diff --git a/benchmark/fluid/README.md b/benchmark/fluid/README.md index 1b0c7dce8bd6faab0c4c59caa1cbe337483cbd16..33d2228ca5f65d104360e22bc281fad2d3dd9d0e 100644 --- a/benchmark/fluid/README.md +++ b/benchmark/fluid/README.md @@ -29,9 +29,11 @@ Currently supported `--model` argument include: You can choose to use GPU/CPU training. With GPU training, you can specify `--gpus <gpu_num>` to run multi GPU training. * Run distributed training with parameter servers: + * see [run_fluid_benchmark.sh](https://github.com/PaddlePaddle/Paddle/blob/develop/benchmark/fluid/run_fluid_benchmark.sh) as an example. * start parameter servers: ```bash PADDLE_TRAINING_ROLE=PSERVER PADDLE_PSERVER_PORT=7164 PADDLE_PSERVER_IPS=127.0.0.1 PADDLE_TRAINERS=1 PADDLE_CURRENT_IP=127.0.0.1 PADDLE_TRAINER_ID=0 python fluid_benchmark.py --model mnist --device GPU --update_method pserver + sleep 15 ``` * start trainers: ```bash diff --git a/benchmark/fluid/run_fluid_benchmark.sh b/benchmark/fluid/run_fluid_benchmark.sh new file mode 100644 index 0000000000000000000000000000000000000000..4309a3126c1d72fe1eb2d5ec423075aea4d3ec88 --- /dev/null +++ b/benchmark/fluid/run_fluid_benchmark.sh @@ -0,0 +1,9 @@ +#!/bin/bash + +PADDLE_TRAINING_ROLE=PSERVER PADDLE_PSERVER_PORT=7164 PADDLE_PSERVER_IPS=127.0.0.1 PADDLE_TRAINERS=2 PADDLE_CURRENT_IP=127.0.0.1 PADDLE_TRAINER_ID=0 python fluid_benchmark.py --model resnet --device CPU --update_method pserver --iterations=10000 & + +sleep 15 + +CUDA_VISIBLE_DEVICES=0,1 PADDLE_TRAINING_ROLE=TRAINER PADDLE_PSERVER_PORT=7164 PADDLE_PSERVER_IPS=127.0.0.1 PADDLE_TRAINERS=2 PADDLE_CURRENT_IP=127.0.0.1 PADDLE_TRAINER_ID=0 python fluid_benchmark.py --model resnet --device GPU --update_method pserver --iterations=10000 --gpus 2 & + +CUDA_VISIBLE_DEVICES=2,3 PADDLE_TRAINING_ROLE=TRAINER PADDLE_PSERVER_PORT=7164 PADDLE_PSERVER_IPS=127.0.0.1 PADDLE_TRAINERS=2 PADDLE_CURRENT_IP=127.0.0.1 PADDLE_TRAINER_ID=1 python fluid_benchmark.py --model resnet --device GPU --update_method pserver --iterations=10000 --gpus 2 & diff --git a/paddle/fluid/framework/CMakeLists.txt b/paddle/fluid/framework/CMakeLists.txt index dbd375aa31bfbdcb109b6302acf23b3bb3b6befe..627370cd2df7317b4d32aa967565aaf9cf0c7a08 100644 --- a/paddle/fluid/framework/CMakeLists.txt +++ b/paddle/fluid/framework/CMakeLists.txt @@ -87,7 +87,7 @@ cc_library(executor SRCS executor.cc DEPS op_registry device_context scope framework_proto glog lod_rank_table feed_fetch_method) -cc_library(parallel_executor SRCS parallel_executor.cc DEPS multi_devices_graph_builder threaded_ssa_graph_executor scope_buffered_ssa_graph_executor) +cc_library(parallel_executor SRCS parallel_executor.cc DEPS graph_builder_factory threaded_ssa_graph_executor scope_buffered_ssa_graph_executor) cc_library(prune SRCS prune.cc DEPS framework_proto) cc_test(prune_test SRCS prune_test.cc DEPS op_info prune recurrent_op device_context) diff --git a/paddle/fluid/framework/details/CMakeLists.txt b/paddle/fluid/framework/details/CMakeLists.txt index c026e6c100a303b43650f08cd12d7260258c8f7e..c106761f72e689ff53867ecad8e36b6038173d0e 100644 --- a/paddle/fluid/framework/details/CMakeLists.txt +++ b/paddle/fluid/framework/details/CMakeLists.txt @@ -7,6 +7,7 @@ cc_library(rpc_op_handle SRCS rpc_op_handle.cc DEPS framework_proto scope place cc_library(ssa_graph SRCS ssa_graph.cc DEPS var_handle op_handle_base) cc_library(ssa_graph_builder SRCS ssa_graph_builder.cc DEPS ssa_graph) +cc_library(ssa_graph_printer SRCS ssa_graph_printer.cc DEPS ssa_graph_builder) cc_library(variable_visitor SRCS variable_visitor.cc DEPS lod_tensor selected_rows) @@ -28,6 +29,9 @@ cc_library(gather_op_handle SRCS gather_op_handle.cc DEPS op_handle_base scope d cc_library(multi_devices_graph_builder SRCS multi_devices_graph_builder.cc DEPS ssa_graph_builder computation_op_handle scale_loss_grad_op_handle rpc_op_handle ${multi_devices_graph_builder_deps} reduce_op_handle broadcast_op_handle) + +cc_library(graph_builder_factory SRCS graph_builder_factory.cc DEPS multi_devices_graph_builder ssa_graph_printer) + cc_library(ssa_graph_executor SRCS ssa_graph_executor.cc DEPS ssa_graph framework_proto) cc_library(threaded_ssa_graph_executor SRCS threaded_ssa_graph_executor.cc DEPS fetch_op_handle ssa_graph_executor scope simple_threadpool device_context) diff --git a/paddle/fluid/framework/details/broadcast_op_handle.h b/paddle/fluid/framework/details/broadcast_op_handle.h index 629aa00cb817c4b1446e7b750ca62a7c6b1db670..8036f756b6d6506684c109ab881d546f38176a10 100644 --- a/paddle/fluid/framework/details/broadcast_op_handle.h +++ b/paddle/fluid/framework/details/broadcast_op_handle.h @@ -59,8 +59,8 @@ struct BroadcastOpHandle : public OpHandleBase { void RunImpl() override; private: - const std::vector<Scope *> &local_scopes_; - const std::vector<platform::Place> &places_; + std::vector<Scope *> local_scopes_; + std::vector<platform::Place> places_; #ifdef PADDLE_WITH_CUDA const platform::NCCLContextMap *nccl_ctxs_; #endif diff --git a/paddle/fluid/framework/details/build_strategy.h b/paddle/fluid/framework/details/build_strategy.h index 91bdfe6134ffbd1404336c9d6d1222a505084b2b..64e83acb4dc1995800c4ca3caf81668b24a7c9fe 100644 --- a/paddle/fluid/framework/details/build_strategy.h +++ b/paddle/fluid/framework/details/build_strategy.h @@ -14,6 +14,8 @@ #pragma once +#include <string> + namespace paddle { namespace framework { namespace details { @@ -29,6 +31,8 @@ struct BuildStrategy { ReduceStrategy reduce_{ReduceStrategy::kAllReduce}; GradientScaleStrategy gradient_scale_{GradientScaleStrategy::kCoeffNumDevice}; + + std::string debug_graphviz_path_{""}; }; } // namespace details diff --git a/paddle/fluid/framework/details/graph_builder_factory.cc b/paddle/fluid/framework/details/graph_builder_factory.cc new file mode 100644 index 0000000000000000000000000000000000000000..a04b9bb63c06b40ff5c30c9792cdfad5d64d404c --- /dev/null +++ b/paddle/fluid/framework/details/graph_builder_factory.cc @@ -0,0 +1,47 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/framework/details/graph_builder_factory.h" +#include <fstream> +#include "paddle/fluid/framework/details/multi_devices_graph_builder.h" +#include "paddle/fluid/framework/details/ssa_graph_printer.h" + +namespace paddle { +namespace framework { +namespace details { +std::unique_ptr<SSAGraphBuilder> SSAGraphBuilderFactory::Create() { + std::unique_ptr<SSAGraphBuilder> res( +#ifdef PADDLE_WITH_CUDA + new MultiDevSSAGraphBuilder(places_, loss_var_name_, param_names_, + local_scopes_, nccl_ctxs_, strategy_) +#else + new MultiDevSSAGraphBuilder(places_, loss_var_name_, param_names_, + local_scopes_, strategy_) +#endif + ); // NOLINT + + if (!strategy_.debug_graphviz_path_.empty()) { + std::unique_ptr<std::ostream> fout( + new std::ofstream(strategy_.debug_graphviz_path_)); + PADDLE_ENFORCE(fout->good()); + std::unique_ptr<GraphvizSSAGraphPrinter> graphviz_printer( + new GraphvizSSAGraphPrinter()); + res.reset(new SSAGraghBuilderWithPrinter( + std::move(fout), std::move(graphviz_printer), std::move(res))); + } + return res; +} +} // namespace details +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/details/graph_builder_factory.h b/paddle/fluid/framework/details/graph_builder_factory.h new file mode 100644 index 0000000000000000000000000000000000000000..857ab12d684e19788597e144fc0c46571d06aafc --- /dev/null +++ b/paddle/fluid/framework/details/graph_builder_factory.h @@ -0,0 +1,67 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once +#include <memory> +#include <string> +#include <vector> +#include "paddle/fluid/framework/details/build_strategy.h" +#include "paddle/fluid/framework/details/ssa_graph_builder.h" +#include "paddle/fluid/platform/place.h" + +#ifdef PADDLE_WITH_CUDA +#include "paddle/fluid/platform/nccl_helper.h" +#endif + +namespace paddle { +namespace framework { +class Scope; +namespace details { + +class SSAGraphBuilderFactory { + public: + SSAGraphBuilderFactory(const std::vector<platform::Place>& places, + const std::string& loss_var_name, + const std::unordered_set<std::string>& param_names, + const std::vector<Scope*>& local_scopes, + const BuildStrategy& strategy) + : places_(places), + loss_var_name_(loss_var_name), + param_names_(param_names), + local_scopes_(local_scopes), + strategy_(strategy) {} + +#ifdef PADDLE_WITH_CUDA + void SetNCCLContextMap(platform::NCCLContextMap* nccl_ctxs) { + nccl_ctxs_ = nccl_ctxs; + } +#endif + + std::unique_ptr<SSAGraphBuilder> Create(); + + private: + std::vector<platform::Place> places_; + std::string loss_var_name_; + std::unordered_set<std::string> param_names_; + std::vector<Scope*> local_scopes_; + BuildStrategy strategy_; + +#ifdef PADDLE_WITH_CUDA + platform::NCCLContextMap* nccl_ctxs_; +#endif +}; + +} // namespace details +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/details/multi_devices_graph_builder.cc b/paddle/fluid/framework/details/multi_devices_graph_builder.cc index 17baacd13eecac8f410631fe9e94788da4fff848..0c4d369e889cf2cca7722dac14a5268fdacabeb4 100644 --- a/paddle/fluid/framework/details/multi_devices_graph_builder.cc +++ b/paddle/fluid/framework/details/multi_devices_graph_builder.cc @@ -30,10 +30,6 @@ #include "paddle/fluid/framework/details/nccl_all_reduce_op_handle.h" #endif -DEFINE_string(ssa_graph_path, "/tmp/ssa_graph.dot", - "the ssa graph path only print with GLOG_v=10," - "default /tmp/graph.dot"); - namespace paddle { namespace framework { namespace details { @@ -277,11 +273,6 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build( */ AddOutputToLeafOps(&result); - if (VLOG_IS_ON(10)) { - std::ofstream fout(FLAGS_ssa_graph_path); - PrintGraphviz(*graph, fout); - } - return std::unique_ptr<SSAGraph>(graph); } diff --git a/paddle/fluid/framework/details/nccl_all_reduce_op_handle.h b/paddle/fluid/framework/details/nccl_all_reduce_op_handle.h index a0c321843e3fc5abcbd1ef2ce2e153250269aa7d..8e98d894b828b4162059b30f5c6a74cfc06f402e 100644 --- a/paddle/fluid/framework/details/nccl_all_reduce_op_handle.h +++ b/paddle/fluid/framework/details/nccl_all_reduce_op_handle.h @@ -41,8 +41,8 @@ struct NCCLAllReduceOpHandle : public OpHandleBase { void RunImpl() override; private: - const std::vector<Scope *> &local_scopes_; - const std::vector<platform::Place> &places_; + std::vector<Scope *> local_scopes_; + std::vector<platform::Place> places_; const platform::NCCLContextMap &nccl_ctxs_; }; diff --git a/paddle/fluid/framework/details/reduce_op_handle.h b/paddle/fluid/framework/details/reduce_op_handle.h index c652a2f4eb0f9b73cb19ebbd9d0809210b280ad3..4d14334cdfe06e2e805c2577458d6689e6324cc7 100644 --- a/paddle/fluid/framework/details/reduce_op_handle.h +++ b/paddle/fluid/framework/details/reduce_op_handle.h @@ -32,8 +32,8 @@ namespace framework { namespace details { struct ReduceOpHandle : public OpHandleBase { - const std::vector<Scope *> &local_scopes_; - const std::vector<platform::Place> &places_; + std::vector<Scope *> local_scopes_; + std::vector<platform::Place> places_; #ifdef PADDLE_WITH_CUDA const platform::NCCLContextMap *nccl_ctxs_; diff --git a/paddle/fluid/framework/details/ssa_graph_builder.cc b/paddle/fluid/framework/details/ssa_graph_builder.cc index 6a567527550883add08031e50aa8de2b204cf13d..211113c7979ee95d896c0a57879f7b3ad13b36ef 100644 --- a/paddle/fluid/framework/details/ssa_graph_builder.cc +++ b/paddle/fluid/framework/details/ssa_graph_builder.cc @@ -73,64 +73,6 @@ void SSAGraphBuilder::CreateOpOutput(SSAGraph *graph, OpHandleBase *op_handle, op_handle->AddOutput(var); } -template <typename Callback> -void IterAllVar(const SSAGraph &graph, Callback callback) { - for (auto &each : graph.vars_) { - for (auto &pair1 : each) { - for (auto &pair2 : pair1.second) { - callback(*pair2); - } - } - } - - for (auto &var : graph.dep_vars_) { - callback(*var); - } -} - -void SSAGraphBuilder::PrintGraphviz(const SSAGraph &graph, std::ostream &sout) { - size_t var_id = 0; - std::unordered_map<const VarHandleBase *, size_t> vars; - - sout << "digraph G {\n"; - - IterAllVar(graph, [&](const VarHandleBase &var) { - auto *var_ptr = &var; - auto *var_handle_ptr = dynamic_cast<const VarHandle *>(var_ptr); - auto *dummy_ptr = dynamic_cast<const DummyVarHandle *>(var_ptr); - - size_t cur_var_id = var_id++; - vars[var_ptr] = cur_var_id; - - if (var_handle_ptr) { - sout << "var_" << cur_var_id << " [label=\"" << var_handle_ptr->name_ - << "\\n" - << var_handle_ptr->place_ << "\\n" - << var_handle_ptr->version_ << "\"]" << std::endl; - } else if (dummy_ptr) { - sout << "var_" << cur_var_id << " [label=\"dummy\"]" << std::endl; - } - }); - - size_t op_id = 0; - for (auto &op : graph.ops_) { - std::string op_name = "op_" + std::to_string(op_id++); - sout << op_name << " [label=\"" << op->Name() << "\", shape=rect]" - << std::endl; - for (auto in : op->Inputs()) { - std::string var_name = "var_" + std::to_string(vars[in]); - sout << var_name << " -> " << op_name << std::endl; - } - - for (auto out : op->Outputs()) { - std::string var_name = "var_" + std::to_string(vars[out]); - sout << op_name << " -> " << var_name << std::endl; - } - } - - sout << "}\n"; -} - void SSAGraphBuilder::AddOutputToLeafOps(SSAGraph *graph) { for (auto &op : graph->ops_) { if (!op->Outputs().empty()) { diff --git a/paddle/fluid/framework/details/ssa_graph_builder.h b/paddle/fluid/framework/details/ssa_graph_builder.h index 64e5d93081eb76c56898bbeb530e37364619fdbb..5fc12a44b51fae26e5a8f5fdba952d3879e82d0f 100644 --- a/paddle/fluid/framework/details/ssa_graph_builder.h +++ b/paddle/fluid/framework/details/ssa_graph_builder.h @@ -55,8 +55,6 @@ class SSAGraphBuilder { const platform::Place &place, size_t place_offset); static void AddOutputToLeafOps(SSAGraph *graph); - - static void PrintGraphviz(const SSAGraph &graph, std::ostream &sout); }; } // namespace details } // namespace framework diff --git a/paddle/fluid/framework/details/ssa_graph_printer.cc b/paddle/fluid/framework/details/ssa_graph_printer.cc new file mode 100644 index 0000000000000000000000000000000000000000..22a40ca4b25cdd8ed9856b6c71bffc79561edcac --- /dev/null +++ b/paddle/fluid/framework/details/ssa_graph_printer.cc @@ -0,0 +1,83 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/framework/details/ssa_graph_printer.h" +#include <string> +#include "paddle/fluid/framework/details/ssa_graph.h" + +namespace paddle { +namespace framework { +namespace details { + +template <typename Callback> +static inline void IterAllVar(const SSAGraph &graph, Callback callback) { + for (auto &each : graph.vars_) { + for (auto &pair1 : each) { + for (auto &pair2 : pair1.second) { + callback(*pair2); + } + } + } + + for (auto &var : graph.dep_vars_) { + callback(*var); + } +} + +void GraphvizSSAGraphPrinter::Print(const SSAGraph &graph, + std::ostream &sout) const { + size_t var_id = 0; + std::unordered_map<const VarHandleBase *, size_t> vars; + + sout << "digraph G {\n"; + + IterAllVar(graph, [&](const VarHandleBase &var) { + auto *var_ptr = &var; + auto *var_handle_ptr = dynamic_cast<const VarHandle *>(var_ptr); + auto *dummy_ptr = dynamic_cast<const DummyVarHandle *>(var_ptr); + + size_t cur_var_id = var_id++; + vars[var_ptr] = cur_var_id; + + if (var_handle_ptr) { + sout << "var_" << cur_var_id << " [label=\"" << var_handle_ptr->name_ + << "\\n" + << var_handle_ptr->place_ << "\\n" + << var_handle_ptr->version_ << "\"]" << std::endl; + } else if (dummy_ptr) { + sout << "var_" << cur_var_id << " [label=\"dummy\"]" << std::endl; + } + }); + + size_t op_id = 0; + for (auto &op : graph.ops_) { + std::string op_name = "op_" + std::to_string(op_id++); + sout << op_name << " [label=\"" << op->Name() << "\", shape=rect]" + << std::endl; + for (auto in : op->Inputs()) { + std::string var_name = "var_" + std::to_string(vars[in]); + sout << var_name << " -> " << op_name << std::endl; + } + + for (auto out : op->Outputs()) { + std::string var_name = "var_" + std::to_string(vars[out]); + sout << op_name << " -> " << var_name << std::endl; + } + } + + sout << "}\n"; +} +} // namespace details +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/details/ssa_graph_printer.h b/paddle/fluid/framework/details/ssa_graph_printer.h new file mode 100644 index 0000000000000000000000000000000000000000..5287be3b6a05ec7067ca433ba976b0314d05fe02 --- /dev/null +++ b/paddle/fluid/framework/details/ssa_graph_printer.h @@ -0,0 +1,67 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include <iosfwd> +#include "paddle/fluid/framework/details/ssa_graph_builder.h" + +namespace paddle { +namespace framework { +namespace details { +class SSAGraph; +class SSAGraphPrinter { + public: + virtual ~SSAGraphPrinter() {} + virtual void Print(const SSAGraph& graph, std::ostream& sout) const = 0; +}; + +class GraphvizSSAGraphPrinter : public SSAGraphPrinter { + public: + void Print(const SSAGraph& graph, std::ostream& sout) const override; +}; + +class SSAGraghBuilderWithPrinter : public SSAGraphBuilder { + public: + SSAGraghBuilderWithPrinter(std::ostream& sout, + std::unique_ptr<SSAGraphPrinter>&& printer, + std::unique_ptr<SSAGraphBuilder>&& builder) + : printer_(std::move(printer)), + builder_(std::move(builder)), + stream_ref_(sout) {} + + SSAGraghBuilderWithPrinter(std::unique_ptr<std::ostream>&& sout, + std::unique_ptr<SSAGraphPrinter>&& printer, + std::unique_ptr<SSAGraphBuilder>&& builder) + : printer_(std::move(printer)), + builder_(std::move(builder)), + stream_ptr_(std::move(sout)), + stream_ref_(*stream_ptr_) {} + + std::unique_ptr<SSAGraph> Build(const ProgramDesc& program) const override { + auto graph = builder_->Build(program); + printer_->Print(*graph, stream_ref_); + return graph; + } + + private: + std::unique_ptr<SSAGraphPrinter> printer_; + std::unique_ptr<SSAGraphBuilder> builder_; + std::unique_ptr<std::ostream> stream_ptr_; + std::ostream& stream_ref_; +}; + +} // namespace details +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/parallel_executor.cc b/paddle/fluid/framework/parallel_executor.cc index 003304b85af00165d54efbb199be01b2c5106768..ce56f55e4195a0625cd0754152285b80e4282183 100644 --- a/paddle/fluid/framework/parallel_executor.cc +++ b/paddle/fluid/framework/parallel_executor.cc @@ -22,7 +22,7 @@ limitations under the License. */ #include "paddle/fluid/platform/nccl_helper.h" #endif -#include "paddle/fluid/framework/details/multi_devices_graph_builder.h" +#include "paddle/fluid/framework/details/graph_builder_factory.h" #include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h" #include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h" #include "paddle/fluid/platform/profiler.h" @@ -102,22 +102,19 @@ ParallelExecutor::ParallelExecutor( var_infos.back().persistable_ = var->Persistable(); } -// Step 3. Convert main_program to SSA form and dependency graph. Also, insert -// ncclOp -#ifdef PADDLE_WITH_CUDA - details::MultiDevSSAGraphBuilder builder( + // Step 3. Convert main_program to SSA form and dependency graph. Also, insert + // ncclOp + + details::SSAGraphBuilderFactory builder_factory( member_->places_, loss_var_name, params, member_->local_scopes_, - member_->nccl_ctxs_.get(), build_strategy); -#else - details::MultiDevSSAGraphBuilder builder(member_->places_, loss_var_name, - params, member_->local_scopes_, - build_strategy); + build_strategy); +#ifdef PADDLE_WITH_CUDA + builder_factory.SetNCCLContextMap(member_->nccl_ctxs_.get()); #endif - auto graph = builder.Build(main_program); - member_->executor_.reset(new details::ThreadedSSAGraphExecutor( - exec_strategy, member_->local_scopes_, places, std::move(graph))); + exec_strategy, member_->local_scopes_, places, + builder_factory.Create()->Build(main_program))); member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor( exec_strategy, member_->local_scopes_, std::move(var_infos), diff --git a/paddle/fluid/framework/scope.cc b/paddle/fluid/framework/scope.cc index 9091713158c8071d5386f14250e3c546284e7fd0..bb2d866c824e0fec1b241caea407a38c88a3cb51 100644 --- a/paddle/fluid/framework/scope.cc +++ b/paddle/fluid/framework/scope.cc @@ -34,13 +34,7 @@ DEFINE_bool( namespace paddle { namespace framework { -Scope::~Scope() { - DropKids(); - for (auto& kv : vars_) { - VLOG(3) << "Destroy variable " << kv.first; - delete kv.second; - } -} +Scope::~Scope() { DropKids(); } Scope& Scope::NewScope() const { std::unique_lock<std::mutex> lock(mutex_); @@ -49,10 +43,13 @@ Scope& Scope::NewScope() const { } Variable* Scope::Var(const std::string& name) { + // acquire the lock when new var under this scope + std::unique_lock<std::mutex> lock(mutex_); auto* v = FindVarLocally(name); if (v != nullptr) return v; + v = new Variable(); - vars_[name] = v; + vars_[name].reset(v); VLOG(3) << "Create variable " << name; v->name_ = &(vars_.find(name)->first); return v; @@ -67,22 +64,29 @@ Variable* Scope::Var(std::string* name) { } Variable* Scope::FindVar(const std::string& name) const { + // acquire the lock when find var + std::unique_lock<std::mutex> lock(mutex_); + return FindVarInternal(name); +} + +Variable* Scope::FindVarInternal(const std::string& name) const { auto var = FindVarLocally(name); if (var != nullptr) { return var; } - return (parent_ == nullptr) ? nullptr : parent_->FindVar(name); + return (parent_ == nullptr) ? nullptr : parent_->FindVarInternal(name); } const Scope* Scope::FindScope(const Variable* var) const { for (auto& kv : vars_) { - if (kv.second == var) { + if (kv.second.get() == var) { return this; } } return (parent_ == nullptr) ? nullptr : parent_->FindScope(var); } void Scope::DropKids() { + std::unique_lock<std::mutex> lock(mutex_); for (Scope* s : kids_) delete s; kids_.clear(); } @@ -110,10 +114,10 @@ void Scope::DeleteScope(Scope* scope) const { } void Scope::EraseVars(const std::vector<std::string>& var_names) { + std::unique_lock<std::mutex> lock(mutex_); std::set<std::string> var_set(var_names.begin(), var_names.end()); for (auto it = vars_.begin(); it != vars_.end();) { if (var_set.find(it->first) != var_set.end()) { - delete it->second; it = vars_.erase(it); } else { ++it; @@ -129,7 +133,7 @@ void Scope::Rename(const std::string& origin_name, auto new_it = vars_.find(new_name); PADDLE_ENFORCE(new_it == vars_.end(), "The variable with name %s is already in the scope", new_name); - vars_[new_name] = origin_it->second; + vars_[new_name].reset(origin_it->second.release()); vars_.erase(origin_it); } @@ -141,7 +145,7 @@ std::string Scope::Rename(const std::string& origin_name) const { Variable* Scope::FindVarLocally(const std::string& name) const { auto it = vars_.find(name); - if (it != vars_.end()) return it->second; + if (it != vars_.end()) return it->second.get(); return nullptr; } diff --git a/paddle/fluid/framework/scope.h b/paddle/fluid/framework/scope.h index abc82e452d732638a2f7315022074850f299a7ea..98d103d867987fc02dc66df5ac855a14b66b8f03 100644 --- a/paddle/fluid/framework/scope.h +++ b/paddle/fluid/framework/scope.h @@ -47,15 +47,18 @@ class Scope { Scope& NewScope() const; /// Create a variable with given name if it doesn't exist. + /// Caller doesn't own the returned Variable. Variable* Var(const std::string& name); /// Create a variable with a scope-unique name. + /// Caller doesn't own the returned Variable. Variable* Var(std::string* name = nullptr); void EraseVars(const std::vector<std::string>& var_names); /// Find a variable in the scope or any of its ancestors. Returns /// nullptr if cannot find. + /// Caller doesn't own the returned Variable. Variable* FindVar(const std::string& name) const; const Scope* parent() const { return parent_; } @@ -78,13 +81,21 @@ class Scope { // Rename variable to a new name and return the new name std::string Rename(const std::string& origin_name) const; - Variable* FindVarLocally(const std::string& name) const; - private: // Call Scope::NewScope for a sub-scope. explicit Scope(Scope const* parent) : parent_(parent) {} - mutable std::unordered_map<std::string, Variable*> vars_; + // Called by FindVar recursively. + // Caller doesn't own the returned Variable. + Variable* FindVarInternal(const std::string& name) const; + + // Called by FindVarInternal and Var. + // Caller doesn't own the returned Variable. + Variable* FindVarLocally(const std::string& name) const; + + mutable std::unordered_map<std::string, std::unique_ptr<Variable>> vars_; + + // Scope in `kids_` are owned by this class. mutable std::list<Scope*> kids_; Scope const* parent_{nullptr}; diff --git a/paddle/fluid/framework/tensor.cc b/paddle/fluid/framework/tensor.cc index e97ada06f06d0538f17160220e3aa3f4ffc55520..c7286dacf01659f3af0927a71856e5a6496cb877 100644 --- a/paddle/fluid/framework/tensor.cc +++ b/paddle/fluid/framework/tensor.cc @@ -15,5 +15,102 @@ limitations under the License. */ #include "paddle/fluid/framework/tensor.h" namespace paddle { -namespace framework {} +namespace framework { +extern size_t SizeOfType(std::type_index type); +void Tensor::check_memory_size() const { + PADDLE_ENFORCE_NOT_NULL( + holder_, "Tensor holds no memory. Call Tensor::mutable_data first."); + PADDLE_ENFORCE_LE( + numel() * SizeOfType(type()), memory_size(), + "Tensor's dims_ is out of bound. Call Tensor::mutable_data " + "first to re-allocate memory.\n" + "or maybe the required data-type mismatches the data already stored."); +} + +size_t Tensor::memory_size() const { + return holder_ == nullptr ? 0UL : holder_->size() - offset_; +} + +void* Tensor::mutable_data(platform::Place place, std::type_index type) { + if (holder_ != nullptr) { + holder_->set_type(type); + } + PADDLE_ENFORCE_GE(numel(), 0, + "When calling this method, the Tensor's numel must be " + "equal or larger than zero. " + "Please check Tensor::Resize has been called first."); + int64_t size = numel() * SizeOfType(type); + /* some versions of boost::variant don't have operator!= */ + if (holder_ == nullptr || !