Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
aa2ed0dc
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
aa2ed0dc
编写于
1月 03, 2020
作者:
F
FDInSky
提交者:
Kaipeng Deng
1月 03, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix generate_proposal_labesl op (#21793)
* test=develop fix generate_proposal_labesl op
上级
81030125
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
98 addition
and
42 deletion
+98
-42
paddle/fluid/operators/detection/generate_proposal_labels_op.cc
.../fluid/operators/detection/generate_proposal_labels_op.cc
+25
-22
python/paddle/fluid/tests/unittests/test_generate_proposal_labels_op.py
...fluid/tests/unittests/test_generate_proposal_labels_op.py
+73
-20
未找到文件。
paddle/fluid/operators/detection/generate_proposal_labels_op.cc
浏览文件 @
aa2ed0dc
...
@@ -124,6 +124,7 @@ std::vector<std::vector<int>> SampleFgBgGt(
...
@@ -124,6 +124,7 @@ std::vector<std::vector<int>> SampleFgBgGt(
// Follow the Faster RCNN's implementation
// Follow the Faster RCNN's implementation
for
(
int64_t
i
=
0
;
i
<
row
;
++
i
)
{
for
(
int64_t
i
=
0
;
i
<
row
;
++
i
)
{
const
T
*
v
=
proposal_to_gt_overlaps
+
i
*
col
;
const
T
*
v
=
proposal_to_gt_overlaps
+
i
*
col
;
T
max_overlap
=
*
std
::
max_element
(
v
,
v
+
col
);
T
max_overlap
=
*
std
::
max_element
(
v
,
v
+
col
);
if
((
i
<
gt_num
)
&&
(
crowd_data
[
i
]))
{
if
((
i
<
gt_num
)
&&
(
crowd_data
[
i
]))
{
max_overlap
=
-
1.0
;
max_overlap
=
-
1.0
;
...
@@ -254,38 +255,40 @@ std::vector<Tensor> SampleRoisForOneImage(
...
@@ -254,38 +255,40 @@ std::vector<Tensor> SampleRoisForOneImage(
bool
is_cls_agnostic
)
{
bool
is_cls_agnostic
)
{
// 1.1 map to original image
// 1.1 map to original image
auto
im_scale
=
im_info
.
data
<
T
>
()[
2
];
auto
im_scale
=
im_info
.
data
<
T
>
()[
2
];
Tensor
rpn_rois_slice
;
Tensor
rpn_rois
;
if
(
is_cascade_rcnn
)
{
Tensor
rpn_rois
;
// slice rpn_rois from gt_box_num refer to detectron
rpn_rois_slice
=
rpn_rois_in
.
Slice
(
gt_boxes
.
dims
()[
0
],
rpn_rois_in
.
dims
()[
0
]);
rpn_rois
.
mutable_data
<
T
>
(
rpn_rois_slice
.
dims
(),
context
.
GetPlace
());
const
T
*
rpn_rois_in_dt
=
rpn_rois_slice
.
data
<
T
>
();
T
*
rpn_rois_dt
=
rpn_rois
.
data
<
T
>
();
for
(
int
i
=
0
;
i
<
rpn_rois
.
numel
();
++
i
)
{
rpn_rois_dt
[
i
]
=
rpn_rois_in_dt
[
i
]
/
im_scale
;
}
}
else
{
rpn_rois
.
mutable_data
<
T
>
(
rpn_rois_in
.
dims
(),
context
.
GetPlace
());
rpn_rois
.
mutable_data
<
T
>
(
rpn_rois_in
.
dims
(),
context
.
