未验证 提交 ac9a7eee 编写于 作者: L liym27 提交者: GitHub

[Dy2Stat]Support list pop (#24250)

* Replace dygraph_to_static_func with @declarative or program_translator.get_func in test_list.py

* Add comments in ConditionalBlock.

* Support list pop last item. 

* Support pop the i-th item. 

* Support an empty tensor array as Input in assign op and set the kernel type is float.
上级 c78da18d
...@@ -1326,7 +1326,7 @@ proto::VarType::Type OperatorWithKernel::IndicateVarDataType( ...@@ -1326,7 +1326,7 @@ proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
PADDLE_ENFORCE_NE( PADDLE_ENFORCE_NE(
data_type, dafault_data_type, data_type, dafault_data_type,
"The Input Variable(%s) of %s Op used to determine kernel data type " "The Input Variable(%s) of %s Op used to determine kernel data type "
"is empty or not LoDTensor or SelectedRows.", "is empty or not LoDTensor or SelectedRows or LoDTensorArray.",
name, Type()); name, Type());
return data_type; return data_type;
} }
......
...@@ -476,14 +476,14 @@ TEST(IndicateVarDataTypeTest, other) { ...@@ -476,14 +476,14 @@ TEST(IndicateVarDataTypeTest, other) {
paddle::framework::InitDevices(true); paddle::framework::InitDevices(true);
paddle::framework::proto::OpDesc op_desc; paddle::framework::proto::OpDesc op_desc;
op_desc.set_type("indicate_other_data_type_test"); op_desc.set_type("indicate_other_data_type_test");
BuildVar("Other", {"lod_tensor_array_1"}, op_desc.add_inputs()); BuildVar("Other", {"lod_rank_table_1"}, op_desc.add_inputs());
paddle::platform::CPUPlace cpu_place; paddle::platform::CPUPlace cpu_place;
paddle::framework::Scope scope; paddle::framework::Scope scope;
auto op = paddle::framework::OpRegistry::CreateOp(op_desc); auto op = paddle::framework::OpRegistry::CreateOp(op_desc);
auto* var = scope.Var("lod_tensor_array_1"); auto* var = scope.Var("lod_rank_table_1");
var->GetMutable<paddle::framework::LoDTensorArray>(); var->GetMutable<paddle::framework::LoDRankTable>();
bool caught = false; bool caught = false;
try { try {
...@@ -491,10 +491,12 @@ TEST(IndicateVarDataTypeTest, other) { ...@@ -491,10 +491,12 @@ TEST(IndicateVarDataTypeTest, other) {
} catch (paddle::platform::EnforceNotMet& err) { } catch (paddle::platform::EnforceNotMet& err) {
caught = true; caught = true;
std::string ex_msg = err.what(); std::string ex_msg = err.what();
EXPECT_TRUE(ex_msg.find("The Input Variable(Other) of " EXPECT_TRUE(
ex_msg.find(
"The Input Variable(Other) of "
"indicate_other_data_type_test Op used to " "indicate_other_data_type_test Op used to "
"determine kernel data type " "determine kernel data type "
"is empty or not LoDTensor or SelectedRows") != "is empty or not LoDTensor or SelectedRows or LoDTensorArray") !=
std::string::npos); std::string::npos);
} }
ASSERT_TRUE(caught); ASSERT_TRUE(caught);
......
...@@ -58,6 +58,17 @@ class AssignOp : public framework::OperatorWithKernel { ...@@ -58,6 +58,17 @@ class AssignOp : public framework::OperatorWithKernel {
framework::OpKernelType GetExpectedKernelType( framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override { const framework::ExecutionContext &ctx) const override {
const framework::Variable *var = ctx.InputVar("X");
if (var->IsType<framework::LoDTensorArray>()) {
auto t_arr = var->Get<framework::LoDTensorArray>();
// NOTE(liym27): Support an empty tensor array as Input.
