From aa02e347bd261dd0e64e2ab727f1c2e4ce5c22a0 Mon Sep 17 00:00:00 2001 From: Guo Sheng Date: Thu, 14 May 2020 12:01:12 +0800 Subject: [PATCH] Add hapi.text and corresponding unit test. (#24457) * Add hapi.text and corresponding unit test. test=develop * Remove hapi.text apis' reuse parameter args for coverage. test=develop * Fix TransformerCell and TransformerBeamSearchDecoder example codes. test=develop * Fix example codes in hapi.text. test=develop * Add some apis in hapi.text into example code white list. test=develop * Fix example code of DynamicDecode in hapi.text. text=develop * Rename Model.self as model in test_text.py test=develop --- python/paddle/incubate/hapi/__init__.py | 2 + .../paddle/incubate/hapi/tests/test_text.py | 736 +++ python/paddle/incubate/hapi/text/__init__.py | 18 + python/paddle/incubate/hapi/text/text.py | 3964 +++++++++++++++++ python/setup.py.in | 1 + tools/wlist.json | 30 +- 6 files changed, 4750 insertions(+), 1 deletion(-) create mode 100644 python/paddle/incubate/hapi/tests/test_text.py create mode 100644 python/paddle/incubate/hapi/text/__init__.py create mode 100644 python/paddle/incubate/hapi/text/text.py diff --git a/python/paddle/incubate/hapi/__init__.py b/python/paddle/incubate/hapi/__init__.py index 0b2321976ed..30a2b4ffcbd 100644 --- a/python/paddle/incubate/hapi/__init__.py +++ b/python/paddle/incubate/hapi/__init__.py @@ -22,6 +22,7 @@ from . import loss from . import datasets from . import distributed from . import vision +from . import text logger.setup_logger() @@ -33,6 +34,7 @@ __all__ = [ 'metrics', 'loss', 'vision', + 'text', ] __all__ += model.__all__ diff --git a/python/paddle/incubate/hapi/tests/test_text.py b/python/paddle/incubate/hapi/tests/test_text.py new file mode 100644 index 00000000000..ec056ff2c48 --- /dev/null +++ b/python/paddle/incubate/hapi/tests/test_text.py @@ -0,0 +1,736 @@ +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import division +from __future__ import print_function + +import unittest +import random + +import numpy as np + +import paddle.fluid as fluid +from paddle.fluid.dygraph import Embedding, Linear, Layer +from paddle.fluid.layers import BeamSearchDecoder +from paddle.incubate.hapi.model import Model, Input, set_device +from paddle.incubate.hapi.text import * + + +class ModuleApiTest(unittest.TestCase): + @classmethod + def setUpClass(cls): + cls._np_rand_state = np.random.get_state() + cls._py_rand_state = random.getstate() + cls._random_seed = 123 + np.random.seed(cls._random_seed) + random.seed(cls._random_seed) + + cls.model_cls = type(cls.__name__ + "Model", (Model, ), { + "__init__": cls.model_init_wrapper(cls.model_init), + "forward": cls.model_forward + }) + + @classmethod + def tearDownClass(cls): + np.random.set_state(cls._np_rand_state) + random.setstate(cls._py_rand_state) + + @staticmethod + def model_init_wrapper(func): + def __impl__(self, *args, **kwargs): + Model.__init__(self) + func(self, *args, **kwargs) + + return __impl__ + + @staticmethod + def model_init(model, *args, **kwargs): + raise NotImplementedError( + "model_init acts as `Model.__init__`, thus must implement it") + + @staticmethod + def model_forward(model, *args, **kwargs): + return model.module(*args, **kwargs) + + def make_inputs(self): + # TODO(guosheng): add default from `self.inputs` + raise NotImplementedError( + "model_inputs makes inputs for model, thus must implement it") + + def setUp(self): + """ + For the model which wraps the module to be tested: + Set input data by `self.inputs` list + Set init argument values by `self.attrs` list/dict + Set model parameter values by `self.param_states` dict + Set expected output data by `self.outputs` list + We can create a model instance and run once with these. + """ + self.inputs = [] + self.attrs = {} + self.param_states = {} + self.outputs = [] + + def _calc_output(self, place, mode="test", dygraph=True): + if dygraph: + fluid.enable_dygraph(place) + else: + fluid.disable_dygraph() + fluid.default_main_program().random_seed = self._random_seed + fluid.default_startup_program().random_seed = self._random_seed + model = self.model_cls(**self.attrs) if isinstance( + self.attrs, dict) else self.model_cls(*self.attrs) + model.prepare(inputs=self.make_inputs(), device=place) + if self.param_states: + model.load(self.param_states, optim_state=None) + return model.test_batch(self.inputs) + + def check_output_with_place(self, place, mode="test"): + dygraph_output = self._calc_output(place, mode, dygraph=True) + stgraph_output = self._calc_output(place, mode, dygraph=False) + expect_output = getattr(self, "outputs", None) + for actual_t, expect_t in zip(dygraph_output, stgraph_output): + self.assertTrue(np.allclose(actual_t, expect_t, rtol=1e-5, atol=0)) + if expect_output: + for actual_t, expect_t in zip(dygraph_output, expect_output): + self.assertTrue( + np.allclose( + actual_t, expect_t, rtol=1e-5, atol=0)) + + def check_output(self): + devices = ["CPU", "GPU"] if fluid.is_compiled_with_cuda() else ["CPU"] + for device in devices: + place = set_device(device) + self.check_output_with_place(place) + + +class TestBasicLSTM(ModuleApiTest): + def setUp(self): + # TODO(guosheng): Change to big size. Currently bigger hidden size for + # LSTM would fail, the second static graph run might get diff output + # with others. + shape = (2, 4, 16) + self.inputs = [np.random.random(shape).astype("float32")] + self.outputs = None + self.attrs = {"input_size": 16, "hidden_size": 16} + self.param_states = {} + + @staticmethod + def model_init(model, input_size, hidden_size): + model.lstm = RNN( + BasicLSTMCell( + input_size, + hidden_size, + param_attr=fluid.ParamAttr(name="lstm_weight"), + bias_attr=fluid.ParamAttr(name="lstm_bias"))) + + @staticmethod + def model_forward(model, inputs): + return model.lstm(inputs)[0] + + def make_inputs(self): + inputs = [ + Input( + [None, None, self.inputs[-1].shape[-1]], + "float32", + name="input"), + ] + return inputs + + def test_check_output(self): + self.check_output() + + +class TestBasicGRU(ModuleApiTest): + def setUp(self): + shape = (2, 4, 128) + self.inputs = [np.random.random(shape).astype("float32")] + self.outputs = None + self.attrs = {"input_size": 128, "hidden_size": 128} + self.param_states = {} + + @staticmethod + def model_init(model, input_size, hidden_size): + model.gru = RNN(BasicGRUCell(input_size, hidden_size)) + + @staticmethod + def model_forward(model, inputs): + return model.gru(inputs)[0] + + def make_inputs(self): + inputs = [ + Input( + [None, None, self.inputs[-1].shape[-1]], + "float32", + name="input"), + ] + return inputs + + def test_check_output(self): + self.check_output() + + +class TestBeamSearch(ModuleApiTest): + def setUp(self): + shape = (8, 32) + self.inputs = [ + np.random.random(shape).astype("float32"), + np.random.random(shape).astype("float32") + ] + self.outputs = None + self.attrs = { + "vocab_size": 100, + "embed_dim": 32, + "hidden_size": 32, + } + self.param_states = {} + + @staticmethod + def model_init(self, + vocab_size, + embed_dim, + hidden_size, + bos_id=0, + eos_id=1, + beam_size=4, + max_step_num=20): + embedder = Embedding(size=[vocab_size, embed_dim]) + output_layer = Linear(hidden_size, vocab_size) + cell = BasicLSTMCell(embed_dim, hidden_size) + decoder = BeamSearchDecoder( + cell, + start_token=bos_id, + end_token=eos_id, + beam_size=beam_size, + embedding_fn=embedder, + output_fn=output_layer) + self.beam_search_decoder = DynamicDecode( + decoder, max_step_num=max_step_num, is_test=True) + + @staticmethod + def model_forward(model, init_hidden, init_cell): + return model.beam_search_decoder([init_hidden, init_cell])[0] + + def make_inputs(self): + inputs = [ + Input( + [None, self.inputs[0].shape[-1]], "float32", + name="init_hidden"), + Input( + [None, self.inputs[1].shape[-1]], "float32", name="init_cell"), + ] + return inputs + + def test_check_output(self): + self.check_output() + + +class TestTransformerEncoder(ModuleApiTest): + def setUp(self): + self.inputs = [ + # encoder input: [batch_size, seq_len, hidden_size] + np.random.random([2, 4, 512]).astype("float32"), + # self attention bias: [batch_size, n_head, seq_len, seq_len] + np.random.randint(0, 1, [2, 8, 4, 4]).astype("float32") * -1e9 + ] + self.outputs = None + self.attrs = { + "n_layer": 2, + "n_head": 8, + "d_key": 64, + "d_value": 64, + "d_model": 512, + "d_inner_hid": 1024 + } + self.param_states = {} + + @staticmethod + def model_init(model, + n_layer, + n_head, + d_key, + d_value, + d_model, + d_inner_hid, + prepostprocess_dropout=0.1, + attention_dropout=0.1, + relu_dropout=0.1, + preprocess_cmd="n", + postprocess_cmd="da", + ffn_fc1_act="relu"): + model.encoder = TransformerEncoder( + n_layer, n_head, d_key, d_value, d_model, d_inner_hid, + prepostprocess_dropout, attention_dropout, relu_dropout, + preprocess_cmd, postprocess_cmd, ffn_fc1_act) + + @staticmethod + def model_forward(model, enc_input, attn_bias): + return model.encoder(enc_input, attn_bias) + + def make_inputs(self): + inputs = [ + Input( + [None, None, self.inputs[0].shape[-1]], + "float32", + name="enc_input"), + Input( + [None, self.inputs[1].shape[1], None, None], + "float32", + name="attn_bias"), + ] + return inputs + + def test_check_output(self): + self.check_output() + + +class TestTransformerDecoder(TestTransformerEncoder): + def setUp(self): + self.inputs = [ + # decoder input: [batch_size, seq_len, hidden_size] + np.random.random([2, 4, 512]).astype("float32"), + # encoder output: [batch_size, seq_len, hidden_size] + np.random.random([2, 5, 512]).astype("float32"), + # self attention bias: [batch_size, n_head, seq_len, seq_len] + np.random.randint(0, 1, [2, 8, 4, 4]).astype("float32") * -1e9, + # cross attention bias: [batch_size, n_head, seq_len, seq_len] + np.random.randint(0, 1, [2, 8, 4, 5]).astype("float32") * -1e9 + ] + self.outputs = None + self.attrs = { + "n_layer": 2, + "n_head": 8, + "d_key": 64, + "d_value": 64, + "d_model": 512, + "d_inner_hid": 1024 + } + self.param_states = {} + + @staticmethod + def model_init(model, + n_layer, + n_head, + d_key, + d_value, + d_model, + d_inner_hid, + prepostprocess_dropout=0.1, + attention_dropout=0.1, + relu_dropout=0.1, + preprocess_cmd="n", + postprocess_cmd="da"): + model.decoder = TransformerDecoder( + n_layer, n_head, d_key, d_value, d_model, d_inner_hid, + prepostprocess_dropout, attention_dropout, relu_dropout, + preprocess_cmd, postprocess_cmd) + + @staticmethod + def model_forward(model, + dec_input, + enc_output, + self_attn_bias, + cross_attn_bias, + caches=None): + return model.decoder(dec_input, enc_output, self_attn_bias, + cross_attn_bias, caches) + + def make_inputs(self): + inputs = [ + Input( + [None, None, self.inputs[0].shape[-1]], + "float32", + name="dec_input"), + Input( + [None, None, self.inputs[0].shape[-1]], + "float32", + name="enc_output"), + Input( + [None, self.inputs[-1].shape[1], None, None], + "float32", + name="self_attn_bias"), + Input( + [None, self.inputs[-1].shape[1], None, None], + "float32", + name="cross_attn_bias"), + ] + return inputs + + def test_check_output(self): + self.check_output() + + +class TestTransformerBeamSearchDecoder(ModuleApiTest): + def setUp(self): + self.inputs = [ + # encoder output: [batch_size, seq_len, hidden_size] + np.random.random([2, 5, 128]).astype("float32"), + # cross attention bias: [batch_size, n_head, seq_len, seq_len] + np.random.randint(0, 1, [2, 2, 1, 5]).astype("float32") * -1e9 + ] + self.outputs = None + self.attrs = { + "vocab_size": 100, + "n_layer": 2, + "n_head": 2, + "d_key": 64, + "d_value": 64, + "d_model": 128, + "d_inner_hid": 128 + } + self.param_states = {} + + @staticmethod + def model_init(model, + vocab_size, + n_layer, + n_head, + d_key, + d_value, + d_model, + d_inner_hid, + prepostprocess_dropout=0.1, + attention_dropout=0.1, + relu_dropout=0.1, + preprocess_cmd="n", + postprocess_cmd="da", + bos_id=0, + eos_id=1, + beam_size=4, + max_step_num=20): + model.beam_size = beam_size + + def embeder_init(self, size): + Layer.__init__(self) + self.embedder = Embedding(size) + + Embedder = type("Embedder", (Layer, ), { + "__init__": embeder_init, + "forward": lambda self, word, pos: self.embedder(word) + }) + embedder = Embedder(size=[vocab_size, d_model]) + output_layer = Linear(d_model, vocab_size) + model.decoder = TransformerDecoder( + n_layer, n_head, d_key, d_value, d_model, d_inner_hid, + prepostprocess_dropout, attention_dropout, relu_dropout, + preprocess_cmd, postprocess_cmd) + transformer_cell = TransformerCell(model.decoder, embedder, + output_layer) + model.beam_search_decoder = DynamicDecode( + TransformerBeamSearchDecoder( + transformer_cell, bos_id, eos_id, beam_size, + var_dim_in_state=2), + max_step_num, + is_test=True) + + @staticmethod + def model_forward(model, enc_output, trg_src_attn_bias): + caches = model.decoder.prepare_incremental_cache(enc_output) + enc_output = TransformerBeamSearchDecoder.tile_beam_merge_with_batch( + enc_output, model.beam_size) + trg_src_attn_bias = TransformerBeamSearchDecoder.tile_beam_merge_with_batch( + trg_src_attn_bias, model.beam_size) + static_caches = model.decoder.prepare_static_cache(enc_output) + rs, _ = model.beam_search_decoder( + inits=caches, + enc_output=enc_output, + trg_src_attn_bias=trg_src_attn_bias, + static_caches=static_caches) + return rs + + def make_inputs(self): + inputs = [ + Input( + [None, None, self.inputs[0].shape[-1]], + "float32", + name="enc_output"), + Input( + [None, self.inputs[1].shape[1], None, None], + "float32", + name="trg_src_attn_bias"), + ] + return inputs + + def test_check_output(self): + self.check_output() + + +class TestSequenceTagging(ModuleApiTest): + def setUp(self): + self.inputs = [ + np.random.randint(0, 100, (2, 8)).astype("int64"), + np.random.randint(1, 8, (2)).astype("int64"), + np.random.randint(0, 5, (2, 8)).astype("int64") + ] + self.outputs = None + self.attrs = {"vocab_size": 100, "num_labels": 5} + self.param_states = {} + + @staticmethod + def model_init(model, + vocab_size, + num_labels, + word_emb_dim=128, + grnn_hidden_dim=128, + emb_learning_rate=0.1, + crf_learning_rate=0.1, + bigru_num=2, + init_bound=0.1): + model.tagger = SequenceTagging(vocab_size, num_labels, word_emb_dim, + grnn_hidden_dim, emb_learning_rate, + crf_learning_rate, bigru_num, init_bound) + + @staticmethod + def model_forward(model, word, lengths, target=None): + return model.tagger(word, lengths, target) + + def make_inputs(self): + inputs = [ + Input( + [None, None], "int64", name="word"), + Input( + [None], "int64", name="lengths"), + Input( + [None, None], "int64", name="target"), + ] + return inputs + + def test_check_output(self): + self.check_output() + + +class TestSequenceTaggingInfer(TestSequenceTagging): + def setUp(self): + super(TestSequenceTaggingInfer, self).setUp() + self.inputs = self.inputs[:2] # remove target + + def make_inputs(self): + inputs = super(TestSequenceTaggingInfer, + self).make_inputs()[:2] # remove target + return inputs + + +class TestStackedRNN(ModuleApiTest): + def setUp(self): + shape = (2, 4, 16) + self.inputs = [np.random.random(shape).astype("float32")] + self.outputs = None + self.attrs = {"input_size": 16, "hidden_size": 16, "num_layers": 2} + self.param_states = {} + + @staticmethod + def model_init(model, input_size, hidden_size, num_layers): + cells = [ + BasicLSTMCell(input_size, hidden_size), + BasicLSTMCell(hidden_size, hidden_size) + ] + stacked_cell = StackedRNNCell(cells) + model.lstm = RNN(stacked_cell) + + @staticmethod + def model_forward(self, inputs): + return self.lstm(inputs)[0] + + def make_inputs(self): + inputs = [ + Input( + [None, None, self.inputs[-1].shape[-1]], + "float32", + name="input"), + ] + return inputs + + def test_check_output(self): + self.check_output() + + +class TestLSTM(ModuleApiTest): + def setUp(self): + shape = (2, 4, 16) + self.inputs = [np.random.random(shape).astype("float32")] + self.outputs = None + self.attrs = {"input_size": 16, "hidden_size": 16, "num_layers": 2} + self.param_states = {} + + @staticmethod + def model_init(model, input_size, hidden_size, num_layers): + model.lstm = LSTM(input_size, hidden_size, num_layers=num_layers) + + @staticmethod + def model_forward(model, inputs): + return model.lstm(inputs)[0] + + def make_inputs(self): + inputs = [ + Input( + [None, None, self.inputs[-1].shape[-1]], + "float32", + name="input"), + ] + return inputs + + def test_check_output(self): + self.check_output() + + +class TestBiLSTM(ModuleApiTest): + def setUp(self): + shape = (2, 4, 16) + self.inputs = [np.random.random(shape).astype("float32")] + self.outputs = None + self.attrs = {"input_size": 16, "hidden_size": 16, "num_layers": 2} + self.param_states = {} + + @staticmethod + def model_init(model, + input_size, + hidden_size, + num_layers, + merge_mode="concat", + merge_each_layer=False): + model.bilstm = BidirectionalLSTM( + input_size, + hidden_size, + num_layers=num_layers, + merge_mode=merge_mode, + merge_each_layer=merge_each_layer) + + @staticmethod + def model_forward(model, inputs): + return model.bilstm(inputs)[0] + + def make_inputs(self): + inputs = [ + Input( + [None, None, self.inputs[-1].shape[-1]], + "float32", + name="input"), + ] + return inputs + + def test_check_output_merge0(self): + self.check_output() + + def test_check_output_merge1(self): + self.attrs["merge_each_layer"] = True + self.check_output() + + +class TestGRU(ModuleApiTest): + def setUp(self): + shape = (2, 4, 64) + self.inputs = [np.random.random(shape).astype("float32")] + self.outputs = None + self.attrs = {"input_size": 64, "hidden_size": 128, "num_layers": 2} + self.param_states = {} + + @staticmethod + def model_init(model, input_size, hidden_size, num_layers): + model.gru = GRU(input_size, hidden_size, num_layers=num_layers) + + @staticmethod + def model_forward(model, inputs): + return model.gru(inputs)[0] + + def make_inputs(self): + inputs = [ + Input( + [None, None, self.inputs[-1].shape[-1]], + "float32", + name="input"), + ] + return inputs + + def test_check_output(self): + self.check_output() + + +class TestBiGRU(ModuleApiTest): + def setUp(self): + shape = (2, 4, 64) + self.inputs = [np.random.random(shape).astype("float32")] + self.outputs = None + self.attrs = {"input_size": 64, "hidden_size": 128, "num_layers": 2} + self.param_states = {} + + @staticmethod + def model_init(model, + input_size, + hidden_size, + num_layers, + merge_mode="concat", + merge_each_layer=False): + model.bigru = BidirectionalGRU( + input_size, + hidden_size, + num_layers=num_layers, + merge_mode=merge_mode, + merge_each_layer=merge_each_layer) + + @staticmethod + def model_forward(model, inputs): + return model.bigru(inputs)[0] + + def make_inputs(self): + inputs = [ + Input( + [None, None, self.inputs[-1].shape[-1]], + "float32", + name="input"), + ] + return inputs + + def test_check_output_merge0(self): + self.check_output() + + def test_check_output_merge1(self): + self.attrs["merge_each_layer"] = True + self.check_output() + + +class TestCNNEncoder(ModuleApiTest): + def setUp(self): + shape = (2, 32, 8) # [N, C, H] + self.inputs = [np.random.random(shape).astype("float32")] + self.outputs = None + self.attrs = {"num_channels": 32, "num_filters": 64, "num_layers": 2} + self.param_states = {} + + @staticmethod + def model_init(model, num_channels, num_filters, num_layers): + model.cnn_encoder = CNNEncoder( + num_layers=2, + num_channels=num_channels, + num_filters=num_filters, + filter_size=[2, 3], + pool_size=[7, 6]) + + @staticmethod + def model_forward(model, inputs): + return model.cnn_encoder(inputs) + + def make_inputs(self): + inputs = [ + Input( + [None, self.inputs[-1].shape[1], None], "float32", + name="input"), + ] + return inputs + + def test_check_output(self): + self.check_output() + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/incubate/hapi/text/__init__.py b/python/paddle/incubate/hapi/text/__init__.py new file mode 100644 index 00000000000..7caab7071c9 --- /dev/null +++ b/python/paddle/incubate/hapi/text/__init__.py @@ -0,0 +1,18 @@ +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from . import text +from .text import * + +__all__ = text.__all__ diff --git a/python/paddle/incubate/hapi/text/text.py b/python/paddle/incubate/hapi/text/text.py new file mode 100644 index 00000000000..c5cd4ae5632 --- /dev/null +++ b/python/paddle/incubate/hapi/text/text.py @@ -0,0 +1,3964 @@ +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import copy +import collections +import six +import sys +from functools import partial, reduce + +import numpy as np + +import paddle +import paddle.fluid as fluid +import paddle.fluid.layers.utils as utils +from paddle.fluid import layers +from paddle.fluid.layers import BeamSearchDecoder +from paddle.fluid.layers.utils import map_structure, flatten, pack_sequence_as +from paddle.fluid.dygraph import Layer, Embedding, Linear, LayerNorm, GRUUnit, Conv2D, Pool2D +from paddle.fluid.data_feeder import convert_dtype + +__all__ = [ + 'RNNCell', + 'BasicLSTMCell', + 'BasicGRUCell', + 'RNN', + 'BidirectionalRNN', + 'StackedRNNCell', + 'StackedLSTMCell', + 'LSTM', + 'BidirectionalLSTM', + 'StackedGRUCell', + 'GRU', + 'BidirectionalGRU', + 'DynamicDecode', + 'BeamSearchDecoder', + 'Conv1dPoolLayer', + 'CNNEncoder', + 'MultiHeadAttention', + 'FFN', + 'TransformerEncoderLayer', + 'TransformerEncoder', + 'TransformerDecoderLayer', + 'TransformerDecoder', + 'TransformerCell', + 'TransformerBeamSearchDecoder', + 