(holder_->place() == place) || + holder_->size() < size + offset_) { + if (platform::is_cpu_place(place)) { + holder_.reset(new PlaceholderImpl<platform::CPUPlace>( + boost::get<platform::CPUPlace>(place), size, type)); + } else if (platform::is_gpu_place(place) || + platform::is_cuda_pinned_place(place)) { +#ifndef PADDLE_WITH_CUDA + PADDLE_THROW( + "CUDAPlace or CUDAPinnedPlace is not supported in CPU-only mode."); + } +#else + if (platform::is_gpu_place(place)) { + holder_.reset(new PlaceholderImpl<platform::CUDAPlace>( + boost::get<platform::CUDAPlace>(place), size, type)); + } else if (platform::is_cuda_pinned_place(place)) { + holder_.reset(new PlaceholderImpl<platform::CUDAPinnedPlace>( + boost::get<platform::CUDAPinnedPlace>(place), size, type)); + } + } +#endif + offset_ = 0; + } + return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(holder_->ptr()) + + offset_); +} + +void* Tensor::mutable_data(platform::Place place) { + PADDLE_ENFORCE(this->holder_ != nullptr, + "Cannot invoke mutable data if current hold nothing."); + return mutable_data(place, holder_->type()); +} + +Tensor& Tensor::ShareDataWith(const Tensor& src) { + src.check_memory_size(); + *this = src; + return *this; +} + +Tensor Tensor::Slice(int begin_idx, int end_idx) const { + check_memory_size(); + PADDLE_ENFORCE_GE(begin_idx, 0, + "The start row index must be greater than 0."); + PADDLE_ENFORCE_LE(end_idx, dims_[0], "The end row index is out of bound."); + PADDLE_ENFORCE_LT( + begin_idx, end_idx, + "The start row index must be lesser than the end row index."); + + if (dims_[0] == 1) { + return *this; + } else { + size_t base = numel() / dims_[0]; + Tensor dst; + dst.holder_ = holder_; + dst.set_layout(layout_); + DDim dst_dims = dims_; + dst_dims[0] = end_idx - begin_idx; + dst.Resize(dst_dims); + dst.offset_ = offset_ + begin_idx * base * SizeOfType(type()); + return dst; + } +} + +Tensor& Tensor::Resize(const DDim& dims) { + dims_ = dims; + return *this; +} + +const DDim& Tensor::dims() const { return dims_; } + +int64_t Tensor::numel() const { return product(dims_); } +} // namespace framework } // namespace paddle diff --git a/paddle/fluid/framework/tensor.h b/paddle/fluid/framework/tensor.h index 6f878541e6de1deec1829145b1b325ecd176a034..29566aaa53370b1fffc9ff9a90ae9b740b24f69e 100644 --- a/paddle/fluid/framework/tensor.h +++ b/paddle/fluid/framework/tensor.h @@ -54,26 +54,24 @@ class Tensor { /*! Return a pointer to mutable memory block. */ template <typename T> - inline T* data(); + T* data(); /*! Return a pointer to constant memory block. */ template <typename T> - inline const T* data() const; + const T* data() const; - inline bool IsInitialized() const; - - inline void switch_place(platform::Place new_place); + bool IsInitialized() const; /** * @brief Return a pointer to mutable memory block. * @note If not exist, then allocation. */ template <typename T> - inline T* mutable_data(platform::Place place); + T* mutable_data(platform::Place place); - inline void* mutable_data(platform::Place place, std::type_index type); + void* mutable_data(platform::Place place, std::type_index type); - inline void* mutable_data(platform::Place place); + void* mutable_data(platform::Place place); /** * @brief Return a pointer to mutable memory block. @@ -84,19 +82,19 @@ class Tensor { * @note If not exist, then allocation. */ template <typename T> - inline T* mutable_data(DDim dims, platform::Place place); + T* mutable_data(DDim dims, platform::Place place); /*! Return the dimensions of the memory block. */ - inline const DDim& dims() const; + const DDim& dims() const; /*! Return the numel of the memory block. */ - inline int64_t numel() const; + int64_t numel() const; /*! Resize the dimensions of the memory block. */ - inline Tensor& Resize(const DDim& dims); + Tensor& Resize(const DDim& dims); /*! The internal of two tensors share the same memory block. */ - inline Tensor& ShareDataWith(const Tensor& src); + Tensor& ShareDataWith(const Tensor& src); /** * @brief Return a sub-tensor of the given tensor. @@ -106,7 +104,7 @@ class Tensor { * @param[in] end_idx The index of the end row(exclusive) to slice. * The index number begins from 0. */ - inline Tensor Slice(int begin_idx, int end_idx) const; + Tensor Slice(int begin_idx, int end_idx) const; platform::Place place() const { PADDLE_ENFORCE_NOT_NULL( @@ -123,11 +121,11 @@ class Tensor { // memory size returns the holding memory size in byte. size_t memory_size() const; - inline void check_memory_size() const; + void check_memory_size() const; - inline DataLayout layout() const { return layout_; } + DataLayout layout() const { return layout_; } - inline void set_layout(const DataLayout layout) { layout_ = layout; } + void set_layout(const DataLayout layout) { layout_ = layout; } private: /** @@ -210,15 +208,6 @@ class Tensor { size_t offset_; }; -inline void Tensor::switch_place(platform::Place new_place) { - if (holder_->place() == new_place) { - return; - } - - // TODO(tonyyang-svail): do memcpy here. - PADDLE_THROW("Not Implemented"); -} - } // namespace framework } // namespace paddle diff --git a/paddle/fluid/framework/tensor_impl.h b/paddle/fluid/framework/tensor_impl.h index 2f19ec0f0a9338e2b96d1f64eac45387bae4d1eb..96114678a9992f2975c4173c7cc003114f04d8df 100644 --- a/paddle/fluid/framework/tensor_impl.h +++ b/paddle/fluid/framework/tensor_impl.h @@ -20,21 +20,6 @@ limitations under the License. */ namespace paddle { namespace framework { -extern size_t SizeOfType(std::type_index type); -inline void Tensor::check_memory_size() const { - PADDLE_ENFORCE_NOT_NULL( - holder_, "Tensor holds no memory. Call Tensor::mutable_data first."); - PADDLE_ENFORCE_LE( - numel() * SizeOfType(type()), memory_size(), - "Tensor's dims_ is out of bound. Call Tensor::mutable_data " - "first to re-allocate memory.\n" - "or maybe the required data-type mismatches the data already stored."); -} - -inline size_t Tensor::memory_size() const { - return holder_ == nullptr ? 0UL : holder_->size() - offset_; -} - template <typename T> inline const T* Tensor::data() const { check_memory_size(); @@ -73,88 +58,6 @@ inline T* Tensor::mutable_data(platform::Place place) { return reinterpret_cast<T*>(mutable_data(place, typeid(T))); } -inline void* Tensor::mutable_data(platform::Place place, std::type_index type) { - if (holder_ != nullptr) { - holder_->set_type(type); - } - PADDLE_ENFORCE_GE(numel(), 0, - "When calling this method, the Tensor's numel must be " - "equal or larger than zero. " - "Please check Tensor::Resize has been called first."); - int64_t size = numel() * SizeOfType(type); - /* some versions of boost::variant don't have operator!= */ - if (holder_ == nullptr || !(holder_->place() == place) || - holder_->size() < size + offset_) { - if (platform::is_cpu_place(place)) { - holder_.reset(new PlaceholderImpl<platform::CPUPlace>( - boost::get<platform::CPUPlace>(place), size, type)); - } else if (platform::is_gpu_place(place) || - platform::is_cuda_pinned_place(place)) { -#ifndef PADDLE_WITH_CUDA - PADDLE_THROW( - "CUDAPlace or CUDAPinnedPlace is not supported in CPU-only mode."); - } -#else - if (platform::is_gpu_place(place)) { - holder_.reset(new PlaceholderImpl<platform::CUDAPlace>( - boost::get<platform::CUDAPlace>(place), size, type)); - } else if (platform::is_cuda_pinned_place(place)) { - holder_.reset(new PlaceholderImpl<platform::CUDAPinnedPlace>( - boost::get<platform::CUDAPinnedPlace>(place), size, type)); - } - } -#endif - offset_ = 0; - } - return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(holder_->ptr()) + - offset_); -} - -inline void* Tensor::mutable_data(platform::Place place) { - PADDLE_ENFORCE(this->holder_ != nullptr, - "Cannot invoke mutable data if current hold nothing."); - return mutable_data(place, holder_->type()); -} - -inline Tensor& Tensor::ShareDataWith(const Tensor& src) { - src.check_memory_size(); - *this = src; - return *this; -} - -inline Tensor Tensor::Slice(int begin_idx, int end_idx) const { - check_memory_size(); - PADDLE_ENFORCE_GE(begin_idx, 0, - "The start row index must be greater than 0."); - PADDLE_ENFORCE_LE(end_idx, dims_[0], "The end row index is out of bound."); - PADDLE_ENFORCE_LT( - begin_idx, end_idx, - "The start row index must be lesser than the end row index."); - - if (dims_[0] == 1) { - return *this; - } else { - size_t base = numel() / dims_[0]; - Tensor dst; - dst.holder_ = holder_; - dst.set_layout(layout_); - DDim dst_dims = dims_; - dst_dims[0] = end_idx - begin_idx; - dst.Resize(dst_dims); - dst.offset_ = offset_ + begin_idx * base * SizeOfType(type()); - return dst; - } -} - -inline Tensor& Tensor::Resize(const DDim& dims) { - dims_ = dims; - return *this; -} - -inline const DDim& Tensor::dims() const { return dims_; } - -inline int64_t Tensor::numel() const { return product(dims_); } - inline Tensor ReshapeToMatrix(const Tensor& src, int num_col_dims) { Tensor res; res.ShareDataWith(src); diff --git a/paddle/fluid/inference/analysis/helper.h b/paddle/fluid/inference/analysis/helper.h index 153dca576bd6734d62f00c4a7cb9b503506b33e2..58eb0e715cb71d87179f3240de55021603cd7423 100644 --- a/paddle/fluid/inference/analysis/helper.h +++ b/paddle/fluid/inference/analysis/helper.h @@ -18,6 +18,8 @@ limitations under the License. */ #include <unordered_map> #include <vector> +#include "paddle/fluid/framework/scope.h" +#include "paddle/fluid/framework/variable.h" #include "paddle/fluid/platform/enforce.h" namespace paddle { @@ -107,6 +109,13 @@ class OrderedRegistry { std::vector<std::unique_ptr<T>> data_; }; +template <typename T> +T &GetFromScope(const framework::Scope &scope, const std::string &name) { + framework::Variable *var = scope.FindVar(name); + PADDLE_ENFORCE(var != nullptr); + return *var->GetMutable<T>(); +} + } // namespace analysis } // namespace inference } // namespace paddle diff --git a/paddle/fluid/inference/tensorrt/convert/CMakeLists.txt b/paddle/fluid/inference/tensorrt/convert/CMakeLists.txt index 23ca8bfac84f35ebdca2e2a1a8538d366358ca8b..0dd0e5c9a2b08e406bf500f40e2fc8926012ac0e 100644 --- a/paddle/fluid/inference/tensorrt/convert/CMakeLists.txt +++ b/paddle/fluid/inference/tensorrt/convert/CMakeLists.txt @@ -1,10 +1,16 @@ # Add TRT tests -nv_test(test_op_converter SRCS test_op_converter.cc mul_op.cc conv2d_op.cc DEPS ${FLUID_CORE_MODULES} tensorrt_engine) # This test is not stable # See https://paddleci.ngrok.io/viewLog.html?tab=buildLog&buildTypeId=Paddle_PrCi2&buildId=36834&_focus=8828 #nv_test(test_trt_activation_op SRCS test_activation_op.cc activation_op.cc io_converter.cc # DEPS ${FLUID_CORE_MODULES} activation_op tensorrt_engine # SERIAL) +nv_library(tensorrt_converter + SRCS mul_op.cc conv2d_op.cc fc_op.cc + DEPS tensorrt_engine mul_op) + +nv_test(test_op_converter SRCS test_op_converter.cc DEPS + ${FLUID_CORE_MODULES} tensorrt_engine tensorrt_converter) + nv_test(test_io_converter SRCS test_io_converter.cc io_converter.cc DEPS dynload_cuda dynamic_loader lod_tensor) nv_test(test_trt_mul_op SRCS test_mul_op.cc mul_op.cc DEPS ${FLUID_CORE_MODULES} tensorrt_engine mul_op SERIAL) diff --git a/paddle/fluid/inference/tensorrt/convert/activation_op.cc b/paddle/fluid/inference/tensorrt/convert/activation_op.cc index 79d01b640a214ed5eb86173a36d5e85a6626066f..7facf30d781a26c2c6eb0a8966ef1b87e5dfdf0b 100644 --- a/paddle/fluid/inference/tensorrt/convert/activation_op.cc +++ b/paddle/fluid/inference/tensorrt/convert/activation_op.cc @@ -12,6 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ +#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/inference/tensorrt/convert/op_converter.h" namespace paddle { @@ -36,8 +37,8 @@ class ReluOpConverter : public OpConverter { } }; -REGISTER_TRT_OP_CONVERTER(relu, ReluOpConverter); - } // namespace tensorrt } // namespace inference } // namespace paddle + +REGISTER_TRT_OP_CONVERTER(relu, ReluOpConverter); diff --git a/paddle/fluid/inference/tensorrt/convert/conv2d_op.cc b/paddle/fluid/inference/tensorrt/convert/conv2d_op.cc index 668d344f1bba1c012dcb42c71b996209b4703d78..8e7e23377d4b2fe7afd51f1f58048fc4ed3c6d99 100644 --- a/paddle/fluid/inference/tensorrt/convert/conv2d_op.cc +++ b/paddle/fluid/inference/tensorrt/convert/conv2d_op.cc @@ -22,14 +22,14 @@ class Conv2dOpConverter : public OpConverter { public: Conv2dOpConverter() {} void operator()(const framework::proto::OpDesc& op, - const framework::Scope& scope) override { + const framework::Scope& scope, bool test_mode) override { LOG(INFO) << "convert a fluid conv2d op to tensorrt conv layer without bias"; } }; -REGISTER_TRT_OP_CONVERTER(conv2d, Conv2dOpConverter); - } // namespace tensorrt } // namespace inference } // namespace paddle + +REGISTER_TRT_OP_CONVERTER(conv2d, Conv2dOpConverter); diff --git a/paddle/fluid/inference/tensorrt/convert/fc_op.cc b/paddle/fluid/inference/tensorrt/convert/fc_op.cc index 45b079559754a8f5c3fe39781b5700a75f425e99..bb603efaf30bb72d74b5583abc45d01a16c076a3 100644 --- a/paddle/fluid/inference/tensorrt/convert/fc_op.cc +++ b/paddle/fluid/inference/tensorrt/convert/fc_op.cc @@ -56,7 +56,7 @@ void ReorderCKtoKC(TensorRTEngine::Weight& iweights, class FcOpConverter : public OpConverter { public: void operator()(const