// And set the kernel type is float.
if (t_arr.size() == 0) {
return framework::OpKernelType(framework::proto::VarType::FP32,
ctx.device_context());
}
}
return framework::OpKernelType( return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, "X"), OperatorWithKernel::IndicateVarDataType(ctx, "X"),
ctx.device_context()); ctx.device_context());
......
...@@ -47,7 +47,8 @@ class SliceOp : public framework::OperatorWithKernel { ...@@ -47,7 +47,8 @@ class SliceOp : public framework::OperatorWithKernel {
// the output shape is determined by SliceKernel:Compute in runtime. // the output shape is determined by SliceKernel:Compute in runtime.
return; return;
} else { } else {
// NOTE: A better way is needed to get accurate dims of tensor array. // NOTE(liym27): A better way is needed to get accurate dims of tensor
// array.
// The resulted dim of GetInputDim("Input") is the dim of the // The resulted dim of GetInputDim("Input") is the dim of the
// last item written into TensorArray "Input". Maybe it's a bug to fix. // last item written into TensorArray "Input". Maybe it's a bug to fix.
ctx->SetOutputDim("Out", ctx->GetInputDim("Input")); ctx->SetOutputDim("Out", ctx->GetInputDim("Input"));
......
...@@ -32,6 +32,9 @@ from .program_translator import * ...@@ -32,6 +32,9 @@ from .program_translator import *
from . import convert_call_func from . import convert_call_func
from .convert_call_func import * from .convert_call_func import *
from . import list_transformer
from .list_transformer import *
__all__ = [] __all__ = []
__all__ += ast_transformer.__all__ __all__ += ast_transformer.__all__
__all__ += loop_transformer.__all__ __all__ += loop_transformer.__all__
...@@ -39,3 +42,4 @@ __all__ += static_analysis.__all__ ...@@ -39,3 +42,4 @@ __all__ += static_analysis.__all__
__all__ += variable_trans_func.__all__ __all__ += variable_trans_func.__all__
__all__ += program_translator.__all__ __all__ += program_translator.__all__
__all__ += convert_call_func.__all__ __all__ += convert_call_func.__all__
__all__ += list_transformer.__all__
...@@ -14,10 +14,96 @@ ...@@ -14,10 +14,96 @@
from __future__ import print_function from __future__ import print_function
import gast
import astor import astor
import gast
from paddle.fluid.dygraph.dygraph_to_static.static_analysis import AstNodeWrapper, NodeVarType, StaticAnalysisVisitor from paddle.fluid.dygraph.dygraph_to_static.static_analysis import AstNodeWrapper, NodeVarType, StaticAnalysisVisitor
from paddle.fluid.dygraph.dygraph_to_static.utils import is_control_flow_to_transform, ast_to_source_code from paddle.fluid.dygraph.dygraph_to_static.utils import ast_to_source_code, is_control_flow_to_transform
from paddle.fluid.framework import core, default_main_program, Variable
from paddle.fluid.layers import array_length, array_read, array_write, create_array
from paddle.fluid.layers import assign, cast, fill_constant, slice
from paddle.fluid.layers.control_flow import cond, while_loop, less_than, increment
__all__ = ['convert_list_pop']
def create_array_in_parent_blcok(null_array):
# TODO(liym27): Create a null tensor_array with the same name in parent block to avoid a bug in control flow,
# because in `null_array = create_array("float32")`, `null_array` is not a output of a real OP.
# See class ConditionalBlock for details.
prog = default_main_program()
parent_idx = prog.current_block().parent_idx
while parent_idx != -1:
parent_block = prog.block(parent_idx)
parent_block.create_var(
name=null_array.name,
type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
dtype="float32")