'LinearChainCRF', + 'CRFDecoding', + 'SequenceTagging', +] + + +class RNNCell(Layer): + """ + RNNCell is the base class for abstraction representing the calculations + mapping the input and state to the output and new state. It is suitable to + and mostly used in RNN. + """ + + def get_initial_states(self, + batch_ref, + shape=None, + dtype=None, + init_value=0, + batch_dim_idx=0): + """ + Generate initialized states according to provided shape, data type and + value. + + Parameters: + batch_ref: A (possibly nested structure of) tensor variable[s]. + The first dimension of the tensor will be used as batch size to + initialize states. + shape: A (possibly nested structure of) shape[s], where a shape is + represented as a list/tuple of integer). -1(for batch size) will + beautomatically inserted if shape is not started with it. If None, + property `state_shape` will be used. The default value is None. + dtype: A (possibly nested structure of) data type[s]. The structure + must be same as that of `shape`, except when all tensors' in states + has the same data type, a single data type can be used. If None and + property `cell.state_shape` is not available, float32 will be used + as the data type. The default value is None. + init_value: A float value used to initialize states. + batch_dim_idx: An integer indicating which dimension of the tensor in + inputs represents batch size. The default value is 0. + + Returns: + Variable: tensor variable[s] packed in the same structure provided \ + by shape, representing the initialized states. + """ + # TODO: use inputs and batch_size + batch_ref = flatten(batch_ref)[0] + + def _is_shape_sequence(seq): + if sys.version_info < (3, ): + integer_types = ( + int, + long, ) + else: + integer_types = (int, ) + """For shape, list/tuple of integer is the finest-grained objection""" + if (isinstance(seq, list) or isinstance(seq, tuple)): + if reduce(lambda flag, x: isinstance(x, integer_types) and flag, + seq, True): + return False + # TODO: Add check for the illegal + if isinstance(seq, dict): + return True + return (isinstance(seq, collections.Sequence) and + not isinstance(seq, six.string_types)) + + class Shape(object): + def __init__(self, shape): + self.shape = shape if shape[0] == -1 else ([-1] + list(shape)) + + # nested structure of shapes + states_shapes = self.state_shape if shape is None else shape + is_sequence_ori = utils.is_sequence + utils.is_sequence = _is_shape_sequence + states_shapes = map_structure(lambda shape: Shape(shape), states_shapes) + utils.is_sequence = is_sequence_ori + + # nested structure of dtypes + try: + states_dtypes = self.state_dtype if dtype is None else dtype + except NotImplementedError: # use fp32 as default + states_dtypes = "float32" + if len(flatten(states_dtypes)) == 1: + dtype = flatten(states_dtypes)[0] + states_dtypes = map_structure(lambda shape: dtype, states_shapes) + + init_states = map_structure( + lambda shape, dtype: fluid.layers.fill_constant_batch_size_like( + input=batch_ref, + shape=shape.shape, + dtype=dtype, + value=init_value, + input_dim_idx=batch_dim_idx), states_shapes, states_dtypes) + return init_states + + @property + def state_shape(self): + """ + Abstract method (property). + Used to initialize states. + A (possiblely nested structure of) shape[s], where a shape is represented + as a list/tuple of integers (-1 for batch size would be automatically + inserted into a shape if shape is not started with it). + Not necessary to be implemented if states are not initialized by + `get_initial_states` or the `shape` argument is provided when using + `get_initial_states`. + """ + raise NotImplementedError( + "Please add implementaion for `state_shape` in the used cell.") + + @property + def state_dtype(self): + """ + Abstract method (property). + Used to initialize states. + A (possiblely nested structure of) data types[s]. The structure must be + same as that of `shape`, except when all tensors' in states has the same + data type, a signle data type can be used. + Not necessary to be implemented if states are not initialized + by `get_initial_states` or the `dtype` argument is provided when using + `get_initial_states`. + """ + raise NotImplementedError( + "Please add implementaion for `state_dtype` in the used cell.") + + +class BasicLSTMCell(RNNCell): + """ + Long-Short Term Memory(LSTM) RNN cell. + + The formula used is as follows: + + .. math:: + + i_{t} & = act_g(W_{x_{i}}x_{t} + W_{h_{i}}h_{t-1} + b_{i}) + + f_{t} & = act_g(W_{x_{f}}x_{t} + W_{h_{f}}h_{t-1} + b_{f} + forget\\_bias) + + c_{t} & = f_{t}c_{t-1} + i_{t} act_c (W_{x_{c}}x_{t} + W_{h_{c}}h_{t-1} + b_{c}) + + o_{t} & = act_g(W_{x_{o}}x_{t} + W_{h_{o}}h_{t-1} + b_{o}) + + h_{t} & = o_{t} act_c (c_{t}) + + Please refer to `An Empirical Exploration of Recurrent Network Architectures + `_ for more details. + + Parameters: + input_size (int): The input size in the LSTM cell. + hidden_size (int): The hidden size in the LSTM cell. + param_attr(ParamAttr, optional): The parameter attribute for the learnable + weight matrix. Default: None. + bias_attr (ParamAttr, optional): The parameter attribute for the bias + of LSTM. Default: None. + gate_activation (function, optional): The activation function for gates + of LSTM, that is :math:`act_g` in the formula. Default: None, + representing for `fluid.layers.sigmoid`. + activation (function, optional): The non-gate activation function of + LSTM, that is :math:`act_c` in the formula. Default: None, + representing for 'fluid.layers.tanh'. + forget_bias(float, optional): forget bias used when computing forget gate. + Default 1.0 + dtype(string, optional): The data type used in this cell. Default float32. + + Examples: + + .. code-block:: python + + import paddle + import paddle.fluid as fluid + from paddle.incubate.hapi.text import BasicLSTMCell, RNN + + inputs = paddle.rand((2, 4, 32)) + cell = BasicLSTMCell(input_size=32, hidden_size=64) + rnn = RNN(cell=cell) + outputs, _ = rnn(inputs) # [2, 4, 64] + """ + + def __init__(self, + input_size, + hidden_size, + param_attr=None, + bias_attr=None, + gate_activation=None, + activation=None, + forget_bias=1.0, + dtype='float32'): + super(BasicLSTMCell, self).