GetPlace
());
const
T
*
rpn_rois_in_dt
=
rpn_rois_in
.
data
<
T
>
();
const
T
*
rpn_rois_in_dt
=
rpn_rois_in
.
data
<
T
>
();
T
*
rpn_rois_dt
=
rpn_rois
.
data
<
T
>
();
T
*
rpn_rois_dt
=
rpn_rois
.
data
<
T
>
();
int
gt_num
=
gt_boxes
.
dims
()[
0
]
*
4
;
for
(
int
i
=
0
;
i
<
rpn_rois
.
numel
();
++
i
)
{
for
(
int
i
=
0
;
i
<
rpn_rois
.
numel
();
++
i
)
{
if
(
i
<
gt_num
&&
is_cascade_rcnn
)
{
rpn_rois_dt
[
i
]
=
rpn_rois_in_dt
[
i
];
}
else
{
rpn_rois_dt
[
i
]
=
rpn_rois_in_dt
[
i
]
/
im_scale
;
rpn_rois_dt
[
i
]
=
rpn_rois_in_dt
[
i
]
/
im_scale
;
}
}
}
}
// 1.2 compute overlaps
// 1.2 compute overlaps
int
proposals_num
=
gt_boxes
.
dims
()[
0
]
+
rpn_rois
.
dims
()[
0
];
int
proposals_num
=
rpn_rois
.
dims
()[
0
];
Tensor
boxes
;
if
(
!
is_cascade_rcnn
)
{
boxes
.
mutable_data
<
T
>
({
proposals_num
,
kBoxDim
},
context
.
GetPlace
())
;
proposals_num
+=
gt_boxes
.
dims
()[
0
]
;
Concat
<
T
>
(
context
,
gt_boxes
,
rpn_rois
,
&
boxes
);
}
Tensor
proposal_to_gt_overlaps
;
Tensor
proposal_to_gt_overlaps
;
proposal_to_gt_overlaps
.
mutable_data
<
T
>
({
proposals_num
,
gt_boxes
.
dims
()[
0
]},
proposal_to_gt_overlaps
.
mutable_data
<
T
>
({
proposals_num
,
gt_boxes
.
dims
()[
0
]},
context
.
GetPlace
());
context
.
GetPlace
());
BboxOverlaps
<
T
>
(
boxes
,
gt_boxes
,
&
proposal_to_gt_overlaps
);
Tensor
boxes
;
boxes
.
mutable_data
<
T
>
({
proposals_num
,
kBoxDim
},
context
.
GetPlace
());
if
(
!
is_cascade_rcnn
)
{
Concat
<
T
>
(
context
,
gt_boxes
,
rpn_rois
,
&
boxes
);
}
else
{
T
*
boxes_dt
=
boxes
.
data
<
T
>
();
for
(
int
i
=
0
;
i
<
boxes
.
numel
();
++
i
)
{
boxes_dt
[
i
]
=
rpn_rois_dt
[
i
];
}
}
BboxOverlaps
<
T
>
(
boxes
,
gt_boxes
,
&
proposal_to_gt_overlaps
);
// Generate proposal index
// Generate proposal index
std
::
vector
<
std
::
vector
<
int
>>
fg_bg_gt
=
std
::
vector
<
std
::
vector
<
int
>>
fg_bg_gt
=
SampleFgBgGt
<
T
>
(
context
,
&
proposal_to_gt_overlaps
,
is_crowd
,
SampleFgBgGt
<
T
>
(
context
,
&
proposal_to_gt_overlaps
,
is_crowd
,
...
...
python/paddle/fluid/tests/unittests/test_generate_proposal_labels_op.py
浏览文件 @
aa2ed0dc
...
@@ -25,7 +25,7 @@ from op_test import OpTest
...
@@ -25,7 +25,7 @@ from op_test import OpTest
def
generate_proposal_labels_in_python
(
def
generate_proposal_labels_in_python
(
rpn_rois
,
gt_classes
,
is_crowd
,
gt_boxes
,
im_info
,
batch_size_per_im
,
rpn_rois
,
gt_classes
,
is_crowd
,
gt_boxes
,
im_info
,
batch_size_per_im
,
fg_fraction
,
fg_thresh
,
bg_thresh_hi
,
bg_thresh_lo
,
bbox_reg_weights
,
fg_fraction
,
fg_thresh
,
bg_thresh_hi
,
bg_thresh_lo
,
bbox_reg_weights
,
class_nums
,
is_cls_agnostic
,
is_cascade_rcnn
):
class_nums
,
use_random
,
is_cls_agnostic
,
is_cascade_rcnn
):
rois
=
[]
rois
=
[]
labels_int32
=
[]
labels_int32
=
[]
bbox_targets
=
[]
bbox_targets
=
[]
...
