Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
ab85a891
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ab85a891
编写于
9月 30, 2020
作者:
H
Huihuang Zheng
提交者:
GitHub
9月 30, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Dy2stat] Add Resnet Test for V2 APIs (#27459)
* Add test_resnet_v2.py test=develop
上级
488152a6
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
362 addition
and
0 deletion
+362
-0
python/paddle/fluid/tests/unittests/dygraph_to_static/test_resnet_v2.py
...fluid/tests/unittests/dygraph_to_static/test_resnet_v2.py
+362
-0
未找到文件。
python/paddle/fluid/tests/unittests/dygraph_to_static/test_resnet_v2.py
0 → 100644
浏览文件 @
ab85a891
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
math
import
time
import
unittest
import
numpy
as
np
import
paddle
from
predictor_utils
import
PredictorTools
SEED
=
2020
IMAGENET1000
=
1281167
base_lr
=
0.001
momentum_rate
=
0.9
l2_decay
=
1e-4
# NOTE: Reduce batch_size from 8 to 2 to avoid unittest timeout.
batch_size
=
2
epoch_num
=
1
place
=
paddle
.
CUDAPlace
(
0
)
if
paddle
.
is_compiled_with_cuda
()
\
else
paddle
.
CPUPlace
()
MODEL_SAVE_PATH
=
"./resnet_v2.inference.model"
DY_STATE_DICT_SAVE_PATH
=
"./resnet_v2.dygraph"
program_translator
=
paddle
.
jit
.
ProgramTranslator
()
if
paddle
.
is_compiled_with_cuda
():
paddle
.
fluid
.
set_flags
({
'FLAGS_cudnn_deterministic'
:
True
})
def
optimizer_setting
(
parameter_list
=
None
):
optimizer
=
paddle
.
optimizer
.
Momentum
(
learning_rate
=
base_lr
,
momentum
=
momentum_rate
,
weight_decay
=
paddle
.
regularizer
.
L2Decay
(
l2_decay
),
parameters
=
parameter_list
)
return
optimizer
class
ConvBNLayer
(
paddle
.
nn
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
filter_size
,
stride
=
1
,
groups
=
1
,
act
=
None
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
_conv
=
paddle
.
nn
.
Conv2d
(
in_channels
=
num_channels
,
out_channels
=
num_filters
,
kernel_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
bias_attr
=
False
)
self
.
_batch_norm
=
paddle
.
nn
.
BatchNorm
(
num_filters
,
act
=
act
)
def
forward
(
self
,
inputs
):
y
=
self
.
_conv
(
inputs
)
y
=
self
.
_batch_norm
(
y
)
return
y
class
BottleneckBlock
(
paddle
.
nn
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
stride
,
shortcut
=
True
):
super
(
BottleneckBlock
,
self
).
__init__
()
self
.
conv0
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
'relu'
)
self
.
conv1
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
3
,
stride
=
stride
,
act
=
'relu'
)
self
.
conv2
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
act
=
None
)
if
not
shortcut
:
self
.
short
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
stride
=
stride
)
self
.
shortcut
=
shortcut
self
.
_num_channels_out
=
num_filters
*
4
def
forward
(
self
,
inputs
):
y
=
self
.
conv0
(
inputs
)
conv1
=
self
.
conv1
(
y
)
conv2
=
self
.
conv2
(
conv1
)
if
self
.
shortcut
:
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
paddle
.
add
(
x
=
short
,
y
=
conv2
)
layer_helper
=
paddle
.
fluid
.
layer_helper
.
LayerHelper
(
self
.
full_name
(),
act
=
'relu'
)
return
layer_helper
.
append_activation
(
y
)
class
ResNet
(
paddle
.
nn
.
Layer
):
def
__init__
(
self
,
layers
=
50
,
class_dim
=
102
):
super
(
ResNet
,
self
).
__init__
()
self
.
layers
=
layers
supported_layers
=
[
50
,
101
,
152
]
assert
layers
in
supported_layers
,
\
"supported layers are {} but input layer is {}"
.
format
(
supported_layers
,
layers
)
if
layers
==
50
:
depth
=
[
3
,
4
,
6
,
3
]
elif
layers
==
101
:
depth
=
[
3
,
4
,
23
,
3
]
elif
layers
==
152
:
depth
=
[
3
,
8
,
36
,
3
]
num_channels
=
[
64
,
256
,
512
,
1024
]
num_filters
=
[
64
,
128
,
256
,
512
]
self
.
conv
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
)
self
.
pool2d_max
=
paddle
.
nn
.