parent_idx = parent_block.parent_idx
# TODO(liym27): A better way to slice tensor array.
# Maybe support start == end for slice op.
def slice_tensor_array(array, start, end):
end = cast(end, "int32")
def true_fn():
null_array = create_array("float32")
create_array_in_parent_blcok(null_array)
return null_array
def false_fn(array, start, end):
new_array = slice(array, starts=[start], ends=[end], axes=[0])
return new_array
new_array = cond(start == end, true_fn, lambda: false_fn(array, start, end))
return new_array
def tensor_array_pop(array, idx):
assert isinstance(idx, int)
def cond(i, new_array):
return less_than(i, arr_len)
def body(i, new_array):
item = array_read(array=array, i=i)
array_write(item, array_length(new_array), new_array)
i = increment(i)
return i, new_array
arr_len = array_length(array)
if idx < 0:
idx = idx + arr_len
else:
idx = fill_constant(shape=[1], dtype="int64", value=idx)
pop_item = array_read(array, idx)
new_array = slice_tensor_array(array, 0, idx)
i = idx + 1
_, new_array = while_loop(cond, body, [i, new_array])
assign(input=new_array, output=array)
return pop_item
def convert_list_pop(target, idx=None):
"""
Convert list pop.
"""
if idx is None:
idx = -1
is_variable = isinstance(target, Variable)
if is_variable:
is_tensor_array = target.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY
if is_variable and is_tensor_array:
result = tensor_array_pop(target, idx)
else:
result = target.pop(idx)
return result
class ListTransformer(gast.NodeTransformer): class ListTransformer(gast.NodeTransformer):
...@@ -45,12 +131,21 @@ class ListTransformer(gast.NodeTransformer): ...@@ -45,12 +131,21 @@ class ListTransformer(gast.NodeTransformer):
self.visit(self.root) self.visit(self.root)
self.replace_list_with_tensor_array(self.root) self.replace_list_with_tensor_array(self.root)
def visit_Call(self, node):
if isinstance(node.func, gast.Attribute):
func_name = node.func.attr
if func_name == "pop":
node = self._replace_list_pop(node)
return node
def visit_Assign(self, node): def visit_Assign(self, node):
if self._update_list_name_to_updated(node): if self._update_list_name_to_updated(node):
return node return node
if self._need_to_array_write_node(node): if self._need_to_array_write_node(node):
return self._transform_slice_to_tensor_write(node) return self._transform_slice_to_tensor_write(node)
self.generic_visit(node)
return node return node
def visit_If(self, node): def visit_If(self, node):
...@@ -203,3 +298,21 @@ class ListTransformer(gast.NodeTransformer): ...@@ -203,3 +298,21 @@ class ListTransformer(gast.NodeTransformer):
self.list_name_to_updated[target_id] == False: self.list_name_to_updated[target_id] == False:
del self.list_name_to_updated[target_id] del self.list_name_to_updated[target_id]
return False return False
def _replace_list_pop(self, node):
assert isinstance(node, gast.Call)
assert isinstance(node.func, gast.Attribute)
target_node = node.func.value
target_str = ast_to_source_code(target_node).strip()
if node.args:
idx_node = node.args[0]
idx_str = ast_to_source_code(idx_node).strip()
else:
idx_str = "None"
new_call_str = "fluid.dygraph.dygraph_to_static.convert_list_pop({}, {})".format(
target_str, idx_str)
new_call_node = gast.parse(new_call_str).body[0].value
return new_call_node
...@@ -2001,6 +2001,9 @@ class ConditionalBlock(object): ...@@ -2001,6 +2001,9 @@ class ConditionalBlock(object):
intermediate = set() intermediate = set()
params = set() params = set()
# NOTE: Here assumes that all variables are input or output of Ops,
# but some variables are created without appendding a real op.
# For example, in `arr = create_array(dtype)`, `arr` is not a output of a op.
for each_op in inside_block.ops: for each_op in inside_block.ops:
assert isinstance(each_op, Operator) assert isinstance(each_op, Operator)
for iname in each_op.input_names: for iname in each_op.input_names:
......