@@ -36,11 +36,11 @@ def generate_proposal_labels_in_python(
...
@@ -36,11 +36,11 @@ def generate_proposal_labels_in_python(
im_info
),
'batch size of rpn_rois and ground_truth is not matched'
im_info
),
'batch size of rpn_rois and ground_truth is not matched'
for
im_i
in
range
(
len
(
im_info
)):
for
im_i
in
range
(
len
(
im_info
)):
frcn_blobs
=
_sample_rois
(
rpn_rois
[
im_i
],
gt_classes
[
im_i
],
frcn_blobs
=
_sample_rois
(
is_crowd
[
im_i
],
gt_boxes
[
im_i
],
im_info
[
im_i
],
rpn_rois
[
im_i
],
gt_classes
[
im_i
],
is_crowd
[
im_i
],
gt_boxes
[
im_i
],
batch_size_per_im
,
fg_fraction
,
fg_thresh
,
im_info
[
im_i
],
batch_size_per_im
,
fg_fraction
,
fg_thresh
,
bg_thresh_hi
,
bg_thresh_lo
,
bbox_reg_weight
s
,
bg_thresh_hi
,
bg_thresh_lo
,
bbox_reg_weights
,
class_num
s
,
class_nums
,
is_cls_agnostic
,
is_cascade_rcnn
)
use_random
,
is_cls_agnostic
,
is_cascade_rcnn
)
lod
.
append
(
frcn_blobs
[
'rois'
].
shape
[
0
])
lod
.
append
(
frcn_blobs
[
'rois'
].
shape
[
0
])
rois
.
append
(
frcn_blobs
[
'rois'
])
rois
.
append
(
frcn_blobs
[
'rois'
])
labels_int32
.
append
(
frcn_blobs
[
'labels_int32'
])
labels_int32
.
append
(
frcn_blobs
[
'labels_int32'
])
...
@@ -53,18 +53,19 @@ def generate_proposal_labels_in_python(
...
@@ -53,18 +53,19 @@ def generate_proposal_labels_in_python(
def
_sample_rois
(
rpn_rois
,
gt_classes
,
is_crowd
,
gt_boxes
,
im_info
,
def
_sample_rois
(
rpn_rois
,
gt_classes
,
is_crowd
,
gt_boxes
,
im_info
,
batch_size_per_im
,
fg_fraction
,
fg_thresh
,
bg_thresh_hi
,
batch_size_per_im
,
fg_fraction
,
fg_thresh
,
bg_thresh_hi
,
bg_thresh_lo
,
bbox_reg_weights
,
class_nums
,
is_cls_agnostic
,
bg_thresh_lo
,
bbox_reg_weights
,
class_nums
,
use_random
,
is_cascade_rcnn
):
is_c
ls_agnostic
,
is_c
ascade_rcnn
):
rois_per_image
=
int
(
batch_size_per_im
)
rois_per_image
=
int
(
batch_size_per_im
)
fg_rois_per_im
=
int
(
np
.
round
(
fg_fraction
*
rois_per_image
))
fg_rois_per_im
=
int
(
np
.
round
(
fg_fraction
*
rois_per_image
))
# Roidb
# Roidb
im_scale
=
im_info
[
2
]
im_scale
=
im_info
[
2
]
inv_im_scale
=
1.
/
im_scale
inv_im_scale
=
1.
