM_THREADS=$threads - - models_in="models/${topology}-${layer_num}/pass-00000/" - if [ ! -d $models_in ]; then - echo "./run_mkl_infer.sh to save the model first" - exit 0 - fi - log_period=$((32 / bs)) - paddle train --job=test \ - --config="${topology}.py" \ - --use_mkldnn=False \ - --use_gpu=False \ - --trainer_count=$trainers \ - --log_period=$log_period \ - --config_args="batch_size=${bs},layer_num=${layer_num},is_infer=True,num_samples=256" \ - --init_model_path=$models_in \ - 2>&1 | tee ${log} - - # calculate the last 5 logs period time of 160(=32*5) samples, - # the time before are burning time. - start=`tail ${log} -n 7 | head -n 1 | awk -F ' ' '{print $2}' | xargs` - end=`tail ${log} -n 2 | head -n 1 | awk -F ' ' '{print $2}' | xargs` - start_sec=`clock_to_seconds $start` - end_sec=`clock_to_seconds $end` - fps=`awk 'BEGIN{printf "%.2f",(160 / ('$end_sec' - '$start_sec'))}'` - echo "Last 160 samples start: ${start}(${start_sec} sec), end: ${end}(${end_sec} sec;" >> ${log} - echo "FPS: $fps images/sec" 2>&1 | tee -a ${log} -} - -if [ ! -f "train.list" ]; then - echo " " > train.list -fi -if [ ! -f "test.list" ]; then - echo " " > test.list -fi -if [ ! -d "logs" ]; then - mkdir logs -fi - -# inference benchmark -for batchsize in 1 2 4 8 16; do - infer vgg 19 $batchsize - infer resnet 50 $batchsize - infer googlenet v1 $batchsize - infer alexnet 2 $batchsize -done diff --git a/benchmark/paddle/image/run_openblas_train.sh b/benchmark/paddle/image/run_openblas_train.sh deleted file mode 100755 index cc64e1d09da02087b1737190a0b75dc7758600a6..0000000000000000000000000000000000000000 --- a/benchmark/paddle/image/run_openblas_train.sh +++ /dev/null @@ -1,43 +0,0 @@ -#!/bin/bash - -set -e - -function train() { - export OPENBLAS_NUM_THREADS=1 - topology=$1 - layer_num=$2 - bs=$3 - thread=`nproc` - # each trainer_count use only 1 core to avoid conflict - log="logs/train-${topology}-${layer_num}-${thread}openblas-${bs}.log" - args="batch_size=${bs},layer_num=${layer_num}" - config="${topology}.py" - paddle train --job=time \ - --config=$config \ - --use_mkldnn=False \ - --use_gpu=False \ - --trainer_count=$thread \ - --log_period=3 \ - --test_period=30 \ - --config_args=$args \ - 2>&1 | tee ${log} - - avg_time=`tail ${log} -n 1 | awk -F ' ' '{print $8}' | sed 's/avg=//'` - fps=`awk 'BEGIN{printf "%.2f",('$bs' / '$avg_time' * 1000)}'` - echo "FPS: $fps images/sec" 2>&1 | tee -a ${log} -} - -if [ ! -f "train.list" ]; then - echo " " > train.list -fi -if [ ! -d "logs" ]; then - mkdir logs -fi - -# training benchmark -for batchsize in 64 128 256; do - train vgg 19 $batchsize - train resnet 50 $batchsize - train googlenet v1 $batchsize - train alexnet 2 $batchsize -done diff --git a/benchmark/paddle/image/smallnet_mnist_cifar.py b/benchmark/paddle/image/smallnet_mnist_cifar.py deleted file mode 100644 index 58879c454f37991405d83bbb593bb5d1e977ff53..0000000000000000000000000000000000000000 --- a/benchmark/paddle/image/smallnet_mnist_cifar.py +++ /dev/null @@ -1,49 +0,0 @@ -#!/usr/bin/env python - -from paddle.trainer_config_helpers import * - -height = 32 -width = 32 -num_class = 10 - -batch_size = get_config_arg('batch_size', int, 128) - -args = {'height': height, 'width': width, 'color': True, 'num_class': num_class} -define_py_data_sources2( - "train.list", None, module="provider", obj="process", args=args) - -settings( - batch_size=batch_size, - learning_rate=0.01 / batch_size, - learning_method=MomentumOptimizer(0.9), - regularization=L2Regularization(0.0005 * batch_size)) - -# conv1 -net = data_layer('data', size=height * width * 3) -net = img_conv_layer( - input=net, - filter_size=5, - num_channels=3, - num_filters=32, - stride=1, - padding=2) -net = img_pool_layer(input=net, pool_size=3, stride=2, padding=1) - -# conv2 -net = img_conv_layer( - input=net, filter_size=5, num_filters=32, stride=1, padding=2) -net = img_pool_layer( - input=net, pool_size=3, stride=2, padding=1, pool_type=AvgPooling()) - -# conv3 -net = img_conv_layer( - input=net, filter_size=3, num_filters=64, stride=1, padding=1) -net = img_pool_layer( - input=net, pool_size=3, stride=2, padding=1, pool_type=AvgPooling()) - -net = fc_layer(input=net, size=64, act=ReluActivation()) -net = fc_layer(input=net, size=10, act=SoftmaxActivation()) - -lab = data_layer('label', num_class) -loss = classification_cost(input=net, label=lab) -outputs(loss) diff --git a/benchmark/paddle/image/vgg.py b/benchmark/paddle/image/vgg.py deleted file mode 100644 index ca0a6798fb8c35b68cf84d263855955eb93ba0b0..0000000000000000000000000000000000000000 --- a/benchmark/paddle/image/vgg.py +++ /dev/null @@ -1,119 +0,0 @@ -#!/usr/bin/env python -from paddle.trainer_config_helpers import * - -height = 224 -width = 224 -num_class = 1000 -batch_size = get_config_arg('batch_size', int, 64) -layer_num = get_config_arg('layer_num', int, 19) -is_infer = get_config_arg("is_infer", bool, False) -num_samples = get_config_arg('num_samples', int, 2560) - -args = { - 'height': height, - 'width': width, - 'color': True, - 'num_class': num_class, - 'is_infer': is_infer, - 'num_samples': num_samples -} -define_py_data_sources2( - "train.list" if not is_infer else None, - "test.list" if is_infer else None, - module="provider", - obj="process", - args=args) - -settings( - batch_size=batch_size, - learning_rate=0.001 / batch_size, - learning_method=MomentumOptimizer(0.9), - regularization=L2Regularization(0.0005 * batch_size)) - -img = data_layer(name='image', size=height * width * 3) - - -def vgg_network(vgg_num=3): - tmp = img_conv_group( - input=img, - num_channels=3, - conv_padding=1, - conv_num_filter=[64, 64], - conv_filter_size=3, - conv_act=ReluActivation(), - pool_size=2, - pool_stride=2, - pool_type=MaxPooling()) - - tmp = img_conv_group( - input=tmp, - conv_num_filter=[128, 128], - conv_padding=1, - conv_filter_size=3, - conv_act=ReluActivation(), - pool_stride=2, - pool_type=MaxPooling(), - pool_size=2) - - channels = [] - for i in range(vgg_num): - channels.append(256) - tmp = img_conv_group( - input=tmp, - conv_num_filter=channels, - conv_padding=1, - conv_filter_size=3, - conv_act=ReluActivation(), - pool_stride=2, - pool_type=MaxPooling(), - pool_size=2) - channels = [] - for i in range(vgg_num): - channels.append(512) - tmp = img_conv_group( - input=tmp, - conv_num_filter=channels, - conv_padding=1, - conv_filter_size=3, - conv_act=ReluActivation(), - pool_stride=2, - pool_type=MaxPooling(), - pool_size=2) - tmp = img_conv_group( - input=tmp, - conv_num_filter=channels, - conv_padding=1, - conv_filter_size=3, - conv_act=ReluActivation(), - pool_stride=2, - pool_type=MaxPooling(), - pool_size=2) - - tmp = fc_layer( - input=tmp, - size=4096, - act=ReluActivation(), - layer_attr=ExtraAttr(drop_rate=0.5)) - - tmp = fc_layer( - input=tmp, - size=4096, - act=ReluActivation(), - layer_attr=ExtraAttr(drop_rate=0.5)) - - return fc_layer(input=tmp, size=num_class, act=SoftmaxActivation()) - - -if layer_num == 16: - vgg = vgg_network(3) -elif layer_num == 19: - vgg = vgg_network(4) -else: - print("Wrong layer number.") - -if is_infer: - outputs(vgg) -else: - lab = data_layer('label', num_class) - loss = cross_entropy(input=vgg, label=lab) - outputs(loss) diff --git a/benchmark/paddle/rnn/imdb.py b/benchmark/paddle/rnn/imdb.py deleted file mode 100755 index 2a67f9b0cf52484d9d44fe9db0b1e57cdd20fd43..0000000000000000000000000000000000000000 --- a/benchmark/paddle/rnn/imdb.py +++ /dev/null @@ -1,60 +0,0 @@ -# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from __future__ import print_function -import six.moves.cPickle as pickle -import gzip -import os -import numpy - - -def get_dataset_file(dataset, default_dataset, origin): - data_dir, data_file = os.path.split(dataset) - if (not os.path.isfile(dataset)) and data_file == default_dataset: - from six.moves import urllib - print('Downloading data from %s' % origin) - urllib.request.urlretrieve(origin, dataset) - - return dataset - - -def create_data(path="imdb.pkl"): - - if (not os.path.isfile('imdb.train.pkl')): - path = get_dataset_file( - path, "imdb.pkl", - "http://www.iro.umontreal.ca/~lisa/deep/data/imdb.pkl") - - if path.endswith(".gz"): - f = gzip.open(path, 'rb') - else: - f = open(path, 'rb') - - train_set = pickle.load(f) - test_set = pickle.load(f) - f.close() - - pickle.dump(train_set, open('imdb.train.pkl', 'wb')) - pickle.dump(test_set, open('imdb.test.pkl', 'wb')) - - if (not os.path.isfile('train.list')): - file('train.list', 'w').write('imdb.train.pkl\n') - - -def main(): - create_data('imdb.pkl') - - -if __name__ == "__main__": - main() diff --git a/benchmark/paddle/rnn/provider.py b/benchmark/paddle/rnn/provider.py deleted file mode 100644 index 23cc0c44a98d0ae7f586d1a376a603198f2c6144..0000000000000000000000000000000000000000 --- a/benchmark/paddle/rnn/provider.py +++ /dev/null @@ -1,86 +0,0 @@ -# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import io, os -import random -import numpy as np -import six.moves.cPickle as pickle -from paddle.trainer.PyDataProvider2 import * - - -def remove_unk(x, n_words): - return [[1 if w >= n_words else w for w in sen] for sen in x] - - -# ============================================================== -# tensorflow uses fixed length, but PaddlePaddle can process -# variable-length. Padding is used in benchmark in order to -# compare with other platform. -# ============================================================== -def pad_sequences(sequences, - maxlen=None, - dtype='int32', - padding='post', - truncating='post', - value=0.): - lengths = [len(s) for s in sequences] - - nb_samples = len(sequences) - if maxlen is None: - maxlen = np.max(lengths) - - x = (np.ones((nb_samples, maxlen)) * value).astype(dtype) - for idx, s in enumerate(sequences): - if len(s) == 0: - continue # empty list was found - if truncating == 'pre': - trunc = s[-maxlen:] - elif truncating == 'post': - trunc = s[:maxlen] - else: - raise ValueError("Truncating type '%s' not understood" % padding) - - if padding == 'post': - x[idx, :len(trunc)] = trunc - elif padding == 'pre': - x[idx, -len(trunc):] = trunc - else: - raise ValueError("Padding type '%s' not understood" % padding) - return x - - -def initHook(settings, vocab_size, pad_seq, maxlen, **kwargs): - settings.vocab_size = vocab_size - settings.pad_seq = pad_seq - settings.maxlen = maxlen - settings.input_types = [ - integer_value_sequence(vocab_size), integer_value(2) - ] - - -@provider( - init_hook=initHook, min_pool_size=-1, cache=CacheType.CACHE_PASS_IN_MEM) -def process(settings, file): - f = open(file, 'rb') - train_set = pickle.load(f) - f.close() - x, y = train_set - - # remove unk, namely remove the words out of dictionary - x = remove_unk(x, settings.vocab_size) - if settings.pad_seq: - x = pad_sequences(x, maxlen=settings.maxlen, value=0.) - - for i in range(len(y)): - yield map(int, x[i]), int(y[i]) diff --git a/benchmark/paddle/rnn/rnn.py b/benchmark/paddle/rnn/rnn.py deleted file mode 100755 index 83eb3e565473f7e7e91cddeaa3cd2aafb7e3df2c..0000000000000000000000000000000000000000 --- a/benchmark/paddle/rnn/rnn.py +++ /dev/null @@ -1,38 +0,0 @@ -#!