...@@ -15,15 +15,20 @@ ...@@ -15,15 +15,20 @@
from __future__ import print_function from __future__ import print_function
import unittest import unittest
from functools import partial
import numpy as np import numpy as np
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid.dygraph.jit import dygraph_to_static_func from paddle.fluid.dygraph.jit import declarative
from paddle.fluid.layers.utils import map_structure
SEED = 2020 SEED = 2020
np.random.seed(SEED) np.random.seed(SEED)
def test_list_without_control_flow(x): # Situation 1: Test list append
@declarative
def test_list_append_without_control_flow(x):
# Python list will not be transformed. # Python list will not be transformed.
x = fluid.dygraph.to_variable(x) x = fluid.dygraph.to_variable(x)
a = [] a = []
...@@ -33,7 +38,8 @@ def test_list_without_control_flow(x): ...@@ -33,7 +38,8 @@ def test_list_without_control_flow(x):
return a return a
def test_list_in_if(x): @declarative
def test_list_append_in_if(x):
x = fluid.dygraph.to_variable(x) x = fluid.dygraph.to_variable(x)
a = [] a = []
if x.numpy()[0] > 0: if x.numpy()[0] > 0:
...@@ -45,7 +51,8 @@ def test_list_in_if(x): ...@@ -45,7 +51,8 @@ def test_list_in_if(x):
return a return a
def test_list_in_for_loop(x, iter_num): @declarative
def test_list_append_in_for_loop(x, iter_num):
x = fluid.dygraph.to_variable(x) x = fluid.dygraph.to_variable(x)
# Use `fill_constant` so that static analysis can analyze the type of iter_num is Tensor # Use `fill_constant` so that static analysis can analyze the type of iter_num is Tensor
iter_num = fluid.layers.fill_constant( iter_num = fluid.layers.fill_constant(
...@@ -57,7 +64,8 @@ def test_list_in_for_loop(x, iter_num): ...@@ -57,7 +64,8 @@ def test_list_in_for_loop(x, iter_num):
return a return a
def test_list_in_for_loop_with_concat(x, iter_num): @declarative
def test_list_append_in_for_loop_with_concat(x, iter_num):
x = fluid.dygraph.to_variable(x) x = fluid.dygraph.to_variable(x)
a = [] a = []
# Use `fill_constant` so that static analysis can analyze the type of iter_num is Tensor # Use `fill_constant` so that static analysis can analyze the type of iter_num is Tensor
...@@ -70,22 +78,21 @@ def test_list_in_for_loop_with_concat(x, iter_num): ...@@ -70,22 +78,21 @@ def test_list_in_for_loop_with_concat(x, iter_num):
return a return a
def test_list_in_while_loop(x, iter_num): @declarative
def test_list_append_in_while_loop(x, iter_num):
x = fluid.dygraph.to_variable(x) x = fluid.dygraph.to_variable(x)
iter_num = fluid.layers.fill_constant( iter_num = fluid.layers.fill_constant(
shape=[1], value=iter_num, dtype="int32") shape=[1], value=iter_num, dtype="int32")
a = [] a = []