__init__() + + self._hidden_size = hidden_size + self._param_attr = param_attr + self._bias_attr = bias_attr + self._gate_activation = gate_activation or layers.sigmoid + self._activation = activation or layers.tanh + # TODO(guosheng): find better way to resolve constants in __init__ + self._forget_bias = layers.create_global_var( + shape=[1], dtype=dtype, value=forget_bias, persistable=True) + self._forget_bias.stop_gradient = True + self._dtype = dtype + self._input_size = input_size + + self._weight = self.create_parameter( + attr=self._param_attr, + shape=[ + self._input_size + self._hidden_size, 4 * self._hidden_size + ], + dtype=self._dtype) + + self._bias = self.create_parameter( + attr=self._bias_attr, + shape=[4 * self._hidden_size], + dtype=self._dtype, + is_bias=True) + + def forward(self, inputs, states): + """ + Performs single step LSTM calculations. + + Parameters: + inputs (Variable): A tensor with shape `[batch_size, input_size]`, + corresponding to :math:`x_t` in the formula. The data type + should be float32 or float64. + states (Variable): A list of containing two tensors, each shaped + `[batch_size, hidden_size]`, corresponding to :math:`h_{t-1}, c_{t-1}` + in the formula. The data type should be float32 or float64. + + Returns: + tuple: A tuple( :code:`(outputs, new_states)` ), where `outputs` is \ + a tensor with shape `[batch_size, hidden_size]`, corresponding \ + to :math:`h_{t}` in the formula; `new_states` is a list containing \ + two tenser variables shaped `[batch_size, hidden_size]`, corresponding \ + to :math:`h_{t}, c_{t}` in the formula. The data type of these \ + tensors all is same as that of `states`. + """ + pre_hidden, pre_cell = states + concat_input_hidden = layers.concat([inputs, pre_hidden], 1) + gate_input = layers.matmul(x=concat_input_hidden, y=self._weight) + gate_input = layers.elementwise_add(gate_input, self._bias) + i, j, f, o = layers.split(gate_input, num_or_sections=4, dim=-1) + new_cell = layers.elementwise_add( + layers.elementwise_mul( + pre_cell, + self._gate_activation( + layers.elementwise_add(f, self._forget_bias))), + layers.elementwise_mul( + self._gate_activation(i), self._activation(j))) + new_hidden = self._activation(new_cell) * self._gate_activation(o) + + return new_hidden, [new_hidden, new_cell] + + @property + def state_shape(self): + """ + The `state_shape` of BasicLSTMCell is a list with two shapes: `[[hidden_size], [hidden_size]]` + (-1 for batch size would be automatically inserted into shape). These two + shapes correspond to :math:`h_{t-1}` and :math:`c_{t-1}` separately. + """ + return [[self._hidden_size], [self._hidden_size]] + + +class BasicGRUCell(RNNCell): + """ + Gated Recurrent Unit (GRU) RNN cell. + + The formula for GRU used is as follows: + + .. math:: + + u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u) + + r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r) + + \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c) + + h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t} + + Please refer to `An Empirical Exploration of Recurrent Network Architectures + `_ for more details. + + Parameters: + input_size (int): The input size for the first GRU cell. + hidden_size (int): The hidden size for every GRU cell. + param_attr(ParamAttr, optional): The parameter attribute for the learnable + weight matrix. Default: None. + bias_attr (ParamAttr, optional): The parameter attribute for the bias + of LSTM. Default: None. + gate_activation (function, optional): The activation function for gates + of GRU, that is :math:`act_g` in the formula. Default: None, + representing for `fluid.layers.sigmoid`. + activation (function, optional): The non-gate activation function of + GRU, that is :math:`act_c` in the formula. Default: None, + representing for 'fluid.layers.tanh'. + dtype(string, optional): The data type used in this cell. Default float32. + + Examples: + + .. code-block:: python + + import paddle + import paddle.fluid as fluid + from paddle.incubate.hapi.text import BasicGRUCell, RNN + + inputs = paddle.rand((2, 4, 32)) + cell = BasicGRUCell(input_size=32, hidden_size=64) + rnn = RNN(cell=cell) + outputs, _ = rnn(inputs) # [2, 4, 64] + """ + + def __init__(self, + input_size, + hidden_size, + param_attr=None, + bias_attr=None, + gate_activation=None, + activation=None, + dtype='float32'): + super(BasicGRUCell, self).__init__() + self._input_size = input_size + self._hidden_size = hidden_size + self._param_attr = param_attr + self._bias_attr = bias_attr + self._gate_activation = gate_activation or layers.sigmoid + self._activation = activation or layers.tanh + self._dtype = dtype + + if self._param_attr is not None and self._param_attr.name is not None: + gate_param_attr = copy.deepcopy(self._param_attr) + candidate_param_attr = copy.deepcopy(self._param_attr) + gate_param_attr.name += "_gate" + candidate_param_attr.name += "_candidate" + else: + gate_param_attr = self._param_attr + candidate_param_attr = self._param_attr + + self._gate_weight = self.create_parameter( + attr=gate_param_attr, + shape=[ + self._input_size + self._hidden_size, 2 * self._hidden_size + ], + dtype=self._dtype) + + self._candidate_weight = self.create_parameter( + attr=candidate_param_attr, + shape=[self._input_size + self._hidden_size, self._hidden_size], + dtype=self._dtype) + + if self._bias_attr is not None and self._bias_attr.name is not None: + gate_bias_attr = copy.deepcopy(self._bias_attr) + candidate_bias_attr = copy.deepcopy(self._bias_attr) + gate_bias_attr.name += "_gate" + candidate_bias_attr.name += "_candidate" + else: + gate_bias_attr = self._bias_attr + candidate_bias_attr = self._bias_attr + + self._gate_bias = self.create_parameter( + attr=gate_bias_attr, + shape=[2 * self._hidden_size], + dtype=self._dtype, + is_bias=True) + self._candidate_bias = self.create_parameter( + attr=candidate_bias_attr, + shape=[self._hidden_size], + dtype=self._dtype, + is_bias=True) + + def forward(self, inputs, states): + """ + Performs single step GRU calculations. + + Parameters: + inputs (Variable): A tensor with shape `[batch_size, input_size]`, + corresponding to :math:`x_t` in the formula. The data type + should be float32 or float64. + states (Variable): A tensor with shape `[batch_size, hidden_size]`. + corresponding to :math:`h_{t-1}` in the formula. The data type + should be float32 or float64. + + Returns: + tuple: A tuple( :code:`(outputs, new_states)` ), where `outputs` and \ + `new_states` is the same tensor shaped `[batch_size, hidden_size]`, \ + corresponding to :math:`h_t` in the formula. The data type of the \ + tensor is same as that of `states`. + """ + pre_hidden = states + concat_input_hidden = layers.concat([inputs, pre_hidden], axis=1) + + gate_input = layers.matmul(x=concat_input_hidden, y=self._gate_weight) + + gate_input = layers.elementwise_add(gate_input, self._gate_bias) + + gate_input = self._gate_activation(gate_input) + r, u = layers.split(gate_input, num_or_sections=2, dim=1) + + r_hidden = r * pre_hidden + + candidate = layers.matmul( + layers.concat([inputs, r_hidden], 1), self._candidate_weight) + candidate = layers.elementwise_add(candidate, self._candidate_bias) + + c = self._activation(candidate) + new_hidden = u * pre_hidden + (1 - u) * c + + return new_hidden, new_hidden + + @property + def state_shape(self): + """ + The `state_shape` of BasicGRUCell is a shape `[hidden_size]` (-1 for batch + size would be automatically inserted into shape). The shape corresponds + to :math:`h_{t-1}`. + """ + return [self._hidden_size] + + +class RNN(Layer): + """ + RNN creates a recurrent neural network specified by RNNCell `cell`, which + performs :code:`cell.forward()` repeatedly until reaches to the maximum + length of `inputs`. + + Parameters: + cell(RNNCell): An instance of `RNNCell`. + is_reverse (bool, optional): Indicate whether to calculate in the reverse + order of input sequences. Default: `False`. + time_major (bool, optional): Indicate the data layout of Tensor included + in `input` and `output` tensors. If `False`, the data layout would + be batch major with shape `[batch_size, sequence_length, ...]