framework::proto::OpDesc& op, - const framework::Scope& scope) override { + const framework::Scope& scope, bool test_mode) override { VLOG(4) << "convert a fluid fc op to tensorrt fc layer without bias"; framework::OpDesc op_desc(op, nullptr); @@ -106,14 +106,16 @@ class FcOpConverter : public OpConverter { n_output, weight.get(), bias.get()); auto output_name = op_desc.Output("Out").front(); - engine_->DeclareOutput(layer, 0, output_name); + engine_->SetITensor(output_name, layer->getOutput(0)); + if (test_mode) { + engine_->DeclareOutput(output_name); + } } }; -REGISTER_TRT_OP_CONVERTER(fc, FcOpConverter); - } // namespace tensorrt } // namespace inference } // namespace paddle +REGISTER_TRT_OP_CONVERTER(fc, FcOpConverter); USE_OP(mul); diff --git a/paddle/fluid/inference/tensorrt/convert/mul_op.cc b/paddle/fluid/inference/tensorrt/convert/mul_op.cc index 6bb07709c7ee1c6b29c46425849a4f472d3df59d..3c342957360ad4192d838147bf37e84d233c2629 100644 --- a/paddle/fluid/inference/tensorrt/convert/mul_op.cc +++ b/paddle/fluid/inference/tensorrt/convert/mul_op.cc @@ -23,9 +23,8 @@ namespace tensorrt { */ class MulOpConverter : public OpConverter { public: - MulOpConverter() {} void operator()(const framework::proto::OpDesc& op, - const framework::Scope& scope) override { + const framework::Scope& scope, bool test_mode) override { VLOG(4) << "convert a fluid mul op to tensorrt mul layer without bias"; framework::OpDesc op_desc(op, nullptr); @@ -37,12 +36,18 @@ class MulOpConverter : public OpConverter { engine_, MatrixMultiply, *const_cast<nvinfer1::ITensor*>(input1), false, *const_cast<nvinfer1::ITensor*>(input2), false); - engine_->DeclareOutput(layer, 0, op_desc.Output("Out")[0]); + auto output_name = op_desc.Output("Out")[0]; + engine_->SetITensor(output_name, layer->getOutput(0)); + if (test_mode) { // the test framework can not determine which is the + // output, so place the declaration inside. + engine_->DeclareOutput(output_name); + } } }; -REGISTER_TRT_OP_CONVERTER(mul, MulOpConverter); - } // namespace tensorrt } // namespace inference } // namespace paddle + +USE_OP(mul); +REGISTER_TRT_OP_CONVERTER(mul, MulOpConverter); diff --git a/paddle/fluid/inference/tensorrt/convert/op_converter.h b/paddle/fluid/inference/tensorrt/convert/op_converter.h index 3beafeefd06f24ec50b0e61c1fabe13d7e53f242..c7a5a49dd02d0db022fabff5c3ae1c7800bac25c 100644 --- a/paddle/fluid/inference/tensorrt/convert/op_converter.h +++ b/paddle/fluid/inference/tensorrt/convert/op_converter.h @@ -17,6 +17,7 @@ limitations under the License. */ #include <string> #include <unordered_map> #include "paddle/fluid/framework/block_desc.h" +#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/scope.h" #include "paddle/fluid/inference/tensorrt/engine.h" #include "paddle/fluid/inference/utils/singleton.h" @@ -34,12 +35,15 @@ class OpConverter { // Converter logic for an op. virtual void operator()(const framework::proto::OpDesc& op, - const framework::Scope& scope) {} + const framework::Scope& scope, + bool test_mode = false) {} - // Convert a single fluid operaotr and add the corresponding layer to TRT. + // Convert a single fluid operator and add the corresponding layer to TRT. + // test_mode: whether the instance executes in an unit test. void ConvertOp(const framework::proto::OpDesc& op, const std::unordered_set<std::string>& parameters, - const framework::Scope& scope, TensorRTEngine* engine) { + const framework::Scope& scope, TensorRTEngine* engine, + bool test_mode = false) { framework::OpDesc op_desc(op, nullptr); OpConverter* it{nullptr}; @@ -57,7 +61,7 @@ class OpConverter { PADDLE_ENFORCE_NOT_NULL(it, "no OpConverter for optype [%s]", op_desc.Type()); it->SetEngine(engine); - (*it)(op, scope); + (*it)(op, scope, test_mode); } // convert fluid block to tensorrt network @@ -77,6 +81,9 @@ class OpConverter { // TensorRT engine TensorRTEngine* engine_{nullptr}; + protected: + bool test_mode_; + private: // registered op converter map, whose key is the fluid op type, and value is // the pointer position of corresponding OpConverter class. @@ -85,13 +92,24 @@ class OpConverter { framework::Scope* scope_{nullptr}; }; -#define REGISTER_TRT_OP_CONVERTER(op_type__, Converter__) \ - struct trt_##op_type__##_converter { \ - trt_##op_type__##_converter() { \ - Registry<OpConverter>::Register<Converter__>(#op_type__); \ - } \ - }; \ - trt_##op_type__##_converter trt_##op_type__##_converter__; +#define REGISTER_TRT_OP_CONVERTER(op_type__, Converter__) \ + struct trt_##op_type__##_converter : public ::paddle::framework::Registrar { \ + trt_##op_type__##_converter() { \ + ::paddle::inference:: \ + Registry<paddle::inference::tensorrt::OpConverter>::Register< \ + ::paddle::inference::tensorrt::Converter__>(#op_type__); \ + } \ + }; \ + trt_##op_type__##_converter trt_##op_type__##_converter__; \ + int TouchConverterRegister_##op_type__() { \ + trt_##op_type__##_converter__.Touch(); \ + return 0; \ + } + +#define USE_TRT_CONVERTER(op_type__) \ + extern int TouchConverterRegister_##op_type__(); \ + static int use_op_converter_trt_##op_type__ __attribute__((unused)) = \ + TouchConverterRegister_##op_type__(); } // namespace tensorrt } // namespace inference diff --git a/paddle/fluid/inference/tensorrt/convert/test_op_converter.cc b/paddle/fluid/inference/tensorrt/convert/test_op_converter.cc index 1d3f5eabb2f839b2acfa9da6527589df1ec3767f..9b79f86b0edba983019bd932f52b08711ff36d41 100644 --- a/paddle/fluid/inference/tensorrt/convert/test_op_converter.cc +++ b/paddle/fluid/inference/tensorrt/convert/test_op_converter.cc @@ -36,3 +36,5 @@ TEST(OpConverter, ConvertBlock) { } // namespace tensorrt } // namespace inference } // namespace paddle + +USE_TRT_CONVERTER(conv2d) diff --git a/paddle/fluid/inference/tensorrt/convert/ut_helper.h b/paddle/fluid/inference/tensorrt/convert/ut_helper.h index d7e05dd5b5b235b7b166b22c5b094dc364e28dfc..8613d5b1c13bc24572b374a8d115690f089a71d1 100644 --- a/paddle/fluid/inference/tensorrt/convert/ut_helper.h +++ b/paddle/fluid/inference/tensorrt/convert/ut_helper.h @@ -27,6 +27,7 @@ limitations under the License. */ #include "paddle/fluid/inference/analysis/helper.h" #include "paddle/fluid/inference/tensorrt/convert/op_converter.h" #include "paddle/fluid/inference/tensorrt/engine.h" +#include "paddle/fluid/inference/utils/singleton.h" namespace paddle { namespace inference { @@ -104,8 +105,8 @@ class TRTConvertValidation { void SetOp(const framework::proto::OpDesc& desc) { op_ = framework::OpRegistry::CreateOp(desc); - OpConverter op_converter; - op_converter.ConvertOp(desc, parameters_, scope_, engine_.get()); + Singleton<OpConverter>::Global().ConvertOp( + desc, parameters_, scope_, engine_.get(), true /*test_mode*/); engine_->FreezeNetwork(); diff --git a/paddle/fluid/inference/tensorrt/engine.cc b/paddle/fluid/inference/tensorrt/engine.cc index 3d75fefc1a735168131a6c67ac073e80aba32945..596e0fe9da3d272ecb1c0f8dbef09a75d08a4b1a 100644 --- a/paddle/fluid/inference/tensorrt/engine.cc +++ b/paddle/fluid/inference/tensorrt/engine.cc @@ -43,9 +43,10 @@ void TensorRTEngine::Execute(int batch_size) { } TensorRTEngine::~TensorRTEngine() { + cudaStreamSynchronize(*stream_); // clean buffer for (auto& buf : buffers_) { - if (buf.buffer != nullptr) { + if (buf.device == DeviceType::GPU && buf.buffer != nullptr) { PADDLE_ENFORCE_EQ(0, cudaFree(buf.buffer)); buf.buffer = nullptr; buf.max_size = 0; @@ -80,6 +81,8 @@ void TensorRTEngine::FreezeNetwork() { auto& buf = buffer(item.first); CHECK(buf.buffer == nullptr); // buffer should be allocated only once. PADDLE_ENFORCE_EQ(0, cudaMalloc(&buf.buffer, item.second)); + VLOG(4) << "buffer malloc " << item.first << " " << item.second << " " + << buf.buffer; buf.size = buf.max_size = item.second; buf.device = DeviceType::GPU; } @@ -96,6 +99,7 @@ nvinfer1::ITensor* TensorRTEngine::DeclareInput(const std::string& name, PADDLE_ENFORCE(input, "infer network add input %s failed", name); buffer_sizes_[name] = kDataTypeSize[static_cast<int>(dtype)] * analysis::AccuDims(dims.d, dims.nbDims); + PADDLE_ENFORCE(input->isNetworkInput()); TensorRTEngine::SetITensor(name, input); return input; } @@ -109,7 +113,9 @@ void TensorRTEngine::DeclareOutput(const nvinfer1::ILayer* layer, int offset, SetITensor(name, output); PADDLE_ENFORCE(output != nullptr); output->setName(name.c_str()); + PADDLE_ENFORCE(!output->isNetworkInput()); infer_network_->markOutput(*output); + PADDLE_ENFORCE(output->isNetworkOutput()); // output buffers' size can only be decided latter, set zero here to mark this // and will reset latter. buffer_sizes_[name] = 0; @@ -122,6 +128,7 @@ void TensorRTEngine::DeclareOutput(const std::string& name) { auto* output = TensorRTEngine::GetITensor(name); PADDLE_ENFORCE(output != nullptr); output->setName(name.c_str()); + PADDLE_ENFORCE(!output->isNetworkInput()); infer_network_->markOutput(*output); // output buffers' size can only be decided latter, set zero here to mark this // and will reset latter. diff --git a/paddle/fluid/inference/tensorrt/engine.h b/paddle/fluid/inference/tensorrt/engine.h index fabcfd9e80cc0ef2637201a1499ebbe2d6adfd8c..b60f00de9fa5fc8f8f4537379bf9ee9c8bb6f31c 100644 --- a/paddle/fluid/inference/tensorrt/engine.h +++ b/paddle/fluid/inference/tensorrt/engine.h @@ -21,6 +21,7 @@ limitations under the License. */ #include <vector> #include "paddle/fluid/inference/engine.h" #include "paddle/fluid/inference/tensorrt/helper.h" +#include "paddle/fluid/inference/utils/singleton.h" namespace paddle { namespace inference { @@ -131,7 +132,11 @@ class TensorRTEngine : public EngineBase { // TensorRT related internal members template <typename T> struct Destroyer { - void operator()(T* x) { x->destroy(); } + void operator()(T* x) { + if (x) { + x->destroy(); + } + } }; template <typename T> using infer_ptr = std::unique_ptr<T, Destroyer<T>>; @@ -155,6 +160,27 @@ class TensorRTEngine : public EngineBase { #define TRT_ENGINE_ADD_LAYER(engine__, layer__, ARGS...) \ engine__->network()->add##layer__(ARGS); +/* + * Helper to control the TensorRT engine's creation and deletion. + */ +class TRT_EngineManager { + public: + TensorRTEngine* Create(int max_batch, int max_workspace, + cudaStream_t* stream) { + engines_.emplace_back(new TensorRTEngine(max_batch, max_workspace, stream)); + return engines_.back().get(); + } + + void DeleteALl() { + for (auto& ptr : engines_) { + ptr.reset(nullptr); + } + } + + private: + std::vector<std::unique_ptr<TensorRTEngine>> engines_; +}; + } // namespace tensorrt } // namespace inference } // namespace paddle diff --git a/paddle/fluid/inference/tests/book/test_inference_nlp.cc b/paddle/fluid/inference/tests/book/test_inference_nlp.cc index 70aa42ac4111c0524a55e26aaefa864338c1d6c1..a0e83a17058a4edcb8f23f23ce155e644ae0cf3b 100644 --- a/paddle/fluid/inference/tests/book/test_inference_nlp.cc +++ b/paddle/fluid/inference/tests/book/test_inference_nlp.cc @@ -101,23 +101,22 @@ void SplitData( } void ThreadRunInfer( - const int tid, paddle::framework::Executor* executor, - paddle::framework::Scope* scope, - const std::unique_ptr<paddle::framework::ProgramDesc>& inference_program, + const int tid, paddle::framework::Scope* scope, const std::vector<std::vector<const paddle::framework::LoDTensor*>>& jobs) { - auto copy_program = std::unique_ptr<paddle::framework::ProgramDesc>( - new paddle::framework::ProgramDesc(*inference_program)); + // maybe framework:ProgramDesc is not thread-safe auto& sub_scope = scope->NewScope(); + auto place = paddle::platform::CPUPlace(); + auto executor = paddle::framework::Executor(place); + auto inference_program = + paddle::inference::Load(&executor, scope, FLAGS_model_path); - std::string feed_holder_name = "feed_" + paddle::string::to_string(tid); - std::string fetch_holder_name = "fetch_" + paddle::string::to_string(tid); - copy_program->SetFeedHolderName(feed_holder_name); - copy_program->SetFetchHolderName(fetch_holder_name); + auto ctx = executor.Prepare(*inference_program, /*block_id*/ 0); + executor.CreateVariables(*inference_program, &sub_scope, /*block_id*/ 0); const std::vector<std::string>& feed_target_names = - copy_program->GetFeedTargetNames(); + inference_program->GetFeedTargetNames(); const std::vector<std::string>& fetch_target_names = - copy_program->GetFetchTargetNames(); + inference_program->GetFetchTargetNames(); PADDLE_ENFORCE_EQ(fetch_target_names.size(), 1UL); std::map<std::string, paddle::framework::LoDTensor*> fetch_targets; @@ -131,9 +130,8 @@ void ThreadRunInfer( auto start_ms = GetCurrentMs(); for (size_t i = 0; i < inputs.size(); ++i) { feed_targets[feed_target_names[0]] = inputs[i]; - executor->Run(*copy_program, &sub_scope, &feed_targets, &fetch_targets, - true /*create_local_scope*/, true /*create_vars*/, - feed_holder_name, fetch_holder_name); + executor.RunPreparedContext(ctx.get(), &sub_scope, &feed_targets, + &fetch_targets, false /*create_local_scope*/); } auto stop_ms = GetCurrentMs(); scope->DeleteScope(&sub_scope); @@ -158,22 +156,10 @@ TEST(inference, nlp) { LOG(INFO) << "Number of samples (seq_len<1024): " << datasets.size(); LOG(INFO) << "Total number of words: " << num_total_words; - const bool model_combined = false; // 0. Call `paddle::framework::InitDevices()` initialize all the devices - // 1. Define place, executor, scope - auto place = paddle::platform::CPUPlace(); - auto executor = paddle::framework::Executor(place); std::unique_ptr<paddle::framework::Scope> scope( new paddle::framework::Scope()); - // 2. Initialize the inference_program and load parameters - std::unique_ptr<paddle::framework::ProgramDesc> inference_program; - inference_program = - InitProgram(&executor, scope.get(), FLAGS_model_path, model_combined); - if (FLAGS_use_mkldnn) { - EnableMKLDNN(inference_program); - } - #ifdef PADDLE_WITH_MKLML // only use 1 thread number per std::thread omp_set_dynamic(0); @@ -189,21 +175,30 @@ TEST(inference, nlp) { start_ms = GetCurrentMs(); for (int i = 0; i < FLAGS_num_threads; ++i) { threads.emplace_back( - new std::thread(ThreadRunInfer, i, &executor, scope.get(), - std::ref(inference_program), std::ref(jobs))); + new std::thread(ThreadRunInfer, i, scope.get(), std::ref(jobs))); } for (int i = 0; i < FLAGS_num_threads; ++i) { threads[i]->join(); } stop_ms = GetCurrentMs(); } else { - if (FLAGS_prepare_vars) { - executor.CreateVariables(*inference_program, scope.get(), 0); + // 1. Define place, executor, scope + auto place = paddle::platform::CPUPlace(); + auto executor = paddle::framework::Executor(place); + + // 2. Initialize the inference_program and load parameters + std::unique_ptr<paddle::framework::ProgramDesc> inference_program; + inference_program = InitProgram(&executor, scope.get(), FLAGS_model_path, + /*model combined*/ false); + if (FLAGS_use_mkldnn) { + EnableMKLDNN(inference_program); } // always prepare context std::unique_ptr<paddle::framework::ExecutorPrepareContext> ctx; ctx = executor.Prepare(*inference_program, 0); - + if (FLAGS_prepare_vars) { + executor.CreateVariables(*inference_program, scope.get(), 0); + } // preapre fetch const std::vector<std::string>& fetch_target_names = inference_program->GetFetchTargetNames(); diff --git a/paddle/fluid/operators/CMakeLists.txt b/paddle/fluid/operators/CMakeLists.txt index de6ff29c6f8edbcf930546ff157a1c226e1311db..f75b7c70d60e77eb07927261d3c60bd526986f98 100644 --- a/paddle/fluid/operators/CMakeLists.txt +++ b/paddle/fluid/operators/CMakeLists.txt @@ -227,6 +227,8 @@ op_library(softmax_op DEPS softmax) op_library(sequence_softmax_op DEPS softmax) if (WITH_GPU AND TENSORRT_FOUND) op_library(tensorrt_engine_op DEPS tensorrt_engine) + nv_test(test_tensorrt_engine_op SRCS tensorrt_engine_op_test.cc + DEPS tensorrt_engine_op tensorrt_engine tensorrt_converter) else() set(DEPS_OPS ${DEPS_OPS} tensorrt_engine_op) endif() diff --git a/paddle/fluid/operators/detail/CMakeLists.txt b/paddle/fluid/operators/detail/CMakeLists.txt index cf20530513cf6cd420e56b2f6378225f73c2bc8b..c29dc5d7e077a73b7db6a0c9204c2029ec1392bc 100644 --- a/paddle/fluid/operators/detail/CMakeLists.txt +++ b/paddle/fluid/operators/detail/CMakeLists.txt @@ -1,6 +1,6 @@ if(WITH_DISTRIBUTE) grpc_library(sendrecvop_grpc SRCS bytebuffer_stream.cc sendrecvop_utils.cc grpc_client.cc - request_handler_impl.cc rpc_server.cc grpc_server.cc variable_response.cc PROTO send_recv.proto DEPS lod_tensor + request_handler_impl.cc rpc_client.cc rpc_server.cc grpc_server.cc variable_response.cc PROTO send_recv.proto DEPS lod_tensor selected_rows memory) set(DISTRIBUTE_COMPILE_FLAGS "-Wno-non-virtual-dtor -Wno-error=non-virtual-dtor -Wno-error=delete-non-virtual-dtor") set_source_files_properties(serde_test.cc grpc_server_test.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS}) diff --git a/paddle/fluid/operators/detail/grpc_client.cc b/paddle/fluid/operators/detail/grpc_client.cc index f4d83e86ecb01eed863a387d827023a5d808dad0..fae39418b4166c9110a40b550e0b9801075edc7e 100644 --- a/paddle/fluid/operators/detail/grpc_client.cc +++ b/paddle/fluid/operators/detail/grpc_client.cc @@ -25,29 +25,15 @@ namespace paddle { namespace operators { namespace detail { -std::once_flag RPCClient::init_flag_; +void GRPCClient::InitImpl() { InitEventLoop(); } -std::unique_ptr<RPCClient> RPCClient::rpc_client_(nullptr); - -RPCClient* RPCClient::GetInstance() { - std::call_once(init_flag_, &RPCClient::Init); - return rpc_client_.get(); -} - -void RPCClient::Init() { - if (rpc_client_.get() == nullptr) { - rpc_client_.reset(new RPCClient()); - } - rpc_client_->InitEventLoop(); -} - -void RPCClient::InitEventLoop() { +void GRPCClient::InitEventLoop() { // start the client process thread // TODO(wuyi): can make this in a threadpool - client_thread_.reset(new std::thread(std::bind(&RPCClient::Proceed, this))); + client_thread_.reset(new std::thread(std::bind(&GRPCClient::Proceed, this))); } -RPCClient::~RPCClient() { +GRPCClient::~GRPCClient() { Wait(); cq_.Shutdown(); { @@ -59,11 +45,10 @@ RPCClient::~RPCClient() { client_thread_->join(); } -bool RPCClient::AsyncSendVariable(const std::string& ep, - const platform::DeviceContext& ctx, - const framework::Scope& scope, - const std::string& var_name, - int64_t time_out) { +bool GRPCClient::AsyncSendVar(const std::string& ep, + const platform::DeviceContext& ctx, + const framework::Scope& scope, + const std::string& var_name, int64_t time_out) { const platform::DeviceContext* p_ctx = &ctx; const std::string ep_val = ep; const std::string var_name_val = var_name; @@ -113,11 +98,10 @@ void RequestToByteBuffer(const T& proto, ::grpc::ByteBuffer* result) { result->Swap(&tmp); } -bool RPCClient::AsyncGetVariable(const std::string& ep, - const platform::DeviceContext& ctx, - const framework::Scope& scope, - const std::string& var_name, - int64_t time_out) { +bool GRPCClient::AsyncGetVar(const std::string& ep, + const platform::DeviceContext& ctx, + const framework::Scope& scope, + const std::string& var_name, int64_t time_out) { const platform::DeviceContext* p_ctx = &ctx; const std::string ep_val = ep; const std::string var_name_val = var_name; @@ -155,12 +139,12 @@ bool RPCClient::AsyncGetVariable(const std::string& ep, return true; } -bool RPCClient::AsyncPrefetchVariable(const std::string& ep, - const platform::DeviceContext& ctx, - const framework::Scope& scope, - const std::string& in_var_name, - const std::string& out_var_name, - int64_t time_out) { +bool GRPCClient::AsyncPrefetchVar(const std::string& ep, + const platform::DeviceContext& ctx, + const framework::Scope& scope, + const std::string& in_var_name, + const std::string& out_var_name, + int64_t time_out) { const platform::DeviceContext* p_ctx = &ctx; const std::string ep_val = ep; const std::string in_var_name_val = in_var_name; @@ -198,7 +182,8 @@ bool RPCClient::AsyncPrefetchVariable(const std::string& ep, return true; } -void RPCClient::AsyncSendBatchBarrier(const std::string& ep, int64_t time_out) { +void GRPCClient::AsyncSendBatchBarrier(const std::string& ep, + int64_t time_out) { const auto ch = GetChannel(ep); BatchBarrierProcessor* s = new BatchBarrierProcessor(ch); @@ -211,7 +196,8 @@ void RPCClient::AsyncSendBatchBarrier(const std::string& ep, int64_t time_out) { req_count_++; } -void RPCClient::AsyncSendFetchBarrier(const std::string& ep, int64_t time_out) { +void GRPCClient::AsyncSendFetchBarrier(const std::string& ep, + int64_t time_out) { const auto ch = GetChannel(ep); FetchBarrierProcessor* s = new FetchBarrierProcessor(ch); s->Prepare(time_out); @@ -223,12 +209,12 @@ void RPCClient::AsyncSendFetchBarrier(const std::string& ep, int64_t time_out) { req_count_++; } -void RPCClient::Wait() { +void GRPCClient::Wait() { std::unique_lock<std::mutex> lk(sync_mutex_); sync_cond_.wait(lk, [this] { return req_count_ == 0; }); } -void RPCClient::Proceed() { +void GRPCClient::Proceed() { void* tag = nullptr; bool ok = false; @@ -251,7 +237,7 @@ void RPCClient::Proceed() { } } -std::shared_ptr<grpc::Channel> RPCClient::GetChannel(const std::string& ep) { +std::shared_ptr<grpc::Channel> GRPCClient::GetChannel(const std::string& ep) { // TODO(Yancey1989): make grpc client completely thread-safe std::lock_guard<std::mutex> guard(chan_mutex_); auto it = channels_.find(ep); diff --git a/paddle/fluid/operators/detail/grpc_client.h b/paddle/fluid/operators/detail/grpc_client.h index bb3813efcf4f77a8ec3d2f4b39969faa6216e38f..8db73f875e3e2048386e91f6b5efb29b4ee7e193 100644 --- a/paddle/fluid/operators/detail/grpc_client.h +++ b/paddle/fluid/operators/detail/grpc_client.h @@ -38,6 +38,7 @@ limitations under the License. */ #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/scope.h" #include "paddle/fluid/framework/selected_rows.h" +#include "paddle/fluid/operators/detail/rpc_client.h" #include "paddle/fluid/operators/detail/sendrecvop_utils.h" #include "paddle/fluid/platform/macros.h" // for DISABLE_COPY_AND_ASSIGN @@ -164,47 +165,46 @@ class FetchBarrierProcessor : public BaseProcessor { std::unique_ptr<sendrecv::SendRecvService::Stub> stub_; }; -class RPCClient { +class GRPCClient : public RPCClient { public: - RPCClient() {} - ~RPCClient(); + GRPCClient() {} + virtual ~GRPCClient(); - static RPCClient* GetInstance(); + bool AsyncSendVar(const std::string& ep, const platform::DeviceContext& ctx, + const framework::Scope& scope, const std::string& var_name, + int64_t time_out = RPCClient::rpc_time_out) override; - bool AsyncSendVariable(const std::string& ep, - const platform::DeviceContext& ctx, - const framework::Scope& scope, - const std::string& var_name, - int64_t time_out = 600 * 1000); + bool AsyncGetVar(const std::string& ep, const platform::DeviceContext& ctx, + const framework::Scope& scope, const std::string& var_name, + int64_t time_out = RPCClient::rpc_time_out) override; - bool AsyncGetVariable(const std::string& ep, + bool AsyncPrefetchVar(const std::string& ep, const platform::DeviceContext& ctx, const framework::Scope& scope, - const std::string& var_name, - int64_t time_out = 600 * 1000); + const std::string& in_var_name, + const std::string& out_var_name, + int64_t time_out = RPCClient::rpc_time_out) override; - bool AsyncPrefetchVariable(const std::string& ep, - const platform::DeviceContext& ctx, - const framework::Scope& scope, - const std::string& in_var_name, - const std::string& out_var_name, - int64_t time_out = 600 * 1000); + void AsyncSendBatchBarrier( + const std::string& ep, + int64_t time_out = RPCClient::rpc_time_out) override; - void AsyncSendBatchBarrier(const std::string& ep, - int64_t time_out = 600 * 1000); + void AsyncSendFetchBarrier( + const std::string& ep, + int64_t time_out = RPCClient::rpc_time_out) override; - void AsyncSendFetchBarrier(const std::string& ep, - int64_t time_out = 600 * 1000); + void Wait() override; - void Wait(); + protected: + void InitImpl() override; + + private: // InitEventLoop should only be called by Init() void InitEventLoop(); - private: void Proceed(); + std::shared_ptr<grpc::Channel> GetChannel(const std::string& ep); - // Init is called by GetInstance. - static void Init(); private: grpc::CompletionQueue cq_; @@ -218,9 +218,7 @@ class RPCClient { // mutex for GetChannel thread safety std::mutex chan_mutex_; - static std::unique_ptr<RPCClient> rpc_client_; - static std::once_flag init_flag_; - DISABLE_COPY_AND_ASSIGN(RPCClient); + DISABLE_COPY_AND_ASSIGN(GRPCClient); }; } // namespace detail diff --git a/paddle/fluid/operators/detail/grpc_server_test.cc b/paddle/fluid/operators/detail/grpc_server_test.cc index 22a3a8135759c04b051d4ec2d2707e6752df2de2..a1f9ba15e656a686c4bb0d81cf00dea120b8c0ad 100644 --- a/paddle/fluid/operators/detail/grpc_server_test.cc +++ b/paddle/fluid/operators/detail/grpc_server_test.cc @@ -19,6 +19,7 @@ limitations under the License. */ #include "gtest/gtest.h" #include "paddle/fluid/operators/detail/grpc_client.h" #include "paddle/fluid/operators/detail/grpc_server.h" +#include "paddle/fluid/operators/detail/rpc_client.h" #include "paddle/fluid/framework/block_desc.h" #include "paddle/fluid/framework/op_registry.h" @@ -123,7 +124,8 @@ TEST(PREFETCH, CPU) { std::thread server_thread(StartServer); g_rpc_service->WaitServerReady(); - detail::RPCClient* client = detail::RPCClient::GetInstance(); + detail::RPCClient* client = + detail::RPCClient::GetInstance<detail::GRPCClient>(); int port = g_rpc_service->GetSelectedPort(); std::string ep = paddle::string::Sprintf("127.0.0.1:%d", port); @@ -137,7 +139,7 @@ TEST(PREFETCH, CPU) { std::string in_var_name("ids"); std::string out_var_name("out"); - client->AsyncPrefetchVariable(ep, ctx, scope, in_var_name, out_var_name); + client->AsyncPrefetchVar(ep, ctx, scope, in_var_name, out_var_name); client->Wait(); auto var = scope.Var(out_var_name); auto value = var->GetMutable<framework::SelectedRows>()->value(); diff --git a/paddle/fluid/operators/detail/rpc_client.cc b/paddle/fluid/operators/detail/rpc_client.cc new file mode 100644 index 0000000000000000000000000000000000000000..9a791403e3d6b99c5d4de5183e83e1af655d7d4c --- /dev/null +++ b/paddle/fluid/operators/detail/rpc_client.cc @@ -0,0 +1,26 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/operators/detail/rpc_client.h" + +namespace paddle { +namespace operators { +namespace detail { + +std::once_flag RPCClient::init_flag_; +std::unique_ptr<RPCClient> RPCClient::rpc_client_(nullptr); + +} // namespace detail +} // namespace operators +} // namespace paddle diff --git a/paddle/fluid/operators/detail/rpc_client.h b/paddle/fluid/operators/detail/rpc_client.h new file mode 100644 index 0000000000000000000000000000000000000000..8e3717f076db6a52916d0e15813f9f61148c6553 --- /dev/null +++ b/paddle/fluid/operators/detail/rpc_client.h @@ -0,0 +1,82 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include <string> + +#include "paddle/fluid/framework/data_type.h" +#include "paddle/fluid/framework/lod_tensor.h" +#include "paddle/fluid/framework/scope.h" + +namespace paddle { +namespace operators { +namespace detail { + +class RPCClient { + public: + virtual bool AsyncSendVar(const std::string& ep, + const platform::DeviceContext& ctx, + const framework::Scope& scope, + const std::string& var_name, + int64_t time_out = rpc_time_out) = 0; + + virtual bool AsyncGetVar(const std::string& ep, + const platform::DeviceContext& ctx, + const framework::Scope& scope, + const std::string& var_name, + int64_t time_out = rpc_time_out) = 0; + + virtual bool AsyncPrefetchVar(const std::string& ep, + const platform::DeviceContext& ctx, + const framework::Scope& scope, + const std::string& in_var_name, + const std::string& out_var_name, + int64_t time_out = rpc_time_out) = 0; + + virtual void AsyncSendBatchBarrier(const std::string& ep, + int64_t time_out = rpc_time_out) = 0; + + virtual void AsyncSendFetchBarrier(const std::string& ep, + int64_t time_out = rpc_time_out) = 0; + + virtual void Wait() = 0; + + static constexpr int64_t rpc_time_out = 120 * 1000; + + template <typename T> + static RPCClient* GetInstance() { + std::call_once(init_flag_, &RPCClient::Init<T>); + return rpc_client_.get(); + } + + // Init is called by GetInstance. + template <typename T> + static void Init() { + if (rpc_client_.get() == nullptr) { + rpc_client_.reset(new T()); + rpc_client_->InitImpl(); + } + } + + protected: + virtual void InitImpl() {} + + private: + static std::once_flag init_flag_; + static std::unique_ptr<RPCClient> rpc_client_; +}; +} // namespace detail +} // namespace operators +} // namespace paddle diff --git a/paddle/fluid/operators/fetch_barrier_op.cc b/paddle/fluid/operators/fetch_barrier_op.cc index 1e2c93335fb9cc6b231857783743eda4e387bf39..ad67585e485b237f5d4b809af712ce658ef602bb 100644 --- a/paddle/fluid/operators/fetch_barrier_op.cc +++ b/paddle/fluid/operators/fetch_barrier_op.cc @@ -21,6 +21,7 @@ limitations under the License. */ #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/detail/grpc_client.h" +#include "paddle/fluid/operators/detail/rpc_client.h" #include "paddle/fluid/platform/profiler.h" namespace paddle { @@ -43,7 +44,8 @@ class FetchBarrierOp : public framework::OperatorBase { // For profiling platform::RecordEvent record_event(Type(), &ctx); - auto rpc_client = detail::RPCClient::GetInstance(); + detail::RPCClient* rpc_client = + detail::RPCClient::GetInstance<detail::GRPCClient>(); rpc_client->Wait(); diff --git a/paddle/fluid/operators/gen_nccl_id_op.cc b/paddle/fluid/operators/gen_nccl_id_op.cc index 4bce2d322d825110a446c9bc5eccdacf0ba3c943..547de4fa49dc16182c424118c0f5705d2396100a 100644 --- a/paddle/fluid/operators/gen_nccl_id_op.cc +++ b/paddle/fluid/operators/gen_nccl_id_op.cc @@ -61,12 +61,13 @@ class GenNCCLIdOp : public framework::OperatorBase { std::vector<std::string> endpoint_list = Attr<std::vector<std::string>>("endpoint_list"); - detail::RPCClient client; + detail::RPCClient* client = + detail::RPCClient::GetInstance<detail::GRPCClient>(); for (auto& ep : endpoint_list) { VLOG(3) << "sending nccl id to " << ep; - client.AsyncSendVariable(ep, dev_ctx, *scope, NCCL_ID_VARNAME); + client->AsyncSendVar(ep, dev_ctx, *scope, NCCL_ID_VARNAME); } - client.Wait(); + client->Wait(); VLOG(3) << "sending completed..."; } diff --git a/paddle/fluid/operators/prefetch_op.cc b/paddle/fluid/operators/prefetch_op.cc index 167a06e090c1d5a15f502098e5fe4968693bcc04..d96359d6befa68bdd0c255dde9c63bfc7fffc0a5 100644 --- a/paddle/fluid/operators/prefetch_op.cc +++ b/paddle/fluid/operators/prefetch_op.cc @@ -41,14 +41,14 @@ class PrefetchOp : public framework::OperatorBase { platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); auto& ctx = *pool.Get(place); - auto rpc_client = detail::RPCClient::GetInstance(); + detail::RPCClient* rpc_client = + detail::RPCClient::GetInstance<detail::GRPCClient>(); for (size_t i = 0; i < ins.size(); i++) { if (NeedSend(scope, ins[i])) { VLOG(3) << "sending " << ins[i] << " to " << epmap[i] << " to get " << outs[i] << " back"; - rpc_client->AsyncPrefetchVariable(epmap[i], ctx, scope, ins[i], - outs[i]); + rpc_client->AsyncPrefetchVar(epmap[i], ctx, scope, ins[i], outs[i]); } else { VLOG(3) << "don't send no-initialied variable: " << ins[i]; } diff --git a/paddle/fluid/operators/recv_op.cc b/paddle/fluid/operators/recv_op.cc index 49b480948a788dc22f95a4eafc6f780298d7c5f9..1ea1cc458b2a20017cc36457af81387a8c808642 100644 --- a/paddle/fluid/operators/recv_op.cc +++ b/paddle/fluid/operators/recv_op.cc @@ -44,11 +44,12 @@ class RecvOp : public framework::OperatorBase { // For profiling platform::RecordEvent record_event(Type(), &ctx); - auto rpc_client = detail::RPCClient::GetInstance(); + detail::RPCClient* rpc_client = + detail::RPCClient::GetInstance<detail::GRPCClient>(); for (size_t i = 0; i < outs.size(); i++) { VLOG(3) << "getting " << outs[i] << " from " << epmap[i]; - rpc_client->AsyncGetVariable(epmap[i], ctx, scope, outs[i]); + rpc_client->AsyncGetVar(epmap[i], ctx, scope, outs[i]); } if (sync_mode) { rpc_client->Wait(); diff --git a/paddle/fluid/operators/reverse_op.cc b/paddle/fluid/operators/reverse_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..a20f7d231fa9ea313581ac0629a87fa5f4a88ce5 --- /dev/null +++ b/paddle/fluid/operators/reverse_op.cc @@ -0,0 +1,107 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/operators/reverse_op.h" +#include <vector> + +namespace paddle { +namespace operators { + +class ReverseOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + void InferShape(framework::InferShapeContext* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null"); + PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) should not be null"); + const auto& x_dims = ctx->GetInputDim("X"); + const auto& axis = ctx->Attrs().Get<std::vector<int>>("axis"); + PADDLE_ENFORCE(!axis.empty(), "'axis' can not be empty."); + for (int a : axis) { + PADDLE_ENFORCE_LT(a, x_dims.size(), + "The axis must be less than input tensor's rank."); + } + ctx->SetOutputDim("Out", x_dims); + } +}; + +class ReverseOpMaker : public framework::OpProtoAndCheckerMaker { + public: + void Make() override { + AddInput("X", "The LoDTensor to be flipped."); + AddOutput("Out", "The LoDTensor after flipping."); + AddAttr<std::vector<int>>( + "axis", "The axises that along which order of elements is reversed."); + AddComment(R"DOC( + Reverse Operator. + + Reverse the order of elements in the input LoDTensor along given axises. + + Case 1: + Given + X = [[1, 2, 3, 4, 5] + [6, 7, 8, 9, 10] + [11, 12, 13, 14, 15]], + and + axis = [0], + we get: + Out = [[11, 12, 13, 14, 15] + [6, 7, 8, 9, 10] + [1, 2, 3, 4, 5]]. + + Case 2: + Given + X = [[[1, 2, 3, 4] + [5, 6, 7, 8]] + [[9, 10, 11, 12] + [13, 14, 15, 16]]], + and + axis = [0, 2], + we get: + Out = [[[12, 11, 10, 9] + [16, 15, 14, 13]] + [[4, 3, 2, 1] + [8, 7, 6, 5]]], + )DOC"); + } +}; + +class ReverseGradMaker : public framework::SingleGradOpDescMaker { + public: + using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; + + std::unique_ptr<framework::OpDesc> Apply() const override { + auto* grad_op = new framework::OpDesc(); + grad_op->SetType("reverse"); + grad_op->SetInput("X", OutputGrad("Out")); + grad_op->SetOutput("Out", InputGrad("X")); + grad_op->SetAttr("axis", GetAttr("axis")); + return std::unique_ptr<framework::OpDesc>(grad_op); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OPERATOR(reverse, ops::ReverseOp, ops::ReverseOpMaker, + ops::ReverseGradMaker); +REGISTER_OPERATOR(reverse_grad, ops::ReverseOp); +REGISTER_OP_CPU_KERNEL( + reverse, ops::ReverseKernel<paddle::platform::CPUDeviceContext, int>, + ops::ReverseKernel<paddle::platform::CPUDeviceContext, uint8_t>, + ops::ReverseKernel<paddle::platform::CPUDeviceContext, int64_t>, + ops::ReverseKernel<paddle::platform::CPUDeviceContext, bool>, + ops::ReverseKernel<paddle::platform::CPUDeviceContext, float>, + ops::ReverseKernel<paddle::platform::CPUDeviceContext, double>) diff --git a/paddle/fluid/operators/reverse_op.cu b/paddle/fluid/operators/reverse_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..635c41529b38f2dd287b00ed2e5659e11f619e78 --- /dev/null +++ b/paddle/fluid/operators/reverse_op.cu @@ -0,0 +1,24 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/operators/reverse_op.h" + +namespace ops = paddle::operators; +REGISTER_OP_CUDA_KERNEL( + reverse, ops::ReverseKernel<paddle::platform::CUDADeviceContext, int>, + ops::ReverseKernel<paddle::platform::CUDADeviceContext, uint8_t>, + ops::ReverseKernel<paddle::platform::CUDADeviceContext, int64_t>, + ops::ReverseKernel<paddle::platform::CUDADeviceContext, bool>, + ops::ReverseKernel<paddle::platform::CUDADeviceContext, float>, + ops::ReverseKernel<paddle::platform::CUDADeviceContext, double>) diff --git a/paddle/fluid/operators/reverse_op.h b/paddle/fluid/operators/reverse_op.h new file mode 100644 index 0000000000000000000000000000000000000000..9063cd59bba5c6307b55a500455908a5fd278390 --- /dev/null +++ b/paddle/fluid/operators/reverse_op.h @@ -0,0 +1,87 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once +#include <vector> +#include "paddle/fluid/framework/eigen.h" +#include "paddle/fluid/framework/op_registry.h" + +namespace paddle { +namespace operators { +template <typename DeviceContext, typename T, int Rank> +struct ReverseFunctor { + void operator()(const DeviceContext& context, const framework::LoDTensor& in, + framework::LoDTensor* out, const std::vector<int>& axis) { + Eigen::array<bool, Rank> reverse_axis; + for (int i = 0; i < Rank; ++i) { + reverse_axis[i] = false; + } + for (int a : axis) { + reverse_axis[a] = true; + } + + auto in_eigen = framework::EigenTensor<T, Rank>::From(in); + auto out_eigen = framework::EigenTensor<T, Rank>::From(*out); + auto* dev = context.eigen_device(); + + out_eigen.device(*dev) = in_eigen.reverse(reverse_axis); + } +}; + +template <typename DeviceContext, typename T> +class ReverseKernel : public framework::OpKernel<T> { + public: + void Compute(const framework::ExecutionContext& context) const override { + auto* x = context.Input<framework::LoDTensor>("X"); + auto* out = context.Output<framework::LoDTensor>("Out"); + out->mutable_data<T>(context.GetPlace()); + const auto& axis = context.Attr<std::vector<int>>("axis"); + int rank = x->dims().size(); + auto& dev_ctx = context.template device_context<DeviceContext>(); + + switch (rank) { + case 1: + ReverseFunctor<DeviceContext, T, 1> functor1; + functor1(dev_ctx, *x, out, axis); + break; + case 2: + ReverseFunctor<DeviceContext, T, 2> functor2; + functor2(dev_ctx, *x, out, axis); + break; + case 3: + ReverseFunctor<DeviceContext, T, 3> functor3; + functor3(dev_ctx, *x, out, axis); + break; + case 4: + ReverseFunctor<DeviceContext, T, 4> functor4; + functor4(dev_ctx, *x, out, axis); + break; + case 5: + ReverseFunctor<DeviceContext, T, 5> functor5; + functor5(dev_ctx, *x, out, axis); + break; + case 6: + ReverseFunctor<DeviceContext, T, 6> functor6; + functor6(dev_ctx, *x, out, axis); + break; + default: + PADDLE_THROW( + "Reserve operator doesn't supports tensors whose ranks are greater " + "than 6."); + } + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/fluid/operators/send_barrier_op.cc b/paddle/fluid/operators/send_barrier_op.cc index 2bc38ff4e3e6ee32bb2b0dbf4daa6d871dbaebfd..511ad753876dd26a4d6bc8c2c727c7c9253ce59c 100644 --- a/paddle/fluid/operators/send_barrier_op.cc +++ b/paddle/fluid/operators/send_barrier_op.cc @@ -44,7 +44,8 @@ class SendBarrierOp : public framework::OperatorBase { // For profiling platform::RecordEvent record_event(Type(), &ctx); - auto rpc_client = detail::RPCClient::GetInstance(); + detail::RPCClient* rpc_client = + detail::RPCClient::GetInstance<detail::GRPCClient>(); VLOG(3) << "SendBarrierOp sync_mode:" << sync_mode; diff --git a/paddle/fluid/operators/send_op.cc b/paddle/fluid/operators/send_op.cc index a91b1453896f951be58797071d9a5928633ccdcf..9697579707f1a510ba7db8a1a9616b59918b971b 100644 --- a/paddle/fluid/operators/send_op.cc +++ b/paddle/fluid/operators/send_op.cc @@ -49,12 +49,13 @@ class SendOp : public framework::OperatorBase { // For profiling platform::RecordEvent