i = 0 i = 0
# Note: `i < iter_num` can't be supported in dygraph mode now, while i < iter_num:
# but PR22892 is fixing it https://github.com/PaddlePaddle/Paddle/pull/22892.
# If PR22892 merged, change `i < iter_num.numpy()[0]` to `i < iter_num`.
while i < iter_num.numpy()[0]:
a.append(x) a.append(x)
i += 1 i += 1
return a return a
def test_list_in_while_loop_with_stack(x, iter_num): @declarative
def test_list_append_in_while_loop_with_stack(x, iter_num):
x = fluid.dygraph.to_variable(x) x = fluid.dygraph.to_variable(x)
iter_num = fluid.layers.fill_constant( iter_num = fluid.layers.fill_constant(
shape=[1], value=iter_num, dtype="int32") shape=[1], value=iter_num, dtype="int32")
...@@ -98,121 +105,172 @@ def test_list_in_while_loop_with_stack(x, iter_num): ...@@ -98,121 +105,172 @@ def test_list_in_while_loop_with_stack(x, iter_num):
return out return out
# Situation 2: Test list pop
@declarative
def test_list_pop_without_control_flow_1(x):
x = fluid.dygraph.to_variable(x)
a = []
if 2 > 1:
a.append(x)
a.pop()
return a
@declarative
def test_list_pop_without_control_flow_2(x):
x = fluid.dygraph.to_variable(x)
a = []
if 2 > 1:
a.append(x)
a.append(x + 1)
last_tiem = a.pop(1)
return last_tiem
@declarative
def test_list_pop_in_if(x):
x = fluid.dygraph.to_variable(x)
a = []
if x.numpy()[0] > 0:
a.append(x)
a.append(fluid.layers.fill_constant(shape=[1], value=1, dtype="int64"))
else:
a.append(x + 1)
a.append(fluid.layers.fill_constant(shape=[2], value=2, dtype="int64"))
item1 = a.pop(1)
a.pop()
return a, item1
@declarative
def test_list_pop_in_for_loop(x, iter_num):
x = fluid.dygraph.to_variable(x)
# Use `fill_constant` so that static analysis can analyze the type of iter_num is Tensor
iter_num = fluid.layers.fill_constant(
shape=[1], value=iter_num, dtype="int32"
) # TODO(liym27): Delete it if the type of parameter iter_num can be resolved
a = []
for i in range(iter_num):
a.append(x + i)
one = fluid.layers.ones(shape=[1], dtype="int32")
for i in range(one.numpy()[0]):
item = a.pop()
return a, item
@declarative
def test_list_pop_in_while_loop(x, iter_num):
x = fluid.dygraph.to_variable(x)
iter_num = fluid.layers.fill_constant(
shape=[1], value=iter_num, dtype="int32")
a = []
i = 0
while i < iter_num:
a.append(x + i)
i += 1
if i % 2 == 1:
a.pop()
return a
class TestListWithoutControlFlow(unittest.TestCase): class TestListWithoutControlFlow(unittest.TestCase):
def setUp(self): def setUp(self):
self.input = np.random.random((3)).astype('int32')
self.place = fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda( self.place = fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda(
) else fluid.CPUPlace() ) else fluid.CPUPlace()
self.init_data()
self.init_dygraph_func() self.init_dygraph_func()
def init_data(self):
self.input = np.random.random((3)).astype('int32')
def init_dygraph_func(self): def init_dygraph_func(self):
self.dygraph_func = test_list_without_control_flow self.all_dygraph_funcs = [
test_list_append_without_control_flow,
test_list_pop_without_control_flow_1,
test_list_pop_without_control_flow_2,
]
def varbase_to_numpy(self, res):
if isinstance(res, (list, tuple)):
res = map_structure(lambda x: x.numpy(), res)
else:
res = [res.numpy()]
return res
def run_dygraph_mode(self): def run_dygraph_mode(self):
with fluid.dygraph.guard(): with fluid.dygraph.guard():
res = self.dygraph_func(self.input) res = self.dygraph_func(self.input)
if isinstance(res, (list, tuple)): return self.varbase_to_numpy(res)
res = res[0]
return res.numpy()
def run_static_mode(self): def run_static_mode(self):
main_program = fluid.Program() main_program = fluid.Program()
with fluid.program_guard(main_program): with fluid.program_guard(main_program):
tensor_list = dygraph_to_static_func(self.dygraph_func)(self.input) res = self.dygraph_func(self.input)
exe = fluid.Executor(self.place) return self.varbase_to_numpy(res)
static_res = exe.run(main_program, fetch_list=tensor_list[0])
return static_res[0]
def test_transformed_static_result(self): def test_transformed_static_result(self):
static_res = self.run_static_mode() for dyfunc in self.all_dygraph_funcs:
dygraph_res = self.run_dygraph_mode() self.dygraph_func = dyfunc
static_res_list = self.run_static_mode()
dygraph_res_list = self.run_dygraph_mode()
self.assertEqual(len(static_res_list), len(dygraph_res_list))
for stat_res, dy_res in zip(static_res_list, dygraph_res_list):
self.assertTrue( self.assertTrue(
np.allclose(dygraph_res, static_res), np.allclose(stat_res, dy_res),
msg='dygraph res is {}\nstatic_res is {}'.format(dygraph_res, msg='dygraph_res is {}\nstatic_res is {}'.format(stat_res,
static_res)) dy_res))
class TestListInIf(TestListWithoutControlFlow): class TestListInIf(TestListWithoutControlFlow):
def init_dygraph_func(self): def init_dygraph_func(self):
self.dygraph_func = test_list_in_if self.all_dygraph_funcs = [test_list_append_in_if, test_list_pop_in_if]
def run_static_mode(self):
main_program = fluid.Program()
with fluid.program_guard(main_program):
tensor_array = dygraph_to_static_func(self.dygraph_func)(self.input)
static_out = fluid.layers.array_read(
tensor_array,
i=fluid.layers.fill_constant(
shape=[1], value=0, dtype='int64'))
exe = fluid.Executor(self.place)
numpy_res = exe.run(main_program, fetch_list=static_out)
return numpy_res[0]
class TestListInWhileLoop(TestListWithoutControlFlow): class TestListInWhileLoop(TestListWithoutControlFlow):
def setUp(self): def init_data(self):
self.iter_num = 3
self.input = np.random.random((3)).astype('int32') self.input = np.random.random((3)).astype('int32')
self.place = fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda( self.iter_num = 3
) else fluid.CPUPlace()
self.init_dygraph_func()
def init_dygraph_func(self): def init_dygraph_func(self):
self.dygraph_func = test_list_in_while_loop self.all_dygraph_funcs = [
partial(
def run_dygraph_mode(self): test_list_append_in_while_loop, iter_num=self.iter_num),
with fluid.dygraph.guard(): partial(
var_res = self.dygraph_func(self.input, self.iter_num) test_list_pop_in_while_loop, iter_num=self.iter_num),
numpy_res = [ele.numpy() for ele in var_res] ]
return numpy_res
def run_static_mode(self):
main_program = fluid.Program()
with fluid.program_guard(main_program):
tensor_array = dygraph_to_static_func(self.dygraph_func)(
self.input, self.iter_num)
static_outs = []
for i in range(self.iter_num):
static_outs.append(
fluid.layers.array_read(
tensor_array,
i=fluid.layers.fill_constant(
shape=[1], value=i, dtype='int64')))
exe = fluid.Executor(self.place)
numpy_res = exe.run(main_program, fetch_list=static_outs)
return numpy_res
class TestListInWhileLoopWithStack(TestListInWhileLoop): class TestListInWhileLoopWithStack(TestListInWhileLoop):
def init_dygraph_func(self): def init_dygraph_func(self):
self.dygraph_func = test_list_in_while_loop_with_stack self.all_dygraph_funcs = [
partial(
def run_dygraph_mode(self): test_list_append_in_while_loop_with_stack,
with fluid.dygraph.guard(): iter_num=self.iter_num)
var_res = self.dygraph_func(self.input, self.iter_num) ]
numpy_res = var_res.numpy()
return numpy_res
def run_static_mode(self):
main_program = fluid.Program()
with fluid.program_guard(main_program):
out_var = dygraph_to_static_func(self.dygraph_func)(self.input,
self.iter_num)
exe = fluid.Executor(self.place)
numpy_res = exe.run(main_program, fetch_list=out_var)
return numpy_res[0]
class TestListInForLoop(TestListInWhileLoop): class TestListInForLoop(TestListInWhileLoop):
def init_dygraph_func(self): def init_dygraph_func(self):
self.dygraph_func = test_list_in_for_loop self.all_dygraph_funcs = [
partial(
test_list_append_in_for_loop, iter_num=self.iter_num),
partial(
test_list_pop_in_for_loop, iter_num=self.iter_num),
]
class TestListInForLoopWithConcat(TestListInWhileLoopWithStack): class TestListInForLoopWithConcat(TestListInWhileLoopWithStack):
def init_dygraph_func(self): def init_dygraph_func(self):
self.dygraph_func = test_list_in_for_loop_with_concat self.all_dygraph_funcs = [
partial(
test_list_append_in_for_loop_with_concat,
iter_num=self.iter_num)
]
if __name__ == '__main__': if __name__ == '__main__':
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册