Pool2D
(
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
)
self
.
bottleneck_block_list
=
[]
for
block
in
range
(
len
(
depth
)):
shortcut
=
False
for
i
in
range
(
depth
[
block
]):
bottleneck_block
=
self
.
add_sublayer
(
'bb_%d_%d'
%
(
block
,
i
),
BottleneckBlock
(
num_channels
=
num_channels
[
block
]
if
i
==
0
else
num_filters
[
block
]
*
4
,
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
shortcut
=
shortcut
))
self
.
bottleneck_block_list
.
append
(
bottleneck_block
)
shortcut
=
True
self
.
pool2d_avg
=
paddle
.
nn
.
Pool2D
(
pool_size
=
7
,
pool_type
=
'avg'
,
global_pooling
=
True
)
self
.
pool2d_avg_output
=
num_filters
[
len
(
num_filters
)
-
1
]
*
4
*
1
*
1
stdv
=
1.0
/
math
.
sqrt
(
2048
*
1.0
)
self
.
out
=
paddle
.
nn
.
Linear
(
in_features
=
self
.
pool2d_avg_output
,
out_features
=
class_dim
,
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
paddle
.
nn
.
initializer
.
Uniform
(
-
stdv
,
stdv
)))
@
paddle
.
jit
.
to_static
def
forward
(
self
,
inputs
):
y
=
self
.
conv
(
inputs
)
y
=
self
.
pool2d_max
(
y
)
for
bottleneck_block
in
self
.
bottleneck_block_list
:
y
=
bottleneck_block
(
y
)
y
=
self
.
pool2d_avg
(
y
)
y
=
paddle
.
reshape
(
y
,
shape
=
[
-
1
,
self
.
pool2d_avg_output
])
pred
=
self
.
out
(
y
)
pred
=
paddle
.
nn
.
functional
.
softmax
(
pred
)
return
pred
def
reader_decorator
(
reader
):
def
__reader__
():
for
item
in
reader
():
img
=
np
.
array
(
item
[
0
]).
astype
(
'float32'
).
reshape
(
3
,
224
,
224
)
label
=
np
.
array
(
item
[
1
]).
astype
(
'int64'
).
reshape
(
1
)
yield
img
,
label
return
__reader__
def
train
(
to_static
):
"""
Tests model decorated by `dygraph_to_static_output` in static mode. For users, the model is defined in dygraph mode and trained in static mode.
"""
paddle
.
disable_static
(
place
)
np
.
random
.
seed
(
SEED
)
paddle
.
manual_seed
(
SEED
)
paddle
.
framework
.
random
.
_manual_program_seed
(
SEED
)
train_reader
=
paddle
.
batch
(
reader_decorator
(
paddle
.
dataset
.
flowers
.
train
(
use_xmap
=
False
)),
batch_size
=
batch_size
,
drop_last
=
True
)
data_loader
=
paddle
.
io
.
DataLoader
.
from_generator
(
capacity
=
5
,
iterable
=
True
)
data_loader
.
set_sample_list_generator
(
train_reader
)
resnet
=
ResNet
()
optimizer
=
optimizer_setting
(
parameter_list
=
resnet
.
parameters
())
for
epoch
in
range
(
epoch_num
):
total_loss
=
0.0
total_acc1
=
0.0
total_acc5
=
0.0
total_sample
=
0
for
batch_id
,
data
in
enumerate
(
data_loader
()):
start_time
=
time
.
time
()
img
,
label
=
data
pred
=
resnet
(
img
)
loss
=
paddle
.
nn
.
functional
.
cross_entropy
(
input
=
pred
,
label
=
label
)
avg_loss
=
paddle
.
mean
(
x
=
loss
)
acc_top1
=
paddle
.
metric
.
accuracy
(
input
=
pred
,
label
=
label
,
k
=
1
)
acc_top5
=
paddle
.
metric
.
accuracy
(
input
=
pred
,
label
=
label
,
k
=
5
)
avg_loss
.
backward
()
optimizer
.
minimize
(
avg_loss
)
resnet
.
clear_gradients
()
total_loss
+=
avg_loss
total_acc1
+=
acc_top1
total_acc5
+=
acc_top5
total_sample
+=
1
end_time
=
time
.
time
()
if
batch_id
%
2
==
0
:
print
(
"epoch %d | batch step %d, loss %0.3f, acc1 %0.3f, acc5 %0.3f, time %f"
%
\
(
epoch
,
batch_id
,
total_loss
.
numpy
()
/
total_sample
,
\
total_acc1
.
numpy
()
/
total_sample
,
total_acc5
.
numpy
()
/
total_sample
,
end_time
-
start_time
))
if
batch_id
==
10
:
if
to_static
:
paddle
.
jit
.
save
(
resnet
,
MODEL_SAVE_PATH
)
else
:
paddle
.
fluid
.
dygraph
.
save_dygraph
(
resnet
.
state_dict
(),
DY_STATE_DICT_SAVE_PATH
)
# avoid dataloader throw abort signaal
data_loader
.