/usr/bin/env python - -from paddle.trainer_config_helpers import * -import imdb - -num_class = 2 -vocab_size = 30000 -fixedlen = 100 -batch_size = get_config_arg('batch_size', int, 128) -lstm_num = get_config_arg('lstm_num', int, 1) -hidden_size = get_config_arg('hidden_size', int, 128) -# whether to pad sequence into fixed length -pad_seq = get_config_arg('pad_seq', bool, True) -imdb.create_data('imdb.pkl') - -args = {'vocab_size': vocab_size, 'pad_seq': pad_seq, 'maxlen': fixedlen} -define_py_data_sources2( - "train.list", None, module="provider", obj="process", args=args) - -settings( - batch_size=batch_size, - learning_rate=2e-3, - learning_method=AdamOptimizer(), - regularization=L2Regularization(8e-4), - gradient_clipping_threshold=25) - -net = data_layer('data', size=vocab_size) -net = embedding_layer(input=net, size=128) - -for i in xrange(lstm_num): - net = simple_lstm(input=net, size=hidden_size) - -net = last_seq(input=net) -net = fc_layer(input=net, size=2, act=SoftmaxActivation()) - -lab = data_layer('label', num_class) -loss = classification_cost(input=net, label=lab) -outputs(loss) diff --git a/benchmark/paddle/rnn/run.sh b/benchmark/paddle/rnn/run.sh deleted file mode 100755 index f99a562b3f88a98560f4bf7aee98ceee9daefe67..0000000000000000000000000000000000000000 --- a/benchmark/paddle/rnn/run.sh +++ /dev/null @@ -1,52 +0,0 @@ -#!/bin/bash - -set -e - -function train() { - cfg=$1 - thread=$2 - args="lstm_num=${3},seq_pad=${4},hidden_size=${5},batch_size=${6}" - paddle train --job=time \ - --config=$cfg \ - --use_gpu=1 \ - --trainer_count=$thread \ - --log_period=10 \ - --test_period=100 \ - --num_passes=1 \ - --feed_data=1 \ - --config_args=$args \ - >logs/rnn-pad${4}-${thread}gpu-lstm${3}-batch${6}-hid${5}.log 2>&1 -} - -if [ ! -d "logs" ]; then - mkdir logs -fi - -## padding, single gpu -#-----config--gpu--lstm_num--padding--hidden_size--batch_size -## lstm_num=2, batch_size=64 -train rnn.py 1 2 1 256 64 -train rnn.py 1 2 1 512 64 -train rnn.py 1 2 1 1280 64 - -## lstm_num=2, batch_size=128 -train rnn.py 1 2 1 256 128 -train rnn.py 1 2 1 512 128 -train rnn.py 1 2 1 1280 128 - -## lstm_num=4, batch_size=256 -train rnn.py 1 2 1 256 256 -train rnn.py 1 2 1 512 256 -train rnn.py 1 2 1 1280 256 - - -#==================multi gpus=====================# -# hidden_size=256, lstm_num=2, different batch size -train rnn.py 4 2 1 256 128 -train rnn.py 4 2 1 256 256 -train rnn.py 4 2 1 256 512 - -# hidden_size=512, lstm_num=4, different batch size -train rnn.py 4 2 1 512 128 -train rnn.py 4 2 1 512 256 -train rnn.py 4 2 1 512 512 diff --git a/benchmark/tensorflow/machine_translation.py b/benchmark/tensorflow/machine_translation.py index 8f77dce98353af53803246be8dc61063836b7867..7837669edc7a206c03e5b9fa2989bf45b35f0605 100644 --- a/benchmark/tensorflow/machine_translation.py +++ b/benchmark/tensorflow/machine_translation.py @@ -35,8 +35,6 @@ import os import argparse import time -import paddle.v2 as paddle - parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( "--embedding_dim", diff --git a/benchmark/tensorflow/mnist.py b/benchmark/tensorflow/mnist.py index 7140eed6eaff49b5c65f9ccb2e38f113a4cdbdbf..03d533fecfededddd3956ba83ea600456782cfc9 100644 --- a/benchmark/tensorflow/mnist.py +++ b/benchmark/tensorflow/mnist.py @@ -21,7 +21,6 @@ import time import numpy as np import tensorflow as tf -import paddle.v2 as paddle DTYPE = tf.float32 diff --git a/benchmark/tensorflow/resnet.py b/benchmark/tensorflow/resnet.py index c432fa8d59571e128b9ff9e3ffa1949b792ef3a4..fdb044195766b847e16a0cc33424a999c1d9166e 100644 --- a/benchmark/tensorflow/resnet.py +++ b/benchmark/tensorflow/resnet.py @@ -27,7 +27,6 @@ import argparse import time import numpy as np -import paddle.v2 as paddle import tensorflow as tf DTYPE = tf.float32 diff --git a/benchmark/tensorflow/stacked_dynamic_lstm.py b/benchmark/tensorflow/stacked_dynamic_lstm.py index 5285033005044d907d0b7e91eb66ee7281c4f27a..1f532dc2fa082ea0f6b1da560e1a57b96d2ef1bb 100644 --- a/benchmark/tensorflow/stacked_dynamic_lstm.py +++ b/benchmark/tensorflow/stacked_dynamic_lstm.py @@ -21,8 +21,6 @@ import argparse import time import tensorflow as tf -import paddle.v2 as paddle - def parse_args(): parser = argparse.ArgumentParser("LSTM model benchmark.") diff --git a/benchmark/tensorflow/vgg.py b/benchmark/tensorflow/vgg.py index fba5ec71a46b3ac8b2e1244424c39fd5192e5458..d32c835bd7a7dafaafe0970fb6b422db3c866370 100644 --- a/benchmark/tensorflow/vgg.py +++ b/benchmark/tensorflow/vgg.py @@ -13,7 +13,6 @@ # limitations under the License. """VGG16 benchmark in TensorFlow""" import tensorflow as tf -import paddle.v2 as paddle import numpy as np import argparse import time diff --git a/python/paddle/fluid/tests/demo/file_reader/convert_data_to_recordio.py b/python/paddle/fluid/tests/demo/file_reader/convert_data_to_recordio.py index 45a104ec9625eacfcb87ea6eae619e3d71410da9..b00af91a9dce637e312c9dc5d7d3824106b5a051 100644 --- a/python/paddle/fluid/tests/demo/file_reader/convert_data_to_recordio.py +++ b/python/paddle/fluid/tests/demo/file_reader/convert_data_to_recordio.py @@ -16,7 +16,6 @@ from __future__ import print_function import sys import paddle.fluid as fluid -import paddle.v2 as paddle def load_vocab(filename): diff --git a/python/paddle/fluid/tests/demo/pyreader.py b/python/paddle/fluid/tests/demo/pyreader.py index ec61e0ebae4feb1a2177da916b77b2ba2d3981b9..bbcef4c3ff23d955662be10b5f4b96a66da4c7d8 100644 --- a/python/paddle/fluid/tests/demo/pyreader.py +++ b/python/paddle/fluid/tests/demo/pyreader.py @@ -20,7 +20,6 @@ import six import paddle import paddle.dataset.mnist as mnist import paddle.fluid as fluid -import paddle.v2 def network(is_train): @@ -72,7 +71,7 @@ def main(): use_cuda=use_cuda, share_vars_from=trainer, main_program=test_prog) train_reader.decorate_paddle_reader( - paddle.v2.reader.shuffle( + paddle.reader.shuffle( paddle.batch(mnist.train(), 512), buf_size=8192)) test_reader.decorate_paddle_reader(paddle.batch(mnist.test(), 512)) diff --git a/python/paddle/utils/dump_config.py b/python/paddle/utils/dump_config.py deleted file mode 100644 index 