`. If + `True`, the data layout would be time major with shape + `[sequence_length, batch_size, ...]`. Default: `False`. + + Examples: + + .. code-block:: python + + import paddle + import paddle.fluid as fluid + from paddle.incubate.hapi.text import StackedLSTMCell, RNN + + inputs = paddle.rand((2, 4, 32)) + cell = StackedLSTMCell(input_size=32, hidden_size=64) + rnn = RNN(cell=cell) + outputs, _ = rnn(inputs) # [2, 4, 64] + """ + + def __init__(self, cell, is_reverse=False, time_major=False): + super(RNN, self).__init__() + self.cell = cell + if not hasattr(self.cell, "call"): + self.cell.call = self.cell.forward + self.is_reverse = is_reverse + self.time_major = time_major + self.batch_index, self.time_step_index = (1, 0) if time_major else (0, + 1) + + def forward(self, + inputs, + initial_states=None, + sequence_length=None, + **kwargs): + """ + Performs :code:`cell.forward()` repeatedly until reaches to the maximum + length of `inputs`. + + Parameters: + inputs (Variable): A (possibly nested structure of) tensor variable[s]. + The shape of tensor should be `[batch_size, sequence_length, ...]` + for `time_major == False` or `[sequence_length, batch_size, ...]` + for `time_major == True`. It represents the inputs to be unrolled + in RNN. + initial_states (Variable, optional): A (possibly nested structure of) + tensor variable[s], representing the initial state for RNN. + If not provided, `cell.get_initial_states` would be used to produce + the initial state. Default None. + sequence_length (Variable, optional): A tensor with shape `[batch_size]`. + It stores real length of each instance, thus enables users to extract + the last valid state when past a batch element's sequence length for + correctness. If not provided, the paddings would be treated same as + non-padding inputs. Default None. + **kwargs: Additional keyword arguments. Arguments passed to `cell.forward`. + + Returns: + tuple: A tuple( :code:`(final_outputs, final_states)` ) including the final \ + outputs and states, both are Tensor or nested structure of Tensor. \ + `final_outputs` has the same structure and data types as \ + the returned `outputs` of :code:`cell.forward` , and each Tenser in `final_outputs` \ + stacks all time steps' counterpart in `outputs` thus has shape `[batch_size, sequence_length, ...]` \ + for `time_major == False` or `[sequence_length, batch_size, ...]` for `time_major == True`. \ + `final_states` is the counterpart at last time step of initial states, \ + thus has the same structure with it and has tensors with same shapes \ + and data types. + """ + if fluid.in_dygraph_mode(): + + class ArrayWrapper(object): + def __init__(self, x): + self.array = [x] + + def append(self, x): + self.array.append(x) + return self + + def _maybe_copy(state, new_state, step_mask): + # TODO: use where_op + new_state = fluid.layers.elementwise_mul( + new_state, step_mask, + axis=0) - fluid.layers.elementwise_mul( + state, (step_mask - 1), axis=0) + return new_state + + flat_inputs = flatten(inputs) + batch_size, time_steps = ( + flat_inputs[0].shape[self.batch_index], + flat_inputs[0].shape[self.time_step_index]) + + if initial_states is None: + initial_states = self.cell.get_initial_states( + batch_ref=inputs, batch_dim_idx=self.batch_index) + + if not self.time_major: + inputs = map_structure( + lambda x: fluid.layers.transpose(x, [1, 0] + list( + range(2, len(x.shape)))), inputs) + + if sequence_length is not None: + mask = fluid.layers.sequence_mask( + sequence_length, + maxlen=time_steps, + dtype=flatten(initial_states)[0].dtype) + mask = fluid.layers.transpose(mask, [1, 0]) + + if self.is_reverse: + inputs = map_structure( + lambda x: fluid.layers.reverse(x, axis=[0]), inputs) + mask = fluid.layers.reverse( + mask, axis=[0]) if sequence_length is not None else None + + states = initial_states + outputs = [] + for i in range(time_steps): + step_inputs = map_structure(lambda x: x[i], inputs) + step_outputs, new_states = self.cell(step_inputs, states, + **kwargs) + if sequence_length is not None: + new_states = map_structure( + partial( + _maybe_copy, step_mask=mask[i]), + states, + new_states) + states = new_states + outputs = map_structure( + lambda x: ArrayWrapper(x), + step_outputs) if i == 0 else map_structure( + lambda x, x_array: x_array.append(x), step_outputs, + outputs) + + final_outputs = map_structure( + lambda x: fluid.layers.stack(x.array, axis=self.time_step_index + ), outputs) + + if self.is_reverse: + final_outputs = map_structure( + lambda x: fluid.layers.reverse(x, axis=self.time_step_index + ), final_outputs) + + final_states = new_states + else: + final_outputs, final_states = fluid.layers.rnn( + self.cell, + inputs, + initial_states=initial_states, + sequence_length=sequence_length, + time_major=self.time_major, + is_reverse=self.is_reverse, + **kwargs) + return final_outputs, final_states + + +class StackedRNNCell(RNNCell): + """ + Wrapper allowing a stack of RNN cells to behave as a single cell. It is used + to implement stacked RNNs. + + Parameters: + cells (list|tuple): List of RNN cell instances. + + Examples: + + .. code-block:: python + + from paddle.incubate.hapi.text import BasicLSTMCell, StackedRNNCell + + cells = [BasicLSTMCell(32, 32), BasicLSTMCell(32, 32)] + stack_rnn = StackedRNNCell(cells) + """ + + def __init__(self, cells): + super(StackedRNNCell, self).__init__() + self.cells = [] + for i, cell in enumerate(cells): + self.cells.append(self.add_sublayer("cell_%d" % i, cell)) + + def forward(self, inputs, states, **kwargs): + """ + Performs :code:`cell.forward` for all including cells sequentially. + Each cell's `inputs` is the `outputs` of the previous cell. And each + cell's `states` is the corresponding one in `states`. + + Parameters: + inputs (Variable): The inputs for the first cell. Mostly it is a + float32 or float64 tensor with shape `[batch_size, input_size]`. + states (list): A list containing states for all cells orderly. + **kwargs: Additional keyword arguments, which passed to `cell.forward` + for all including cells. + + Returns: + tuple: A tuple( :code:`(outputs, new_states)` ). `outputs` is the \ + `outputs` of the last cell. `new_states` is a list composed \ + of all cells' `new_states`, and its structure and data type is \ + same as that of `states` argument. + """ + new_states = [] + for cell, state in zip(self.cells, states): + outputs, new_state = cell(inputs, state, **kwargs) + inputs = outputs + new_states.append(new_state) + return outputs, new_states + + @staticmethod + def stack_param_attr(param_attr, n): + """ + If `param_attr` is a list or tuple, convert every element in it to a + ParamAttr instance. Otherwise, repeat `param_attr` `n` times to + construct a list, and rename every one by appending a increasing index + suffix to avoid having same names when `param_attr` contains a name. + + Parameters: + param_attr (list|tuple|ParamAttr): A list, tuple or something can be + converted to a ParamAttr instance by `ParamAttr._to_attr`. + n (int): The times to repeat to construct a list when `param_attr` + is not a list or tuple. + + Returns: + list: A