_reset
()
break
paddle
.
enable_static
()
return
total_loss
.
numpy
()
def
predict_dygraph
(
data
):
program_translator
.
enable
(
False
)
paddle
.
disable_static
(
place
)
resnet
=
ResNet
()
model_dict
,
_
=
paddle
.
fluid
.
dygraph
.
load_dygraph
(
DY_STATE_DICT_SAVE_PATH
)
resnet
.
set_dict
(
model_dict
)
resnet
.
eval
()
pred_res
=
resnet
(
paddle
.
to_tensor
(
data
=
data
,
dtype
=
None
,
place
=
None
,
stop_gradient
=
True
))
ret
=
pred_res
.
numpy
()
paddle
.
enable_static
()
return
ret
def
predict_static
(
data
):
exe
=
paddle
.
static
.
Executor
(
place
)
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
paddle
.
static
.
load_inference_model
(
MODEL_SAVE_PATH
,
executor
=
exe
,
params_filename
=
paddle
.
fluid
.
dygraph
.
io
.
VARIABLE_FILENAME
)
pred_res
=
exe
.
run
(
inference_program
,
feed
=
{
feed_target_names
[
0
]:
data
},
fetch_list
=
fetch_targets
)
return
pred_res
[
0
]
def
predict_dygraph_jit
(
data
):
paddle
.
disable_static
(
place
)
resnet
=
paddle
.
jit
.
load
(
MODEL_SAVE_PATH
)
resnet
.
eval
()
pred_res
=
resnet
(
data
)
ret
=
pred_res
.
numpy
()
paddle
.
enable_static
()
return
ret
def
predict_analysis_inference
(
data
):
output
=
PredictorTools
(
MODEL_SAVE_PATH
,
paddle
.
fluid
.
dygraph
.
io
.
VARIABLE_FILENAME
,
[
data
])
out
=
output
()
return
out
class
TestResnet
(
unittest
.
TestCase
):
def
train
(
self
,
to_static
):
program_translator
.
enable
(
to_static
)
return
train
(
to_static
)
def
verify_predict
(
self
):
image
=
np
.
random
.
random
([
1
,
3
,
224
,
224
]).
astype
(
'float32'
)
dy_pre
=
predict_dygraph
(
image
)
st_pre
=
predict_static
(
image
)
dy_jit_pre
=
predict_dygraph_jit
(
image
)
predictor_pre
=
predict_analysis_inference
(
image
)
self
.
assertTrue
(
np
.
allclose
(
dy_pre
,
st_pre
),
msg
=
"dy_pre:
\n
{}
\n
, st_pre:
\n
{}."
.
format
(
dy_pre
,
st_pre
))
self
.
assertTrue
(
np
.
allclose
(
dy_jit_pre
,
st_pre
),
msg
=
"dy_jit_pre:
\n
{}
\n
, st_pre:
\n
{}."
.
format
(
dy_jit_pre
,
st_pre
))
self
.
assertTrue
(
np
.
allclose
(
predictor_pre
,
st_pre
),
msg
=
"predictor_pre:
\n
{}
\n
, st_pre:
\n
{}."
.
format
(
predictor_pre
,
st_pre
))
def
test_resnet
(
self
):
static_loss
=
self
.
train
(
to_static
=
True
)
dygraph_loss
=
self
.
train
(
to_static
=
False
)
self
.
assertTrue
(
np
.
allclose
(
static_loss
,
dygraph_loss
),
msg
=
"static_loss: {}
\n
dygraph_loss: {}"
.
format
(
static_loss
,
dygraph_loss
))
self
.
verify_predict
()
def
test_in_static_mode_mkldnn
(
self
):
paddle
.
fluid
.
set_flags
({
'FLAGS_use_mkldnn'
:
True
})
try
:
train
(
to_static
=
True
)
finally
:
paddle
.
fluid
.
set_flags
({
'FLAGS_use_mkldnn'
:
False
})
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录