6a96a0a78fc77c50904ee7822c725c41e646c5e6..0000000000000000000000000000000000000000 --- a/python/paddle/utils/dump_config.py +++ /dev/null @@ -1,45 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from paddle.trainer.config_parser import parse_config -from paddle.proto import TrainerConfig_pb2 -import sys - -__all__ = [] - -if __name__ == '__main__': - whole_conf = False - binary = False - if len(sys.argv) == 2: - conf = parse_config(sys.argv[1], '') - elif len(sys.argv) == 3: - conf = parse_config(sys.argv[1], sys.argv[2]) - elif len(sys.argv) == 4: - conf = parse_config(sys.argv[1], sys.argv[2]) - if sys.argv[3] == '--whole': - whole_conf = True - elif sys.argv[3] == '--binary': - binary = True - else: - raise RuntimeError() - - assert isinstance(conf, TrainerConfig_pb2.TrainerConfig) - - if whole_conf: - print(conf) - else: - if binary: - sys.stdout.write(conf.model_config.SerializeToString()) - else: - print(conf.model_config) diff --git a/python/paddle/utils/dump_v2_config.py b/python/paddle/utils/dump_v2_config.py deleted file mode 100644 index 5dc2111e379fd39b40e1e9bcf2e577b57b101a68..0000000000000000000000000000000000000000 --- a/python/paddle/utils/dump_v2_config.py +++ /dev/null @@ -1,62 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -import collections - -from paddle.trainer_config_helpers.layers import LayerOutput -from paddle.v2.layer import parse_network -from paddle.proto import TrainerConfig_pb2 - -__all__ = ["dump_v2_config"] - - -def dump_v2_config(topology, save_path, binary=False): - """ Dump the network topology to a specified file. - - This function is only used to dump network defined by using PaddlePaddle V2 - APIs. This function will NOT dump configurations related to PaddlePaddle - optimizer. - - :param topology: The output layers (can be more than one layers given in a - Python List or Tuple) of the entire network. Using the - specified layers (if more than one layer is given) as root, - traversing back to the data layer(s), all the layers - connected to the specified output layers will be dumped. - Layers not connceted to the specified will not be dumped. - :type topology: LayerOutput|List|Tuple - :param save_path: The path to save the dumped network topology. - :type save_path: str - :param binary: Whether to dump the serialized network topology or not. - The default value is false. NOTE that, if you call this - function to generate network topology for PaddlePaddle C-API, - a serialized version of network topology is required. When - using PaddlePaddle C-API, this flag MUST be set to True. - :type binary: bool - """ - - if isinstance(topology, LayerOutput): - topology = [topology] - elif isinstance(topology, collections.Sequence): - for out_layer in topology: - assert isinstance(out_layer, LayerOutput), ( - "The type of each element in the parameter topology " - "should be LayerOutput.") - else: - raise RuntimeError("Error input type for parameter topology.") - - model_str = parse_network(topology) - with open(save_path, "w") as fout: - if binary: - fout.write(model_str.SerializeToString()) - else: - fout.write(str(model_str)) diff --git a/python/paddle/utils/image_multiproc.py b/python/paddle/utils/image_multiproc.py deleted file mode 100644 index d1bbda3fd3562efe486377d41a9fb7359bafa4e7..0000000000000000000000000000000000000000 --- a/python/paddle/utils/image_multiproc.py +++ /dev/null @@ -1,278 +0,0 @@ -# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import os, sys -import numpy as np -from PIL import Image -import six -from six.moves import cStringIO as StringIO -import multiprocessing -import functools -import itertools - -from paddle.utils.image_util import * -from paddle.trainer.config_parser import logger - -try: - import cv2 -except ImportError: - logger.warning("OpenCV2 is not installed, using PIL to process") - cv2 = None - -__all__ = ["CvTransformer", "PILTransformer", "MultiProcessImageTransformer"] - - -class CvTransformer(ImageTransformer): - """ - CvTransformer used python-opencv to process image. - """ - - def __init__( - self, - min_size=None, - crop_size=None, - transpose=(2, 0, 1), # transpose to C * H * W - channel_swap=None, - mean=None, - is_train=True, - is_color=True): - ImageTransformer.__init__(self, transpose, channel_swap, mean, is_color) - self.min_size = min_size - self.crop_size = crop_size - self.is_train = is_train - - def resize(self, im, min_size): - row, col = im.shape[:2] - new_row, new_col = min_size, min_size - if row > col: - new_row = min_size * row / col - else: - new_col = min_size * col / row - im = cv2.resize(im, (new_row, new_col), interpolation=cv2.INTER_CUBIC) - return im - - def crop_and_flip(self, im): - """ - Return cropped image. - The size of the cropped image is inner_size * inner_size. - im: (H x W x K) ndarrays - """ - row, col = im.shape[:2] - start_h, start_w = 0, 0 - if self.is_train: - start_h = np.random.randint(0, row - self.crop_size + 1) - start_w = np.random.randint(0, col - self.crop_size + 1) - else: - start_h = (row - self.crop_size) / 2 - start_w = (col - self.crop_size) / 2 - end_h, end_w = start_h + self.crop_size, start_w + self.crop_size - if self.is_color: - im = im[start_h:end_h, start_w:end_w, :] - else: - im = im[start_h:end_h, start_w:end_w] - if (self.is_train) and (np.random.randint(2) == 0): - if self.is_color: - im = im[:, ::-1, :] - else: - im = im[:, ::-1] - return im - - def transform(self, im): - im = self.resize(im, self.min_size) - im = self.crop_and_flip(im) - # transpose, swap channel, sub mean - im = im.astype('float32') - ImageTransformer.transformer(self, im) - return im - - def load_image_from_string(self, data): - flag = cv2.CV_LOAD_IMAGE_COLOR if self.is_color else cv2.CV_LOAD_IMAGE_GRAYSCALE - im = cv2.imdecode(np.fromstring(data, np.uint8), flag) - return im - - def transform_from_string(self, data): - im = self.load_image_from_string(data) - return self.transform(im) - - def load_image_from_file(self, file): - flag = cv2.CV_LOAD_IMAGE_COLOR if self.is_color else cv2.CV_LOAD_IMAGE_GRAYSCALE - im = cv2.imread(file, flag) - return im - - def transform_from_file(self, file): - im = self.load_image_from_file(file) - return self.transform(im) - - -class PILTransformer(ImageTransformer): - """ - PILTransformer used PIL to process image. - """ - - def __init__( - self, - min_size=None, - crop_size=None, - transpose=(2, 0, 1), # transpose to C * H * W - channel_swap=None, - mean=None, - is_train=True, - is_color=True): - ImageTransformer.