/
im_scale
rpn_rois
=
rpn_rois
*
inv_im_scale
if
is_cascade_rcnn
:
if
is_cascade_rcnn
:
rpn_rois
=
rpn_rois
[
gt_boxes
.
shape
[
0
]:,
:]
rpn_rois
=
rpn_rois
[
len
(
gt_boxes
):,
:]
rpn_rois
=
rpn_rois
*
inv_im_scale
boxes
=
np
.
vstack
([
gt_boxes
,
rpn_rois
])
boxes
=
np
.
vstack
([
gt_boxes
,
rpn_rois
])
gt_overlaps
=
np
.
zeros
((
boxes
.
shape
[
0
],
class_nums
))
gt_overlaps
=
np
.
zeros
((
boxes
.
shape
[
0
],
class_nums
))
box_to_gt_ind_map
=
np
.
zeros
((
boxes
.
shape
[
0
]),
dtype
=
np
.
int32
)
box_to_gt_ind_map
=
np
.
zeros
((
boxes
.
shape
[
0
]),
dtype
=
np
.
int32
)
if
len
(
gt_boxes
)
>
0
:
if
len
(
gt_boxes
)
>
0
:
...
@@ -83,13 +84,12 @@ def _sample_rois(rpn_rois, gt_classes, is_crowd, gt_boxes, im_info,
...
@@ -83,13 +84,12 @@ def _sample_rois(rpn_rois, gt_classes, is_crowd, gt_boxes, im_info,
overlapped_boxes_ind
]
overlapped_boxes_ind
]
crowd_ind
=
np
.
where
(
is_crowd
)[
0
]
crowd_ind
=
np
.
where
(
is_crowd
)[
0
]
gt_overlaps
[
crowd_ind
]
=
-
1
gt_overlaps
[
crowd_ind
]
=
-
1.0
max_overlaps
=
gt_overlaps
.
max
(
axis
=
1
)
max_overlaps
=
gt_overlaps
.
max
(
axis
=
1
)
max_classes
=
gt_overlaps
.
argmax
(
axis
=
1
)
max_classes
=
gt_overlaps
.
argmax
(
axis
=
1
)
# Cascade RCNN Decode Filter
if
is_cascade_rcnn
:
if
is_cascade_rcnn
:
# Cascade RCNN Decode Filter
ws
=
boxes
[:,
2
]
-
boxes
[:,
0
]
+
1
ws
=
boxes
[:,
2
]
-
boxes
[:,
0
]
+
1
hs
=
boxes
[:,
3
]
-
boxes
[:,
1
]
+
1
hs
=
boxes
[:,
3
]
-
boxes
[:,
1
]
+
1
keep
=
np
.
where
((
ws
>
0
)
&
(
hs
>
0
))[
0
]
keep
=
np
.
where
((
ws
>
0
)
&
(
hs
>
0
))[
0
]
...
@@ -104,7 +104,7 @@ def _sample_rois(rpn_rois, gt_classes, is_crowd, gt_boxes, im_info,
...
@@ -104,7 +104,7 @@ def _sample_rois(rpn_rois, gt_classes, is_crowd, gt_boxes, im_info,
fg_inds
=
np
.
where
(
max_overlaps
>=
fg_thresh
)[
0
]
fg_inds
=
np
.
where
(
max_overlaps
>=
fg_thresh
)[
0
]
fg_rois_per_this_image
=
np
.
minimum
(
fg_rois_per_im
,
fg_inds
.
shape
[
0
])
fg_rois_per_this_image
=
np
.
minimum
(
fg_rois_per_im
,
fg_inds
.
shape
[
0
])
# Sample foreground if there are too many
# Sample foreground if there are too many
if
fg_inds
.
shape
[
0
]
>
fg_rois_per_this_image
:
if
(
fg_inds
.
shape
[
0
]
>
fg_rois_per_this_image
)
and
use_random
:
fg_inds
=
np
.
random
.
choice
(
fg_inds
=
np
.
random
.
choice
(
fg_inds
,
size
=
fg_rois_per_this_image
,
replace
=
False
)
fg_inds
,
size
=
fg_rois_per_this_image
,
replace
=
False
)
fg_inds
=
fg_inds
[:
fg_rois_per_this_image
]
fg_inds
=
fg_inds
[:
fg_rois_per_this_image
]
...