list composed of each including cell's `param_attr`. + """ + if isinstance(param_attr, (list, tuple)): + assert len(param_attr) == n, ( + "length of param_attr should be %d when it is a list/tuple" % n) + param_attrs = [ + fluid.ParamAttr._to_attr(attr) for attr in param_attr + ] + else: + param_attrs = [] + attr = fluid.ParamAttr._to_attr(param_attr) + for i in range(n): + attr_i = copy.deepcopy(attr) + if attr.name: + attr_i.name = attr_i.name + "_" + str(i) + param_attrs.append(attr_i) + return param_attrs + + @property + def state_shape(self): + """ + The `state_shape` of StackedRNNCell is a list composed of each including + cell's `state_shape`. + + Returns: + list: A list composed of each including cell's `state_shape`. + """ + return [cell.state_shape for cell in self.cells] + + +class StackedLSTMCell(RNNCell): + """ + Wrapper allowing a stack of LSTM cells to behave as a single cell. It is used + to implement stacked LSTM. + + The formula for LSTM used here is as follows: + + .. math:: + + i_{t} & = act_g(W_{x_{i}}x_{t} + W_{h_{i}}h_{t-1} + b_{i}) + + f_{t} & = act_g(W_{x_{f}}x_{t} + W_{h_{f}}h_{t-1} + b_{f} + forget\\_bias) + + c_{t} & = f_{t}c_{t-1} + i_{t} act_c (W_{x_{c}}x_{t} + W_{h_{c}}h_{t-1} + b_{c}) + + o_{t} & = act_g(W_{x_{o}}x_{t} + W_{h_{o}}h_{t-1} + b_{o}) + + h_{t} & = o_{t} act_c (c_{t}) + + + Parameters: + input_size (int): The input size for the first LSTM cell. + hidden_size (int): The hidden size for every LSTM cell. + gate_activation (function, optional): The activation function for gates + of LSTM, that is :math:`act_g` in the formula. Default: None, + representing for `fluid.layers.sigmoid`. + activation (function, optional): The non-gate activation function of + LSTM, that is :math:`act_c` in the formula. Default: None, + representing for 'fluid.layers.tanh'. + forget_bias (float, optional): forget bias used when computing forget + gate. It also can accept a boolean value `True`, which would set + :math:`forget\\_bias` as 0 but initialize :math:`b_{f}` as 1 and + :math:`b_{i}, b_{f}, b_{c}, b_{0}` as 0. This is recommended in + http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf . + Default 1.0. + num_layers(int, optional): The number of LSTM to be stacked. Default 1. + dropout(float|list|tuple, optional): The dropout probability after each + LSTM. It also can be a list or tuple, including dropout probabilities + for the corresponding LSTM. Default 0.0 + param_attr (list|tuple|ParamAttr): A list, tuple or something can be + converted to a ParamAttr instance by `ParamAttr._to_attr`. If it is + a list or tuple, it's length must equal to `num_layers`. Otherwise, + construct a list by `StackedRNNCell.stack_param_attr(param_attr, num_layers)`. + Default None. + bias_attr (list|tuple|ParamAttr): A list, tuple or something can be + converted to a ParamAttr instance by `ParamAttr._to_attr`. If it is + a list or tuple, it's length must equal to `num_layers`. Otherwise, + construct a list by `StackedRNNCell.stack_param_attr(bias_attr, num_layers)`. + Default None. + dtype(string, optional): The data type used in this cell. It can be + float32 or float64. Default float32. + + Examples: + + .. code-block:: python + + import paddle + import paddle.fluid as fluid + from paddle.incubate.hapi.text import StackedLSTMCell, RNN + + inputs = paddle.rand((2, 4, 32)) + cell = StackedLSTMCell(input_size=32, hidden_size=64) + rnn = RNN(cell=cell) + outputs, _ = rnn(inputs) # [2, 4, 64] + """ + + def __init__(self, + input_size, + hidden_size, + gate_activation=None, + activation=None, + forget_bias=1.0, + num_layers=1, + dropout=0.0, + param_attr=None, + bias_attr=None, + dtype="float32"): + super(StackedLSTMCell, self).__init__() + self.dropout = utils.convert_to_list(dropout, num_layers, "dropout", + float) + param_attrs = StackedRNNCell.stack_param_attr(param_attr, num_layers) + bias_attrs = StackedRNNCell.stack_param_attr(bias_attr, num_layers) + + self.cells = [] + for i in range(num_layers): + if forget_bias is True: + bias_attrs[ + i].initializer = fluid.initializer.NumpyArrayInitializer( + np.concatenate( + np.zeros(2 * hidden_size), + np.ones(hidden_size), np.zeros(hidden_size)).astype( + dtype)) + forget_bias = 0.0 + self.cells.append( + self.add_sublayer( + "lstm_%d" % i, + BasicLSTMCell( + input_size=input_size if i == 0 else hidden_size, + hidden_size=hidden_size, + gate_activation=gate_activation, + activation=activation, + forget_bias=forget_bias, + param_attr=param_attrs[i], + bias_attr=bias_attrs[i], + dtype=dtype))) + + def forward(self, inputs, states): + """ + Performs the stacked LSTM cells sequentially. Each cell's `inputs` is + the `outputs` of the previous cell. And each cell's `states` is the + corresponding one in `states`. + + Parameters: + inputs (Variable): The inputs for the first cell. It is a float32 or + float64 tensor with shape `[batch_size, input_size]`. + states (list): A list containing states for all cells orderly. + **kwargs: Additional keyword arguments, which passed to `cell.forward` + for all including cells. + + Returns: + tuple: A tuple( :code:`(outputs, new_states)` ), where `outputs` is \ + a tensor with shape `[batch_size, hidden_size]`, corresponding \ + to :math:`h_{t}` in the formula of the last LSTM; `new_states` \ + is a list composed of every LSTM `new_states` which is a pair \ + of tensors standing for :math:`h_{t}, c_{t}` in the formula, \ + and the data type and structure of these tensors all is same \ + as that of `states`. + """ + new_states = [] + for i, cell in enumerate(self.cells): + outputs, new_state = cell(inputs, states[i]) + outputs = layers.dropout( + outputs, + self.dropout[i], + dropout_implementation='upscale_in_train') if self.dropout[ + i] > 0 else outputs + inputs = outputs + new_states.append(new_state) + return outputs, new_states + + @property + def state_shape(self): + """ + The `state_shape` of StackedLSTMCell is a list composed of each including + LSTM cell's `state_shape`. + + Returns: + list: A list composed of each including LSTM cell's `state_shape`. + """ + return [cell.state_shape for cell in self.cells] + + +class LSTM(Layer): + """ + Applies a stacked multi-layer long short-term memory (LSTM) RNN to an input + sequence. + + The formula for LSTM used here is as follows: + + .. math:: + + i_{t} & = act_g(W_{x_{i}}x_{t} + W_{h_{i}}h_{t-1} + b_{i}) + + f_{t} & = act_g(W_{x_{f}}x_{t} + W_{h_{f}}h_{t-1} + b_{f} + forget\\_bias) + + c_{t} & = f_{t}c_{t-1} + i_{t} act_c (W_{x_{c}}x_{t} + W_{h_{c}}h_{t-1} + b_{c}) + + o_{t} & = act_g(W_{x_{o}}x_{t} + W_{h_{o}}h_{t-1} + b_{o}) + + h_{t} & = o_{t} act_c (c_{t}) + + + Parameters: + input_size (int): The input feature size for the first LSTM. + hidden_size (int): The hidden size for every LSTM. + gate_activation (function, optional): The activation function for gates + of LSTM, that is :math:`act_g` in the formula. Default: None, + representing for `fluid.layers.sigmoid`. + activation (function, optional): The non-gate activation function of + LSTM, that is :math:`act_c` in the formula. Default: None, + representing for 'fluid.layers.tanh'. + forget_bias (float, optional): forget bias used when computing forget + gate. It also can accept a boolean value `True`, which would set + :math:`forget\\_bias` as 0 but initialize :math:`b_{f}` as 1 and + :math:`b_{i}, b_{f}, b_{c}, b_{0}` as 0. This is recommended in + http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf . + Default 1.0. + num_layers(int, optional): The number of LSTM to be stacked. Default 1. + dropout(float|list|tuple, optional): The dropout probability after each + LSTM. It also can be a list or tuple, including dropout probabilities + for the corresponding LSTM. Default 0.0 + is_reverse (bool, optional): Indicate whether to calculate in the reverse + order of input sequences. Default: `False`. + time_major (bool, optional): Indicate the data layout of Tensor included + in `input` and `output` tensors. If `False`, the data layout would + be batch major with shape `[batch_size, sequence_length, ...]