__init__(self, transpose, channel_swap, mean, is_color) - self.min_size = min_size - self.crop_size = crop_size - self.is_train = is_train - - def resize(self, im, min_size): - row, col = im.size[:2] - new_row, new_col = min_size, min_size - if row > col: - new_row = min_size * row / col - else: - new_col = min_size * col / row - im = im.resize((new_row, new_col), Image.ANTIALIAS) - return im - - def crop_and_flip(self, im): - """ - Return cropped image. - The size of the cropped image is inner_size * inner_size. - """ - row, col = im.size[:2] - start_h, start_w = 0, 0 - if self.is_train: - start_h = np.random.randint(0, row - self.crop_size + 1) - start_w = np.random.randint(0, col - self.crop_size + 1) - else: - start_h = (row - self.crop_size) / 2 - start_w = (col - self.crop_size) / 2 - end_h, end_w = start_h + self.crop_size, start_w + self.crop_size - im = im.crop((start_h, start_w, end_h, end_w)) - if (self.is_train) and (np.random.randint(2) == 0): - im = im.transpose(Image.FLIP_LEFT_RIGHT) - return im - - def transform(self, im): - im = self.resize(im, self.min_size) - im = self.crop_and_flip(im) - im = np.array(im, dtype=np.float32) # convert to numpy.array - # transpose, swap channel, sub mean - ImageTransformer.transformer(self, im) - return im - - def load_image_from_string(self, data): - im = Image.open(StringIO(data)) - return im - - def transform_from_string(self, data): - im = self.load_image_from_string(data) - return self.transform(im) - - def load_image_from_file(self, file): - im = Image.open(file) - return im - - def transform_from_file(self, file): - im = self.load_image_from_file(file) - return self.transform(im) - - -def job(is_img_string, transformer, data_label_pack): - (data, label) = data_label_pack - if is_img_string: - return transformer.transform_from_string(data), label - else: - return transformer.transform_from_file(data), label - - -class MultiProcessImageTransformer(object): - def __init__(self, - procnum=10, - resize_size=None, - crop_size=None, - transpose=(2, 0, 1), - channel_swap=None, - mean=None, - is_train=True, - is_color=True, - is_img_string=True): - """ - Processing image with multi-process. If it is used in PyDataProvider, - the simple usage for CNN is as follows: - - .. code-block:: python - - def hool(settings, is_train, **kwargs): - settings.is_train = is_train - settings.mean_value = np.array([103.939,116.779,123.68], dtype=np.float32) - settings.input_types = [ - dense_vector(3 * 224 * 224), - integer_value(1)] - settings.transformer = MultiProcessImageTransformer( - procnum=10, - resize_size=256, - crop_size=224, - transpose=(2, 0, 1), - mean=settings.mean_values, - is_train=settings.is_train) - - - @provider(init_hook=hook, pool_size=20480) - def process(settings, file_list): - with open(file_list, 'r') as fdata: - for line in fdata: - data_dic = np.load(line.strip()) # load the data batch pickled by Pickle. - data = data_dic['data'] - labels = data_dic['label'] - labels = np.array(labels, dtype=np.float32) - for im, lab in settings.dp.run(data, labels): - yield [im.astype('float32'), int(lab)] - - :param procnum: processor number. - :type procnum: int - :param resize_size: the shorter edge size of image after resizing. - :type resize_size: int - :param crop_size: the croping size. - :type crop_size: int - :param transpose: the transpose order, Paddle only allow C * H * W order. - :type transpose: tuple or list - :param channel_swap: the channel swap order, RGB or BRG. - :type channel_swap: tuple or list - :param mean: the mean values of image, per-channel mean or element-wise mean. - :type mean: array, The dimension is 1 for per-channel mean. - The dimension is 3 for element-wise mean. - :param is_train: training peroid or testing peroid. - :type is_train: bool. - :param is_color: the image is color or gray. - :type is_color: bool. - :param is_img_string: The input can be the file name of image or image string. - :type is_img_string: bool. - """ - - self.procnum = procnum - self.pool = multiprocessing.Pool(procnum) - self.is_img_string = is_img_string - if cv2 is not None: - self.transformer = CvTransformer(resize_size, crop_size, transpose, - channel_swap, mean, is_train, - is_color) - else: - self.transformer = PILTransformer(resize_size, crop_size, transpose, - channel_swap, mean, is_train, - is_color) - - def run(self, data, label): - fun = functools.partial(job, self.is_img_string, self.transformer) - return self.pool.imap_unordered( - fun, six.moves.zip(data, label), chunksize=100 * self.procnum) diff --git a/python/paddle/utils/make_model_diagram.py b/python/paddle/utils/make_model_diagram.py deleted file mode 100644 index 52759d3ad230c3a5a5488a8bc46a2e8f8fae1025..0000000000000000000000000000000000000000 --- a/python/paddle/utils/make_model_diagram.py +++ /dev/null @@ -1,140 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -# Generate dot diagram file for the given paddle model config -# The generated file can be viewed using Graphviz (http://graphviz.org) - -from __future__ import print_function - -import six -import sys -import traceback - -from paddle.trainer.config_parser import parse_config - - -def make_layer_label(layer_config): - label = '%s type=%s' % (layer_config.name, layer_config.type) - if layer_config.reversed: - label += ' <==' - - label2 = '' - if layer_config.active_type: - label2 += 'act=%s ' % layer_config.active_type - if layer_config.bias_parameter_name: - label2 += 'bias=%s ' % layer_config.bias_parameter_name - - if label2: - label += '\l' + label2 - return label - - -def make_diagram(config_file, dot_file, config_arg_str): - config = parse_config(config_file, config_arg_str) - make_diagram_from_proto(config.model_config, dot_file) - - -def make_diagram_from_proto(model_config, dot_file): - # print >> sys.stderr, config - name2id = {} - f = open(dot_file, 'w') - submodel_layers = set() - - def make_link(link): - return 'l%s -> l%s;' % (name2id[link.layer_name], - name2id[link.link_name]) - - def make_mem(mem): - s = '' - if mem.boot_layer_name: - s += 'l%s -> l%s;\n' % (name2id[mem.boot_layer_name], - name2id[mem.layer_name]) - s += 'l%s -> l%s [style=dashed];' % (name2id[mem.layer_name], - name2id[mem.link_name]) - return s - - print('digraph graphname {', file=f) - print('node [width=0.375,height=0.25];', file=f) - for i in six.moves.xrange(len(model_config.layers)): - l = model_config.layers[i] - name2id[l.name] = i - - i = 0 - for sub_model in model_config.sub_models: - if sub_model.name == 'root': - continue - print('subgraph cluster_%s {' % i, file=f) - print('style=dashed;', file=f) - label = '%s ' % sub_model.name - if sub_model.reversed: - label += '<==' - print('label = "%s";' % label, file=f) - i += 1 - submodel_layers.add(sub_model.name) - for layer_name in sub_model.layer_names: - submodel_layers.add(layer_name) - lid = name2id[layer_name] - layer_config = model_config.layers[lid] - label = make_layer_label(layer_config) - print('l%s [label="%s", shape=box];' % (lid, label), file=f) - print('}', file=f) - - for i in six.moves.xrange(len(model_config.layers)): - l = model_config.layers[i] - if l.name not in submodel_layers: - label = make_layer_label(l) - print('l%s [label="%s", shape=box];' % (i, label), file=f) - - for sub_model in model_config.sub_models: - if sub_model.name == 'root': - continue - for link in sub_model.in_links: - print(make_link(link), file=f) - for link in sub_model.out_links: - print(make_link(link), file=f) - for mem in sub_model.memories: - print(make_mem(mem), file=f) - - for i in six.moves.xrange(len(model_config.layers)): - for l in model_config.layers[i].inputs: - print( - 'l%s -> l%s [label="%s"];' % (name2id[l.input_layer_name], i, - l.input_parameter_name), - file=f) - - print('}', file=f) - f.close() - - -def usage(): - print( - ("Usage: python show_model_diagram.py" + - " CONFIG_FILE DOT_FILE [config_str]"), - file=sys.stderr) - exit(1) - - -if __name__ == '__main__': - if len(sys.argv) < 3 or len(sys.argv) > 4: - usage() - - config_file = sys.argv[1] - dot_file = sys.argv[2] - config_arg_str = sys.argv[3] if len(sys.argv) == 4 else '' - - try: - make_diagram(config_file, dot_file, config_arg_str) - except: - traceback.print_exc() - raise diff --git a/python/paddle/utils/merge_model.py b/python/paddle/utils/merge_model.py deleted file mode 100644 index b74649e93640c3600636034d58792b8d12dffeda..0000000000000000000000000000000000000000 --- a/python/paddle/utils/merge_model.py +++ /dev/null @@ -1,73 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import gzip -import struct -import os - -from paddle.trainer_config_helpers.layers import LayerOutput -from paddle.v2.parameters import Parameters -from paddle.proto import ModelConfig_pb2 -from paddle.v2.topology import Topology - - -def merge_v2_model(net, param_file, output_file): - '''Merge the model config and parameters into one file. - - The model configuration file describes the model structure which - ends with .py. The parameters file stores the parameters of the model - which ends with .tar.gz. - - @param net The output layer of the network for inference. - @param param_file Path of the parameters (.tar.gz) which is stored by - v2 api. - @param output_file Path of the merged file which will be generated. - - Usage: - - from paddle.utils.merge_model import merge_v2_model - # import your network configuration - from example_net import net_conf - - net = net_conf(is_predict=True) - param_file = './param_pass_00000.tar.gz' - output_file = './output.paddle' - - merge_v2_model(net, param_file, output_file) - - ''' - - assert isinstance(net, LayerOutput), \ - "The net should be the output of the network for inference" - assert os.path.exists(param_file), \ - "The model parameters file %s does not exists " % (param_file) - - model_proto = Topology(net).proto() - assert isinstance(model_proto, ModelConfig_pb2.ModelConfig) - - with gzip.open(param_file) as f: - params = Parameters.from_tar(f) - - if os.path.exists(output_file): - os.remove(output_file) - - with open(output_file, 'w') as f: - param_names = [param.name for param in model_proto.parameters] - conf_str = model_proto.SerializeToString() - f.write(struct.pack('q', len(conf_str))) - f.write(conf_str) - for pname in param_names: - params.serialize(pname, f) - - print('Generate %s success!' % (output_file)) diff --git a/python/paddle/utils/predefined_net.py b/python/paddle/utils/predefined_net.py deleted file mode 100644 index 2801f4877c079615239b92be146b3e33df16b37f..0000000000000000000000000000000000000000 --- a/python/paddle/utils/predefined_net.py +++ /dev/null @@ -1,381 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import numpy as np -import six -import os -from paddle.trainer.config_parser