@@ -115,7 +115,7 @@ def _sample_rois(rpn_rois, gt_classes, is_crowd, gt_boxes, im_info,
...
@@ -115,7 +115,7 @@ def _sample_rois(rpn_rois, gt_classes, is_crowd, gt_boxes, im_info,
bg_rois_per_this_image
=
np
.
minimum
(
bg_rois_per_this_image
,
bg_rois_per_this_image
=
np
.
minimum
(
bg_rois_per_this_image
,
bg_inds
.
shape
[
0
])
bg_inds
.
shape
[
0
])
# Sample background if there are too many
# Sample background if there are too many
if
bg_inds
.
shape
[
0
]
>
bg_rois_per_this_image
:
if
(
bg_inds
.
shape
[
0
]
>
bg_rois_per_this_image
)
and
use_random
:
bg_inds
=
np
.
random
.
choice
(
bg_inds
=
np
.
random
.
choice
(
bg_inds
,
size
=
bg_rois_per_this_image
,
replace
=
False
)
bg_inds
,
size
=
bg_rois_per_this_image
,
replace
=
False
)
bg_inds
=
bg_inds
[:
bg_rois_per_this_image
]
bg_inds
=
bg_inds
[:
bg_rois_per_this_image
]
...
@@ -223,9 +223,12 @@ def _expand_bbox_targets(bbox_targets_input, class_nums, is_cls_agnostic):
...
@@ -223,9 +223,12 @@ def _expand_bbox_targets(bbox_targets_input, class_nums, is_cls_agnostic):
class
TestGenerateProposalLabelsOp
(
OpTest
):
class
TestGenerateProposalLabelsOp
(
OpTest
):
def
set_data
(
self
):
def
set_data
(
self
):
self
.
use_random
=
False
self
.
init_test_cascade
()
self
.
init_test_params
()
self
.
init_test_params
()
self
.
init_test_input
()
self
.
init_test_input
()
self
.
init_test_output
()
self
.
init_test_output
()
self
.
inputs
=
{
self
.
inputs
=
{
'RpnRois'
:
(
self
.
rpn_rois
[
0
],
self
.
rpn_rois_lod
),
'RpnRois'
:
(
self
.
rpn_rois
[
0
],
self
.
rpn_rois_lod
),
'GtClasses'
:
(
self
.
gt_classes
[
0
],
self
.
gts_lod
),
'GtClasses'
:
(
self
.
gt_classes
[
0
],
self
.
gts_lod
),
...
@@ -241,7 +244,7 @@ class TestGenerateProposalLabelsOp(OpTest):
...
@@ -241,7 +244,7 @@ class TestGenerateProposalLabelsOp(OpTest):
'bg_thresh_lo'
:
self
.
bg_thresh_lo
,
'bg_thresh_lo'
:
self
.
bg_thresh_lo
,
'bbox_reg_weights'
:
self
.
bbox_reg_weights
,
'bbox_reg_weights'
:
self
.
bbox_reg_weights
,
'class_nums'
:
self
.
class_nums
,
'class_nums'
:
self
.
class_nums
,
'use_random'
:
False
,
'use_random'
:
self
.
use_random
,
'is_cls_agnostic'
:
self
.
is_cls_agnostic
,
'is_cls_agnostic'
:
self
.
is_cls_agnostic
,
'is_cascade_rcnn'
:
self
.
is_cascade_rcnn
'is_cascade_rcnn'
:
self
.
is_cascade_rcnn
}
}
...
@@ -260,6 +263,9 @@ class TestGenerateProposalLabelsOp(OpTest):
...