record_event(Type(), &ctx); - auto rpc_client = detail::RPCClient::GetInstance(); + detail::RPCClient* rpc_client = + detail::RPCClient::GetInstance<detail::GRPCClient>(); for (size_t i = 0; i < ins.size(); i++) { if (NeedSend(scope, ins[i])) { VLOG(3) << "sending " << ins[i] << " to " << epmap[i]; - rpc_client->AsyncSendVariable(epmap[i], ctx, scope, ins[i]); + rpc_client->AsyncSendVar(epmap[i], ctx, scope, ins[i]); } else { VLOG(3) << "don't send no-initialied variable: " << ins[i]; } @@ -72,7 +73,7 @@ class SendOp : public framework::OperatorBase { if (outs.size() > 0) { for (size_t i = 0; i < outs.size(); i++) { VLOG(2) << "getting " << outs[i] << " from " << epmap[i]; - rpc_client->AsyncGetVariable(epmap[i], ctx, scope, outs[i]); + rpc_client->AsyncGetVar(epmap[i], ctx, scope, outs[i]); } rpc_client->Wait(); // tell pservers that current trainer have called fetch diff --git a/paddle/fluid/operators/send_vars_op.cc b/paddle/fluid/operators/send_vars_op.cc index fe839dab6924618c8a4c39868d9bf86056a0be40..564e40461f8f894cffab11e26cc538b7964b6f19 100644 --- a/paddle/fluid/operators/send_vars_op.cc +++ b/paddle/fluid/operators/send_vars_op.cc @@ -45,14 +45,15 @@ class SendVarsOp : public framework::OperatorBase { // For profiling platform::RecordEvent record_event(Type(), &ctx); - auto rpc_client = detail::RPCClient::GetInstance(); + detail::RPCClient* rpc_client = + detail::RPCClient::GetInstance<detail::GRPCClient>(); for (size_t i = 0; i < ins.size(); i++) { if (NeedSend(scope, ins[i])) { VLOG(3) << "sending " << ins[i] << " to " << epmap[i]; // TODO(Yancey1989): we need to use an IO threadpool which has // a larger number of threads than the computing threadpool. - rpc_client->AsyncSendVariable(epmap[i], ctx, scope, ins[i]); + rpc_client->AsyncSendVar(epmap[i], ctx, scope, ins[i]); } else { VLOG(3) << "don't send no-initialied variable: " << ins[i]; } diff --git a/paddle/fluid/operators/tensorrt_engine_op.cc b/paddle/fluid/operators/tensorrt_engine_op.cc index 855157e7c4c5c4a43091d28d3a5414e6e386b727..4b1208c4376b48e25866fc510f3a6d2ea06e7610 100644 --- a/paddle/fluid/operators/tensorrt_engine_op.cc +++ b/paddle/fluid/operators/tensorrt_engine_op.cc @@ -17,23 +17,93 @@ #include "paddle/fluid/operators/tensorrt_engine_op.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/inference/tensorrt/convert/op_converter.h" +#include "paddle/fluid/inference/tensorrt/engine.h" #include "paddle/fluid/inference/utils/singleton.h" namespace paddle { namespace operators { +using inference::Singleton; +using inference::tensorrt::TRT_EngineManager; + +using FluidDT = framework::proto::VarType_Type; +using TRT_DT = nvinfer1::DataType; + +namespace { + +TRT_DT FluidDataType2TRT(FluidDT type) { + switch (type) { + case FluidDT::VarType_Type_FP32: + return TRT_DT::kFLOAT; + case FluidDT::VarType_Type_INT32: + return TRT_DT::kINT32; + default: + return TRT_DT::kINT32; + } + PADDLE_THROW("unkown type"); + return TRT_DT::kINT32; +} + +nvinfer1::Dims Vec2TRT_Dims(const std::vector<int64_t> &shape) { + PADDLE_ENFORCE_GT(shape.size(), 1UL, + "TensorRT' tensor input requires at least 2 dimensions"); + PADDLE_ENFORCE_LE(shape.size(), 4UL, + "TensorRT' tensor input requires at most 4 dimensions"); + + switch (shape.size()) { + case 2: + return nvinfer1::Dims2(shape[0], shape[1]); + case 3: + return nvinfer1::Dims3(shape[0], shape[1], shape[2]); + case 4: + return nvinfer1::Dims4(shape[0], shape[1], shape[2], shape[3]); + default: + return nvinfer1::Dims(); + } + return nvinfer1::Dims(); +} + +} // namespace + template <typename DeviceContext, typename T> void paddle::operators::TensorRTEngineKernel<DeviceContext, T>::Prepare( const framework::ExecutionContext &context) const { + VLOG(4) << "Prepare engine"; // Get the ProgramDesc and pass to convert. - const auto &block = context.Attr<framework::proto::BlockDesc>("subgraph"); + framework::proto::BlockDesc block_desc; + block_desc.ParseFromString(context.Attr<std::string>("subgraph")); max_batch_ = context.Attr<int>("max_batch"); auto max_workspace = context.Attr<int>("max_workspace"); - engine_.reset(new inference::tensorrt::TensorRTEngine( - max_batch_, max_workspace, nullptr)); + engine_ = Singleton<TRT_EngineManager>::Global().Create( + max_batch_, max_workspace, &stream_); + engine_->InitNetwork(); + + framework::BlockDesc block(nullptr /*programdesc*/, &block_desc); + // Add inputs + VLOG(4) << "declare inputs"; + for (auto &input : context.Inputs("Xs")) { + VLOG(4) << "declare input " << input; + auto *var = block.FindVar(input); + PADDLE_ENFORCE_EQ(var->GetType(), FluidDT::VarType_Type_LOD_TENSOR, + "TensorRT engine only takes LoDTensor as input"); + auto shape = var->GetShape(); + engine_->DeclareInput( + input, FluidDataType2TRT( + var->Proto()->type().lod_tensor().tensor().data_type()), + Vec2TRT_Dims(var->GetShape())); + } + // TODO(Superjomn) parameters should be passed after analysised from outside. inference::Singleton<inference::tensorrt::OpConverter>::Global().ConvertBlock( - block, {}, context.scope(), engine_.get()); + block_desc, {}, context.scope(), engine_); + + // Add outputs + VLOG(4) << "declare outputs"; + for (auto &output : context.Outputs("Ys")) { + VLOG(4) << "declare output " << output; + engine_->DeclareOutput(output); + } + engine_->FreezeNetwork(); } @@ -42,7 +112,9 @@ class TensorRTEngineOpMaker : public framework::OpProtoAndCheckerMaker { void Make() override { AddInput("Xs", "A list of inputs.").AsDuplicable(); AddOutput("Ys", "A list of outputs").AsDuplicable(); - AddAttr<std::string>("subgraph", "the subgraph"); + AddAttr<std::string>("subgraph", "the subgraph."); + AddAttr<int>("max_batch", "the maximum batch size."); + AddAttr<int>("max_workspace", "the maximum batch size."); AddComment("TensorRT engine operator."); } }; diff --git a/paddle/fluid/operators/tensorrt_engine_op.h b/paddle/fluid/operators/tensorrt_engine_op.h index fe273d386c529be3df05a955f492e2c39d4d8812..4b089601ff76eedd87bb3a52a38c4d22d4a94bf6 100644 --- a/paddle/fluid/operators/tensorrt_engine_op.h +++ b/paddle/fluid/operators/tensorrt_engine_op.h @@ -32,9 +32,12 @@ class TensorRTEngineOp : public framework::OperatorWithKernel { framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { + auto input0 = ctx.Inputs("Xs").front(); framework::OpKernelType kt = framework::OpKernelType( - framework::ToDataType( - ctx.Input<framework::LoDTensor>("pre_ids")->type()), + framework::ToDataType(ctx.scope() + .FindVar(input0) + ->GetMutable<framework::LoDTensor>() + ->type()), platform::CPUPlace()); return kt; } @@ -50,17 +53,16 @@ class TensorRTEngineKernel : public framework::OpKernel<T> { auto input_names = context.op().Inputs("Xs"); PADDLE_ENFORCE(!input_names.empty(), "should pass more than one inputs"); // Try to determine a batch_size - auto* tensor0 = context.Input<framework::LoDTensor>(input_names.front()); - PADDLE_ENFORCE_NOT_NULL(tensor0); - int batch_size = tensor0->dims()[0]; + auto& tensor0 = inference::analysis::GetFromScope<framework::LoDTensor>( + context.scope(), input_names.front()); + int batch_size = tensor0.dims()[0]; PADDLE_ENFORCE_LE(batch_size, max_batch_); // Convert input tensor from fluid to engine. for (const auto& x : context.Inputs("Xs")) { // convert input and copy to TRT engine's buffer - auto* v = context.scope().FindVar(x); - PADDLE_ENFORCE_NOT_NULL(v, "no variable called %s", x); - auto& t = v->Get<framework::LoDTensor>(); + auto& t = inference::analysis::GetFromScope<framework::LoDTensor>( + context.scope(), x); if (platform::is_cpu_place(t.place())) { engine_->SetInputFromCPU(x, static_cast<const void*>(t.data<void>()), t.memory_size()); @@ -86,13 +88,18 @@ class TensorRTEngineKernel : public framework::OpKernel<T> { fluid_t->Resize(framework::make_ddim(ddim)); auto size = inference::analysis::AccuDims(dims.d, dims.nbDims); if (platform::is_cpu_place(fluid_t->place())) { + // TODO(Superjomn) change this float to dtype size. engine_->GetOutputInCPU( - y, fluid_t->mutable_data<float>(platform::CPUPlace()), size); + y, fluid_t->mutable_data<float>(platform::CPUPlace()), + size * sizeof(float)); } else { engine_->GetOutputInGPU( - y, fluid_t->mutable_data<float>(platform::CUDAPlace()), size); + y, fluid_t->mutable_data<float>(platform::CUDAPlace()), + size * sizeof(float)); } } + + cudaStreamSynchronize(stream_); } protected: @@ -100,7 +107,8 @@ class TensorRTEngineKernel : public framework::OpKernel<T> { void Prepare(const framework::ExecutionContext& context) const; private: - mutable std::unique_ptr<inference::tensorrt::TensorRTEngine> engine_; + mutable cudaStream_t stream_; + mutable inference::tensorrt::TensorRTEngine* engine_{nullptr}; mutable int max_batch_{0}; }; diff --git a/paddle/fluid/operators/tensorrt_engine_op_test.cc b/paddle/fluid/operators/tensorrt_engine_op_test.cc new file mode 100644 index 0000000000000000000000000000000000000000..6f383de259b270038c32296b59007f6c7d895f12 --- /dev/null +++ b/paddle/fluid/operators/tensorrt_engine_op_test.cc @@ -0,0 +1,152 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + +http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include <gtest/gtest.h> +#include "paddle/fluid/framework/block_desc.h" +#include "paddle/fluid/framework/lod_tensor.h" +#include "paddle/fluid/framework/op_desc.h" +#include "paddle/fluid/framework/op_registry.h" +#include "paddle/fluid/framework/program_desc.h" +#include "paddle/fluid/framework/scope.h" +#include "paddle/fluid/inference/tensorrt/convert/op_converter.h" +#include "paddle/fluid/inference/tensorrt/convert/ut_helper.h" + +USE_CPU_ONLY_OP(tensorrt_engine); + +namespace paddle { +namespace operators { + +namespace { +void CreateCPUTensor(framework::Scope* scope, const std::string& name, + const std::vector<int64_t>& shape) { + auto* var = scope->Var(name); + auto* tensor = var->GetMutable<framework::LoDTensor>(); + auto dims = framework::make_ddim(shape); + tensor->Resize(dims); + platform::CPUPlace place; + platform::CPUDeviceContext ctx(place); + inference::tensorrt::RandomizeTensor(tensor, place, ctx); +} + +void AddTensorToBlockDesc(framework::proto::BlockDesc* block, + const std::string& name, + const std::vector<int64_t>& shape) { + using framework::proto::VarType; + auto* var = block->add_vars(); + framework::VarDesc desc(name); + desc.SetType(VarType::LOD_TENSOR); + desc.SetDataType(VarType::FP32); + desc.SetShape(shape); + *var = *desc.Proto(); +} + +template <typename T> +void SetAttr(framework::proto::OpDesc* op, const std::string& name, + const T& data); + +template <> +void SetAttr<std::string>(framework::proto::OpDesc* op, const std::string& name, + const std::string& data) { + auto* attr = op->add_attrs(); + attr->set_name(name); + attr->set_type(paddle::framework::proto::AttrType::STRING); + attr->set_s(data); +} +template <> +void SetAttr<int>(framework::proto::OpDesc* op, const std::string& name, + const int& data) { + auto* attr = op->add_attrs(); + attr->set_name(name); + attr->set_type(paddle::framework::proto::AttrType::INT); + attr->set_i(data); +} +template <> +void SetAttr<int64_t>(framework::proto::OpDesc* op, const std::string& name, + const int64_t& data) { + auto* attr = op->add_attrs(); + attr->set_name(name); + attr->set_type(paddle::framework::proto::AttrType::LONG); + attr->set_l(data); +} + +} // namespace + +TEST(TensorRTEngineOp, manual) { + framework::ProgramDesc program; + auto* block_ = program.Proto()->add_blocks(); + block_->set_idx(0); + block_->set_parent_idx(-1); + + LOG(INFO) << "create block desc"; + framework::BlockDesc block_desc(&program, block_); + LOG(INFO) << "create mul op"; + auto* mul = block_desc.AppendOp(); + mul->SetType("mul"); + mul->SetInput("X", std::vector<std::string>({"x"})); // 2 x 4 + mul->SetInput("Y", std::vector<std::string>({"y"})); // 4 x 6 + mul->SetOutput("Out", std::vector<std::string>({"z"})); // 2 x 6 + + LOG(INFO) << "create fc op"; + auto* fc = block_desc.AppendOp(); + fc->SetType("mul"); + fc->SetInput("X", std::vector<std::string>({"z"})); + fc->SetInput("Y", std::vector<std::string>({"y0"})); // 6 x 8 + fc->SetOutput("Out", std::vector<std::string>({"z0"})); // 2 x 8 + + // Set inputs' variable shape in BlockDesc + AddTensorToBlockDesc(block_, "x", std::vector<int64_t>({2, 4})); + AddTensorToBlockDesc(block_, "y", std::vector<int64_t>({4, 6})); + AddTensorToBlockDesc(block_, "y0", std::vector<int64_t>({6, 8})); + AddTensorToBlockDesc(block_, "z", std::vector<int64_t>({2, 6})); + + // It is wired, need to copy manually. + *block_->add_ops() = *mul->Proto(); + *block_->add_ops() = *fc->Proto(); + + ASSERT_EQ(block_->ops_size(), 2); + + LOG(INFO) << "create tensorrt desc"; + framework::OpDesc engine_op_desc(nullptr); + engine_op_desc.SetType("tensorrt_engine"); + engine_op_desc.SetInput("Xs", std::vector<std::string>({"x", "y", "y0"})); + engine_op_desc.SetOutput("Ys", std::vector<std::string>({"z0"})); + SetAttr<std::string>(engine_op_desc.Proto(), "subgraph", + block_->SerializeAsString()); + SetAttr<int>(engine_op_desc.Proto(), "max_batch", 