import * -from paddle.utils.preprocess_img import \ - ImageClassificationDatasetCreater -from paddle.trainer_config_helpers import * - - -def image_data(data_dir, - processed_image_size, - overwrite=False, - color=True, - train_list="batches/train.list", - test_list="batches/test.list", - meta_file="batches/batches.meta", - use_jpeg=1): - """ - Predefined image data provider for image classification. - train_list: a text file containing a list of training batches. - test_list: a text file containing a list of test batches. - processed_image_size: all the input images will be resized into this size. - If the image is not square. Then the shorter edge will be resized into - this size, and the aspect ratio is kept the same. - color: whether the images are color or gray. - meta_path: the path of the meta file that stores the mean image file and - other dataset information, such as the size of images, - the size of the mean image, the number of classes. - async_load_data: whether to load image data asynchronuously. - """ - data_creator = ImageClassificationDatasetCreater( - data_dir, processed_image_size, color) - batch_data_dir = data_dir - train_list = os.path.join(batch_data_dir, train_list) - test_list = os.path.join(batch_data_dir, test_list) - meta_path = os.path.join(batch_data_dir, meta_file) - image_size = processed_image_size - conf = np.load(meta_path) - mean_image_size = conf["mean_image_size"] - is_color = conf["color"] - num_classes = conf["num_classes"] - color_string = "color" if is_color else "gray" - - args = { - 'meta': meta_path, - 'mean_img_size': mean_image_size, - 'img_size': image_size, - 'num_classes': num_classes, - 'use_jpeg': use_jpeg != 0, - 'color': color_string - } - - define_py_data_sources2( - train_list, - test_list, - module='image_provider', - obj='processData', - args=args) - return { - "image_size": image_size, - "num_classes": num_classes, - "is_color": is_color - } - - -def get_extra_layer_attr(drop_rate): - if drop_rate == 0: - return None - else: - return ExtraLayerAttribute(drop_rate=drop_rate) - - -def image_data_layers(image_size, num_classes, is_color=False, - is_predict=False): - """ - Data layers for image classification. - image_size: image size. - num_classes: num of classes. - is_color: whether the input images are color. - is_predict: whether the network is used for prediction. - """ - num_image_channels = 3 if is_color else 1 - data_input = data_layer("input", - image_size * image_size * num_image_channels) - if is_predict: - return data_input, None, num_image_channels - else: - label_input = data_layer("label", 1) - return data_input, label_input, num_image_channels - - -def simple_conv_net(data_conf, is_color=False): - """ - A Wrapper for a simple network for MNIST digit recognition. - It contains two convolutional layers, one fully conencted layer, and - one softmax layer. - data_conf is a dictionary with the following keys: - image_size: image size. - num_classes: num of classes. - is_color: whether the input images are color. - """ - for k, v in six.iteritems(data_conf): - globals()[k] = v - data_input, label_input, num_image_channels = \ - image_data_layers(image_size, num_classes, is_color, is_predict) - filter_sizes = [5, 5] - num_channels = [32, 64] - strides = [1, 1] - fc_dims = [500] - conv_bn_pool1 = img_conv_bn_pool( - name="g1", - input=data_input, - filter_size=filter_sizes[0], - num_channel=num_image_channels, - num_filters=num_channels[0], - conv_stride=1, - conv_padding=0, - pool_size=3, - pool_stride=2, - act=ReluActivation()) - conv_bn_pool2 = img_conv_bn_pool( - name="g2", - input=conv_bn_pool1, - filter_size=filter_sizes[1], - num_channel=num_channels[0], - num_filters=num_channels[1], - conv_stride=1, - conv_padding=0, - pool_size=3, - pool_stride=2, - act=ReluActivation()) - fc3 = fc_layer( - name="fc3", input=conv_bn_pool2, dim=fc_dims[0], act=ReluActivation()) - fc3_dropped = dropout_layer(name="fc3_dropped", input=fc3, dropout_rate=0.5) - output = fc_layer( - name="output", - input=fc3_dropped, - dim=fc_dims[0], - act=SoftmaxActivation()) - if is_predict: - end_of_network(output) - else: - cost = classify(name="cost", input=output, label=label_input) - end_of_network(cost) - - -def conv_layer_group(prefix_num, - num_layers, - input, - input_channels, - output_channels, - drop_rates=[], - strides=[], - with_bn=[]): - """ - A set of convolution layers, and batch normalization layers, - followed by one pooling layer. - It is utilized in VGG network for image classifcation. - prefix_num: the prefix number of the layer names. - For example, if prefix_num = 1, the first convolutioal layer's - name will be conv_1_1. - num_layers: number of the convolutional layers. - input: the name of the input layer. - input_channels: the number of channels of the input feature map. - output_channels: the number of channels of the output feature map. - drop_rates: the drop rates of the BN layers. It will be all zero by default. - strides: the stride of the convolution for the layers. - It will be all 1 by default. - with_bn: whether to use Batch Normalization for Conv layers. - By default, it is all false. - """ - if len(drop_rates) == 0: drop_rates = [0] * num_layers - if len(strides) == 0: strides = [1] * num_layers - if len(with_bn) == 0: with_bn = [False] * num_layers - assert (len(drop_rates) == num_layers) - assert (len(strides) == num_layers) - - for i in range(1, num_layers + 1): - if i == 1: - i_conv_in = input - else: - i_conv_in = group_output - i_channels_conv = input_channels if i == 1 else output_channels - conv_act = LinearActivation() if with_bn[i - 1] else ReluActivation() - conv_output = img_conv_layer( - name="conv%d_%d" % (prefix_num, i), - input=i_conv_in, - filter_size=3, - num_channels=i_channels_conv, - num_filters=output_channels, - stride=strides[i - 1], - padding=1, - act=conv_act) - if with_bn[i - 1]: - bn = batch_norm_layer( - name="conv%d_%d_bn" % (prefix_num, i), - input=conv_output, - num_channels=output_channels, - act=ReluActivation(), - layer_attr=get_extra_layer_attr(drop_rate=drop_rates[i - 1])) - group_output = bn - else: - group_output = conv_output - pool = img_pool_layer( - name="pool%d" % prefix_num, - input=group_output, - pool_size=2, - num_channels=output_channels, - stride=2) - return pool - - -def vgg_conv_net(image_size, - num_classes, - num_layers, - channels, - strides, - with_bn, - fc_dims, - drop_rates, - drop_rates_fc=[], - is_color=True, - is_predict=False): - """ - A Wrapper for a VGG network for image classification. - It is a set of convolutional groups followed by several fully - connected layers, and a cross-entropy classifiation loss. - The detailed architecture of the paper can be found here: - Very Deep Convolutional Networks for Large-Scale Visual Recognition - http://www.robots.ox.ac.uk/~vgg/research/very_deep/ - image_size: image size. - num_classes: num of classes. - num_layers: the number of layers for all the convolution groups. - channels: the number of output filters for all the convolution groups. - with_bn: whether each layer of a convolution group is followed by a - batch normalization. - drop_rates: the dropout rates for all the convolutional layers. - fc_dims: the dimension for all the fully connected layers. - is_color: whether the input images are color. - """ - data_input, label_input, num_image_channels = \ - image_data_layers(image_size, num_classes, is_color, is_predict) - assert (len(num_layers) == len(channels)) - assert (len(num_layers) == len(strides)) - assert (len(num_layers) == len(with_bn)) - num_fc_layers = len(fc_dims) - assert (num_fc_layers + 1 == len(drop_rates_fc)) - - for i in range(len(num_layers)): - input_layer = data_input if i == 0 else group_output - input_channels = 3 if i == 0 else channels[i - 1] - group_output = conv_layer_group( - prefix_num=i + 1, - num_layers=num_layers[i], - input=input_layer, - input_channels=input_channels, - output_channels=channels[i], - drop_rates=drop_rates[i], - strides=strides[i], - with_bn=with_bn[i]) - conv_output_name = group_output - if drop_rates_fc[0] != 0.0: - dropped_pool_name = "pool_dropped" - conv_output_name = dropout_layer( - name=dropped_pool_name, - input=conv_output_name, - dropout_rate=drop_rates_fc[0]) - for i in range(len(fc_dims)): - input_layer_name = conv_output_name if i == 0 else fc_output - active_type = LinearActivation() if i == len( - fc_dims) - 1 else ReluActivation() - drop_rate = 0.0 if i == len(fc_dims) - 1 else drop_rates_fc[i + 1] - fc_output = fc_layer( - name="fc%d" % (i + 1), - input=input_layer_name, - size=fc_dims[i], - act=active_type, - layer_attr=get_extra_layer_attr(drop_rate)) - bn = batch_norm_layer( - name="fc_bn", - input=fc_output, - num_channels=fc_dims[len(fc_dims) - 1], - act=ReluActivation(), - layer_attr=get_extra_layer_attr(drop_rate=drop_rates_fc[-1])) - output = fc_layer( - name="output", input=bn, size=num_classes, act=SoftmaxActivation()) - if is_predict: - outputs(output) - else: - cost = classification_cost(name="cost", input=output, label=label_input) - outputs(cost) - - -def vgg16_conv_net(image_size, num_classes, is_color=True, is_predict=False): - """ - A Wrapper for a 16 layers VGG network for image classification. - The detailed architecture of the paper can be found here: - Very Deep Convolutional Networks for Large-Scale Visual Recognition - http://www.robots.ox.ac.uk/~vgg/research/very_deep/ - image_size: image size. - num_classes: num of classes. - is_color: whether the input images are color. - """ - vgg_conv_net(image_size, num_classes, - num_layers=[2, 2, 3, 3, 3], - channels=[64, 128, 256, 512, 512], - strides=[[], [], [], [], []], - with_bn=[[False, True], [False, True], [False, False, True], \ - [False, False, True], [False, False, True]], - drop_rates=[[]] * 5, - drop_rates_fc=[0.0, 0.5, 0.5], - fc_dims=[4096, 4096], - is_predict=is_predict) - - -def small_vgg(data_conf, is_predict=False): - """ - A Wrapper for a small VGG network for CIFAR-10 image classification. - The detailed architecture of the paper can be found here: - 92.45% on CIFAR-10 in Torch - http://torch.ch/blog/2015/07/30/cifar.html - Due to the constraints of CuDNN, it only has four convolutional groups - rather than five. - Thus, it only achieves 91.2% test accuracy and 98.1% training accuracy. - data_conf is a dictionary with the following keys: - image_size: image size. - num_classes: num of classes. - is_color: whether the input images are color. - """ - for k, v in six.iteritems(data_conf): - globals()[k] = v - vgg_conv_net(image_size, num_classes, - num_layers=[2, 2, 3, 3], - channels=[64, 128, 256, 512], - strides=[[], [], [], []], - with_bn=[[True, True], [True, True], [True, True, True], \ - [True, True, True]], - drop_rates=[[0.3, 0.0], [0.4, 0.0], - [0.4, 0.4, 0.0], [0.4, 0.4, 0.0]], - drop_rates_fc=[0.5, 0.5], - fc_dims=[512], - is_predict=is_predict) - - -def training_settings(learning_rate=0.1, - batch_size=128, - algorithm="sgd", - momentum=0.9, - decay_rate=0.001): - """ - Training settings. - learning_rate: learning rate of the training. - batch_size: the size of each training batch. - algorithm: training algorithm, can be - - sgd - - adagrad - - adadelta - - rmsprop - momentum: momentum of the training algorithm. - decay_rate: weight decay rate. - """ - Settings( - algorithm=algorithm, - batch_size=batch_size, - learning_rate=learning_rate / float(batch_size)) - default_momentum(momentum) - default_decay_rate(decay_rate * batch_size)