@@ -260,6 +263,9 @@ class TestGenerateProposalLabelsOp(OpTest):
self
.
op_type
=
'generate_proposal_labels'
self
.
op_type
=
'generate_proposal_labels'
self
.
set_data
()
self
.
set_data
()
def
init_test_cascade
(
self
,
):
self
.
is_cascade_rcnn
=
False
def
init_test_params
(
self
):
def
init_test_params
(
self
):
self
.
batch_size_per_im
=
512
self
.
batch_size_per_im
=
512
self
.
fg_fraction
=
0.25
self
.
fg_fraction
=
0.25
...
@@ -267,9 +273,7 @@ class TestGenerateProposalLabelsOp(OpTest):
...
@@ -267,9 +273,7 @@ class TestGenerateProposalLabelsOp(OpTest):
self
.
bg_thresh_hi
=
0.5
self
.
bg_thresh_hi
=
0.5
self
.
bg_thresh_lo
=
0.0
self
.
bg_thresh_lo
=
0.0
self
.
bbox_reg_weights
=
[
0.1
,
0.1
,
0.2
,
0.2
]
self
.
bbox_reg_weights
=
[
0.1
,
0.1
,
0.2
,
0.2
]
#self.class_nums = 81
self
.
is_cls_agnostic
=
False
self
.
is_cls_agnostic
=
False
#True
self
.
is_cascade_rcnn
=
True
self
.
class_nums
=
2
if
self
.
is_cls_agnostic
else
81
self
.
class_nums
=
2
if
self
.
is_cls_agnostic
else
81
def
init_test_input
(
self
):
def
init_test_input
(
self
):
...
@@ -287,10 +291,20 @@ class TestGenerateProposalLabelsOp(OpTest):
...
@@ -287,10 +291,20 @@ class TestGenerateProposalLabelsOp(OpTest):
proposal_nums
)
proposal_nums
)
ground_truth
,
self
.
gts_lod
=
_generate_groundtruth
(
ground_truth
,
self
.
gts_lod
=
_generate_groundtruth
(
images_shape
,
self
.
class_nums
,
gt_nums
)
images_shape
,
self
.
class_nums
,
gt_nums
)
self
.
gt_classes
=
[
gt
[
'gt_classes'
]
for
gt
in
ground_truth
]
self
.
gt_classes
=
[
gt
[
'gt_classes'
]
for
gt
in
ground_truth
]
self
.
gt_boxes
=
[
gt
[
'boxes'
]
for
gt
in
ground_truth
]
self
.
gt_boxes
=
[
gt
[
'boxes'
]
for
gt
in
ground_truth
]
self
.
is_crowd
=
[
gt
[
'is_crowd'
]
for
gt
in
ground_truth
]
self
.
is_crowd
=
[
gt
[
'is_crowd'
]
for
gt
in
ground_truth
]
if
self
.
is_cascade_rcnn
:
rpn_rois_new
=
[]
for
im_i
in
range
(
len
(
self
.
im_info
)):
gt_boxes
=
self
.
gt_boxes
[
im_i
]
rpn_rois
=
np
.
vstack
(
[
gt_boxes
,
self
.
rpn_rois
[
im_i
][
len
(
gt_boxes
):,
:]])
rpn_rois_new
.
append
(
rpn_rois
)
self
.
rpn_rois
=
rpn_rois_new
def
init_test_output
(
self
):
def
init_test_output
(
self
):
self
.
rois
,
self
.
labels_int32
,
self
.
bbox_targets
,
\
self
.
rois
,
self
.
labels_int32
,
self
.
bbox_targets
,
\
self
.
bbox_inside_weights
,
self
.
bbox_outside_weights
,
\
self
.
bbox_inside_weights
,
self
.
bbox_outside_weights
,
\
...
@@ -298,7 +312,7 @@ class TestGenerateProposalLabelsOp(OpTest):
...