30); + SetAttr<int>(engine_op_desc.Proto(), "max_workspace", 1 << 10); + + LOG(INFO) << "create engine op"; + auto engine_op = framework::OpRegistry::CreateOp(*engine_op_desc.Proto()); + + framework::Scope scope; + platform::CPUPlace place; + platform::CPUDeviceContext ctx(place); + // Prepare variables. + CreateCPUTensor(&scope, "x", std::vector<int64_t>({2, 4})); + CreateCPUTensor(&scope, "y", std::vector<int64_t>({4, 6})); + CreateCPUTensor(&scope, "z", std::vector<int64_t>({2, 6})); + + CreateCPUTensor(&scope, "y0", std::vector<int64_t>({6, 8})); + CreateCPUTensor(&scope, "z0", std::vector<int64_t>({2, 8})); + + // Execute them. + LOG(INFO) << "engine_op run"; + engine_op->Run(scope, place); +} + +} // namespace operators +} // namespace paddle + +USE_TRT_CONVERTER(mul) +USE_TRT_CONVERTER(fc) diff --git a/paddle/fluid/operators/test_send_nccl_id.cc b/paddle/fluid/operators/test_send_nccl_id.cc index eb01ac9b9072b1bbd4115d60a2101d2f1cbcf93a..a01a75cbb070f7f835b93f5ddc62f5aad5a5e667 100644 --- a/paddle/fluid/operators/test_send_nccl_id.cc +++ b/paddle/fluid/operators/test_send_nccl_id.cc @@ -87,9 +87,10 @@ TEST(SendNcclId, GrpcServer) { int port = g_rpc_service->GetSelectedPort(); std::string ep = string::Sprintf("127.0.0.1:%d", port); - detail::RPCClient* client = detail::RPCClient::GetInstance(); - LOG(INFO) << "connect to server " << ep; - client->AsyncSendVariable(ep, dev_ctx, scope, NCCL_ID_VARNAME); + detail::RPCClient* client = + detail::RPCClient::GetInstance<detail::GRPCClient>(); + LOG(INFO) << "connect to server" << ep; + client->AsyncSendVar(ep, dev_ctx, scope, NCCL_ID_VARNAME); client->Wait(); client->AsyncSendBatchBarrier(ep); client->Wait(); diff --git a/paddle/fluid/platform/assert.h b/paddle/fluid/platform/assert.h index 123d3598f4f4753f70889e415aff0f41b7d212f7..2ce9b31bb81de867ff4ed6ee14afddecd95317b9 100644 --- a/paddle/fluid/platform/assert.h +++ b/paddle/fluid/platform/assert.h @@ -17,7 +17,7 @@ limitations under the License. */ #define STRINGIFY(x) #x #define TOSTRING(x) STRINGIFY(x) -#if defined(__APPLE__) && defined(__CUDA_ARCH__) && !defined(NDEBUG) +#if defined(__CUDA_ARCH__) #include <stdio.h> #define PADDLE_ASSERT(e) \ do { \ @@ -38,6 +38,9 @@ limitations under the License. */ } while (0) #else #include <assert.h> -#define PADDLE_ASSERT(e) assert(e) +// For cuda, the assertions can affect performance and it is therefore +// recommended to disable them in production code +// https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#assertion +#define PADDLE_ASSERT(e) assert((e)) #define PADDLE_ASSERT_MSG(e, m) assert((e) && (m)) #endif diff --git a/paddle/fluid/platform/cudnn_helper.h b/paddle/fluid/platform/cudnn_helper.h index 0f4a7c8485b21e36dac46c5a87c2445275a3195e..6ea4f8b7cba18ce7f803dbd9b15a7ae70c3055f2 100644 --- a/paddle/fluid/platform/cudnn_helper.h +++ b/paddle/fluid/platform/cudnn_helper.h @@ -81,6 +81,27 @@ enum class PoolingMode { kMaximumDeterministic, }; +#if CUDNN_VERSION < 6000 +#pragma message "CUDNN version under 6.0 is supported at best effort." +#pragma message "We strongly encourage you to move to 6.0 and above." +#pragma message "This message is intended to annoy you enough to update." +#pragma message \ + "please see https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/" + +inline cudnnPoolingMode_t GetPoolingMode(const PoolingMode& mode) { + switch (mode) { + case PoolingMode::kMaximumDeterministic: + return CUDNN_POOLING_MAX; + case PoolingMode::kAverage: + return CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING; + case PoolingMode::kMaximum: + return CUDNN_POOLING_MAX; + default: + PADDLE_THROW("Unexpected pooling mode."); + } +} +#else + inline cudnnPoolingMode_t GetPoolingMode(const PoolingMode& mode) { switch (mode) { case PoolingMode::kMaximumDeterministic: @@ -93,6 +114,7 @@ inline cudnnPoolingMode_t GetPoolingMode(const PoolingMode& mode) { PADDLE_THROW("Unexpected pooling mode."); } } +#endif // CUDNN_VERSION < 6000 template <typename T> class CudnnDataType; diff --git a/paddle/fluid/pybind/pybind.cc b/paddle/fluid/pybind/pybind.cc index 03cf417b62f96fd6812b3eac497ffdf9a484f5eb..669d1bdaa3ec194be817cdc5e1f8484770c70c68 100644 --- a/paddle/fluid/pybind/pybind.cc +++ b/paddle/fluid/pybind/pybind.cc @@ -553,6 +553,12 @@ All parameter, weight, gradient are variables in Paddle. [](BuildStrategy &self, BuildStrategy::GradientScaleStrategy strategy) { self.gradient_scale_ = strategy; + }) + .def_property( + "debug_graphviz_path", + [](const BuildStrategy &self) { return self.debug_graphviz_path_; }, + [](BuildStrategy &self, const std::string &path) { + self.debug_graphviz_path_ = path; }); pe.def(py::init<const std::vector<platform::Place> &, diff --git a/paddle/scripts/paddle_build.sh b/paddle/scripts/paddle_build.sh index 113d02ce4865877d9385da31d996c0985c348716..55959197e7cd82253fb0c604604b4302ca0a3dc7 100755 --- a/paddle/scripts/paddle_build.sh +++ b/paddle/scripts/paddle_build.sh @@ -447,7 +447,7 @@ EOF # run paddle version to install python packages first RUN apt-get update &&\ ${NCCL_DEPS}\ - apt-get install -y wget python-pip dmidecode python-tk && easy_install -U pip && \ + apt-get install -y wget python-pip python-opencv libgtk2.0-dev dmidecode python-tk && easy_install -U pip && \ pip install /*.whl; apt-get install -f -y && \ apt-get clean -y && \ rm -f /*.whl && \ diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index 56f6f26803919a171f6459c909e6bb71ab63b180..221f3ddae589d9992ba7fb92975a698ca4306249 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -1182,19 +1182,19 @@ def conv2d(input, - Input: - Input shape: $(N, C_{in}, H_{in}, W_{in})$ + Input shape: :math:`(N, C_{in}, H_{in}, W_{in})` - Filter shape: $(C_{out}, C_{in}, H_f, W_f)$ + Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)` - Output: - Output shape: $(N, C_{out}, H_{out}, W_{out})$ + Output shape: :math:`(N, C_{out}, H_{out}, W_{out})` Where .. math:: - H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\ - W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1 + H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\ + W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1 Args: input(Variable): The input image with [N, C, H, W] format. diff --git a/python/paddle/fluid/layers/tensor.py b/python/paddle/fluid/layers/tensor.py index be34cc81a5d5ca0e781e5984b6c3eeaa4e25eb90..75d3bf879703a1db1108eae45d879164e0024156 100644 --- a/python/paddle/fluid/layers/tensor.py +++ b/python/paddle/fluid/layers/tensor.py @@ -363,6 +363,40 @@ def zeros(shape, dtype, force_cpu=False): return fill_constant(value=0.0, **locals()) +def reverse(x, axis): + """ + **reverse** + + This function reverse the input 'x' along given axises. + + Args: + x(Vairbale): the input to be reversed. + axis(int|tuple|list): Axis that along which order of elements + is reversed. If it is a tuple or a list, reversing + will be apply on each axis in the tuple or list. + + Returns: + Variable: The reversed tensor. + + Examples: + .. code-block:: python + + out = fluid.layers.reverse(x=in, axis=0) + # or: + out = fluid.layers.reverse(x=in, axis=[0,1]) + """ + if isinstance(axis, int): + axis = [axis] + helper = LayerHelper("reverse", **locals()) + out = helper.create_tmp_variable(dtype=x.dtype) + helper.append_op( + type='reverse', + inputs={'Input': x}, + outputs={'Out': [out]}, + attrs={'axis': axis}) + return out + + def save(x, file_path, overwrite=True): """ Saves a variable as a file. diff --git a/python/paddle/fluid/tests/unittests/test_elementwise_add_op.py b/python/paddle/fluid/tests/unittests/test_elementwise_add_op.py index 1f52bd90d0d49bda6c180019e90ebd923c91439c..96d47906a0606bba4b1d2207f7da85b058e42a2b 100644 --- a/python/paddle/fluid/tests/unittests/test_elementwise_add_op.py +++ b/python/paddle/fluid/tests/unittests/test_elementwise_add_op.py @@ -252,5 +252,25 @@ class TestFP16ElementwiseAddOp_rowwise_add_1(TestFP16ElementwiseAddOp): self.axis = 1 +class TestElementwiseAddOp_channelwise_add(TestElementwiseAddOp): + def init_input_output(self): + self.x = np.random.rand(3, 20, 20).astype(self.dtype) + self.y = np.random.rand(3, 1, 1).astype(self.dtype) + self.out = self.x + self.y + + def init_axis(self): + self.axis = -1 + + +class TestFP16ElementwiseAddOp_channelwise_add(TestFP16ElementwiseAddOp): + def init_input_output(self): + self.x = np.random.rand(3, 10, 20).astype(self.dtype) + self.y = np.random.rand(3, 1, 1).astype(self.dtype) + self.out = self.x + self.y + + def init_axis(self): + self.axis = -1 + + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_mul_op.py b/python/paddle/fluid/tests/unittests/test_mul_op.py index 862b7f8cb93620da4dd4673028776cfe565eeb0b..bbc782c1bce302df68ab30013f3a7667e51ed479 100644 --- a/python/paddle/fluid/tests/unittests/test_mul_op.py +++ b/python/paddle/fluid/tests/unittests/test_mul_op.py @@ -22,8 +22,8 @@ class TestMulOp(OpTest): def setUp(self): self.op_type = "mul" self.inputs = { - 'X': np.random.random((32, 84)).astype("float32"), - 'Y': np.random.random((84, 100)).astype("float32") + 'X': np.random.random((2, 5)).astype("float32"), + 'Y': np.random.random((5, 3)).astype("float32") } self.outputs = {'Out': np.dot(self.inputs['X'], self.inputs['Y'])} @@ -46,13 +46,16 @@ class TestMulOp2(OpTest): def setUp(self): self.op_type = "mul" self.inputs = { - 'X': np.random.random((15, 4, 12, 10)).astype("float32"), - 'Y': np.random.random((4, 30, 8, 2, 9)).astype("float32") + 'X': np.random.random((3, 4, 4, 3)).astype("float32"), + 'Y': np.random.random((2, 6, 1, 2, 3)).astype("float32") } - self.attrs = {'x_num_col_dims': 2, 'y_num_col_dims': 2} - result = np.dot(self.inputs['X'].reshape(15 * 4, 12 * 10), - self.inputs['Y'].reshape(4 * 30, 8 * 2 * 9)) - result = result.reshape(15, 4, 8, 2, 9) + self.attrs = { + 'x_num_col_dims': 2, + 'y_num_col_dims': 2, + } + result = np.dot(self.inputs['X'].reshape(3 * 4, 4 * 3), + self.inputs['Y'].reshape(2 * 6, 1 * 2 * 3)) + result = result.reshape(3, 4, 1, 2, 3) self.outputs = {'Out': result} def test_check_output(self): @@ -73,9 +76,9 @@ class TestMulOp2(OpTest): class TestFP16MulOp1(OpTest): def setUp(self): self.op_type = "mul" - x = np.random.random((32, 84)).astype("float16") - y = np.random.random((84, 100)).astype("float16") - self.inputs = {'X': x.view(np.uint16), 'Y': y.view(np.uint16)} + x = np.random.random((3, 5)).astype("float16") + y = np.random.random((5, 4)).astype("float16") + self.inputs = {'X': x.view(np.float16), 'Y': y.view(np.float16)} self.outputs = {'Out': np.dot(x, y)} def test_check_output(self): @@ -88,13 +91,15 @@ class TestFP16MulOp1(OpTest): class TestFP16MulOp2(OpTest): def setUp(self): self.op_type = "mul" - x = np.random.random((15, 4, 12, 10)).astype("float16") - y = np.random.random((4, 30, 8, 2, 9)).astype("float16") - self.inputs = {'X': x.view(np.uint16), 'Y': y.view(np.uint16)} - self.attrs = {'x_num_col_dims': 2, 'y_num_col_dims': 2} - result = np.dot( - x.reshape(15 * 4, 12 * 10), y.reshape(4 * 30, 8 * 2 * 9)) - result = result.reshape(15, 4, 8, 2, 9) + x = np.random.random((3, 4, 4, 3)).astype("float16") + y = np.random.random((2, 6, 1, 2, 3)).astype("float16") + self.inputs = {'X': x.view(np.float16), 'Y': y.view(np.float16)} + self.attrs = { + 'x_num_col_dims': 2, + 'y_num_col_dims': 2, + } + result = np.dot(x.reshape(3 * 4, 4 * 3), y.reshape(2 * 6, 1 * 2 * 3)) + result = result.reshape(3, 4, 1, 2, 3) self.outputs = {'Out': result} def test_check_output(self): diff --git a/python/paddle/fluid/tests/unittests/test_reverse_op.py b/python/paddle/fluid/tests/unittests/test_reverse_op.py new file mode 100644 index 0000000000000000000000000000000000000000..f845575a02869f08299d76b5600074598ca27f6c --- /dev/null +++ b/python/paddle/fluid/tests/unittests/test_reverse_op.py @@ -0,0 +1,67 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import unittest +import numpy as np +from op_test import OpTest + + +class TestReverseOp(OpTest): + def initTestCase(self): + self.x = np.random.random((3, 4)).astype('float32') + self.axis = [0] + + def setUp(self): + self.initTestCase() + self.op_type = "reverse" + self.inputs = {"X": self.x} + self.attrs = {'axis': self.axis} + out = self.x + for a in self.axis: + out = np.flip(out, axis=a) + self.outputs = {'Out': out} + + def test_check_output(self): + self.check_output() + + def test_check_grad(self): + self.check_grad(['X'], 'Out') + + +class TestCase0(TestReverseOp): + def initTestCase(self): + self.x = np.random.random((3, 4)).astype('float32') + self.axis = [1] + + +class TestCase1(TestReverseOp): + def initTestCase(self): + self.x = np.random.random((3, 4)).astype('float32') + self.axis = [0, 1] + + +class TestCase2(TestReverseOp): + def initTestCase(self): + self.x = np.random.random((3, 4, 5)).astype('float32') + self.axis = [0, 2] + + +class TestCase3(TestReverseOp): + def initTestCase(self): + self.x = np.random.random((3, 4, 5)).astype('float32') + self.axis = [1, 2] + + +if __name__ == '__main__': + unittest.main()