@@ -298,7 +312,7 @@ class TestGenerateProposalLabelsOp(OpTest):
self
.
rpn_rois
,
self
.
gt_classes
,
self
.
is_crowd
,
self
.
gt_boxes
,
self
.
im_info
,
self
.
rpn_rois
,
self
.
gt_classes
,
self
.
is_crowd
,
self
.
gt_boxes
,
self
.
im_info
,
self
.
batch_size_per_im
,
self
.
fg_fraction
,
self
.
batch_size_per_im
,
self
.
fg_fraction
,
self
.
fg_thresh
,
self
.
bg_thresh_hi
,
self
.
bg_thresh_lo
,
self
.
fg_thresh
,
self
.
bg_thresh_hi
,
self
.
bg_thresh_lo
,
self
.
bbox_reg_weights
,
self
.
class_nums
,
self
.
bbox_reg_weights
,
self
.
class_nums
,
self
.
use_random
,
self
.
is_cls_agnostic
,
self
.
is_cascade_rcnn
self
.
is_cls_agnostic
,
self
.
is_cascade_rcnn
)
)
self
.
rois
=
np
.
vstack
(
self
.
rois
)
self
.
rois
=
np
.
vstack
(
self
.
rois
)
...
@@ -309,6 +323,45 @@ class TestGenerateProposalLabelsOp(OpTest):
...
@@ -309,6 +323,45 @@ class TestGenerateProposalLabelsOp(OpTest):
self
.
bbox_outside_weights
=
np
.
vstack
(
self
.
bbox_outside_weights
)
self
.
bbox_outside_weights
=
np
.
vstack
(
self
.
bbox_outside_weights
)
class
TestCascade
(
TestGenerateProposalLabelsOp
):
def
init_test_cascade
(
self
):
self
.
is_cascade_rcnn
=
True
class
TestClsAgnostic
(
TestCascade
):
def
init_test_params
(
self
):
self
.
batch_size_per_im
=
512
self
.
fg_fraction
=
0.25
self
.
fg_thresh
=
0.5
self
.
bg_thresh_hi
=
0.5
self
.
bg_thresh_lo
=
0.0
self
.
bbox_reg_weights
=
[
0.1
,
0.1
,
0.2
,
0.2
]
self
.
is_cls_agnostic
=
True
self
.
class_nums
=
2
if
self
.
is_cls_agnostic
else
81
class
TestOnlyGT
(
TestCascade
):
def
init_test_input
(
self
):
np
.
random
.
seed
(
0
)
gt_nums
=
6
# Keep same with batch_size_per_im for unittest
proposal_nums
=
6
images_shape
=
[[
64
,
64
]]
self
.
im_info
=
np
.
ones
((
len
(
images_shape
),
3
)).
astype
(
np
.
float32
)
for
i
in
range
(
len
(
images_shape
)):
self
.
im_info
[
i
,
0
]
=
images_shape
[
i
][
0
]
self
.
im_info
[
i
,
1
]
=
images_shape
[
i
][
1
]
self
.
im_info
[
i
,
2
]
=
0.8
#scale
ground_truth
,
self
.
gts_lod
=
_generate_groundtruth
(
images_shape
,
self
.
class_nums
,
gt_nums
)
self
.
gt_classes
=
[
gt
[
'gt_classes'
]
for
gt
in
ground_truth
]
self
.
gt_boxes
=
[
gt
[
'boxes'
]
for
gt
in
ground_truth
]
self
.
is_crowd
=
[
gt
[
'is_crowd'
]
for
gt
in
ground_truth
]
self
.
rpn_rois
=
self
.
gt_boxes
self
.
rpn_rois_lod
=
self
.
gts_lod
def
_generate_proposals
(
images_shape
,
proposal_nums
):
def
_generate_proposals
(
images_shape
,
proposal_nums
):
rpn_rois
=
[]
rpn_rois
=
[]
rpn_rois_lod
=
[]
rpn_rois_lod
=
[]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录