`. If + `True`, the data layout would be time major with shape + `[sequence_length, batch_size, ...]`. Default: `False`. + param_attr (list|tuple|ParamAttr): A list, tuple or something can be + converted to a ParamAttr instance by `ParamAttr._to_attr`. If it is + a list or tuple, it's length must equal to `num_layers`. Otherwise, + construct a list by `StackedRNNCell.stack_param_attr(param_attr, num_layers)`. + Default None. + bias_attr (list|tuple|ParamAttr): A list, tuple or something can be + converted to a ParamAttr instance by `ParamAttr._to_attr`. If it is + a list or tuple, it's length must equal to `num_layers`. Otherwise, + construct a list by `StackedRNNCell.stack_param_attr(bias_attr, num_layers)`. + Default None. + dtype(string, optional): The data type used in this cell. It can be + float32 or float64. Default float32. + + Examples: + + .. code-block:: python + + import paddle + import paddle.fluid as fluid + from paddle.incubate.hapi.text import LSTM + + inputs = paddle.rand((2, 4, 32)) + lstm = LSTM(input_size=32, hidden_size=64, num_layers=2) + outputs, _ = lstm(inputs) # [2, 4, 64] + """ + + def __init__(self, + input_size, + hidden_size, + gate_activation=None, + activation=None, + forget_bias=1.0, + num_layers=1, + dropout=0.0, + is_reverse=False, + time_major=False, + param_attr=None, + bias_attr=None, + dtype='float32'): + super(LSTM, self).__init__() + lstm_cell = StackedLSTMCell(input_size, hidden_size, gate_activation, + activation, forget_bias, num_layers, + dropout, param_attr, bias_attr, dtype) + self.lstm = RNN(lstm_cell, is_reverse, time_major) + + def forward(self, inputs, initial_states=None, sequence_length=None): + """ + Performs the stacked multi-layer LSTM layer by layer. Each LSTM's `outputs` + is the `inputs` of the subsequent one. + + Parameters: + inputs (Variable): The inputs for the first LSTM. It is a float32 + or float64 tensor shaped `[batch_size, sequence_length, input_size]`. + initial_states (list|None, optional): A list containing initial states + of all stacked LSTM, and the initial states of each LSTM is a pair + of tensors shaped `[batch_size, hidden_size]`. If not provided, + use 0 as initial states. Default None. + sequence_length (Variable, optional): A tensor with shape `[batch_size]`. + It stores real length of each instance, thus enables users to extract + the last valid state when past a batch element's sequence length for + correctness. If not provided, the paddings would be treated same as + non-padding inputs. Default None. + + Returns: + tuple: A tuple( :code:`(outputs, final_states)` ), where `outputs` \ + is the output of last LSTM and it is a tensor with shape \ + `[batch_size, sequence_length, hidden_size]` and has the same \ + data type as `inputs`, `final_states` is the counterpart of \ + `initial_states` at last time step, thus has the same structure \ + with it and has tensors with same shapes data types. + """ + return self.lstm(inputs, initial_states, sequence_length) + + +class BidirectionalRNN(Layer): + """ + Wrapper for bidirectional RNN. It assembles two RNNCell instances to perform + forward and backward RNN separately, and merge outputs of these two RNN + according to `merge_mode`. + + Parameters: + cell_fw (RNNCell): A RNNCell instance used for forward RNN. + cell_bw (RNNCell): A RNNCell instance used for backward RNN. + merge_mode (str|None, optional): The way to merget outputs of forward and + backward RNN. It can be `concat`, `sum`, `ave`, `mul`, `zip` and None, + where None stands for make the two `outputs` as a tuple, `zip` stands + for make each two corresponding tensors of the two `outputs` as a tuple. + Default `concat` + + Examples: + + .. code-block:: python + + import paddle + from paddle.incubate.hapi.text import StackedLSTMCell, BidirectionalRNN + + inputs = paddle.rand((2, 4, 32)) + cell_fw = StackedLSTMCell(32, 64) + cell_bw = StackedLSTMCell(32, 64) + bi_rnn = BidirectionalRNN(cell_fw, cell_bw) + outputs, _ = bi_rnn(inputs) # [2, 4, 128] + """ + + def __init__(self, + cell_fw, + cell_bw, + merge_mode='concat', + time_major=False, + cell_cls=None, + **kwargs): + super(BidirectionalRNN, self).__init__() + self.rnn_fw = RNN(cell_fw, is_reverse=False, time_major=time_major) + self.rnn_bw = RNN(cell_bw, is_reverse=True, time_major=time_major) + if merge_mode == 'concat': + self.merge_func = lambda x, y: layers.concat([x, y], -1) + elif merge_mode == 'sum': + self.merge_func = lambda x, y: layers.elementwise_add(x, y) + elif merge_mode == 'ave': + self.merge_func = lambda x, y: layers.scale( + layers.elementwise_add(x, y), 0.5) + elif merge_mode == 'mul': + self.merge_func = lambda x, y: layers.elementwise_mul(x, y) + elif merge_mode == 'zip': + self.merge_func = lambda x, y: (x, y) + elif merge_mode is None: + self.merge_func = None + else: + raise ValueError('Unsupported value for `merge_mode`: %s' % + merge_mode) + + def forward(self, + inputs, + initial_states=None, + sequence_length=None, + **kwargs): + """ + Performs forward and backward RNN separately, and merge outputs of these + two RNN according to `merge_mode`. + + Parameters: + inputs (Variable): A (possibly nested structure of) tensor variable[s]. + The shape of tensor should be `[batch_size, sequence_length, ...]` + for `time_major == False` or `[sequence_length, batch_size, ...]` + for `time_major == True`. It represents the inputs to be unrolled + in both forward and backward RNN. + initial_states (Variable|list|tuple): If it is a list or tuple, its + length should be 2 to include initial states of forward and backward + RNN separately. Otherwise it would be used twice for the two RNN. + If None, `cell.get_initial_states` would be used to produce the initial + states. Default None. + sequence_length (Variable, optional): A tensor with shape `[batch_size]`. + It stores real length of each instance, thus enables users to extract + the last valid state when past a batch element's sequence length for + correctness. If not provided, the paddings would be treated same as + non-padding inputs. Default None. + **kwargs: Additional keyword arguments. Arguments passed to `cell.forward`. + + Returns: + tuple: A tuple( :code:`(outputs, final_states)` ), where `outputs` \ + is produced by merge outputs of forward and backward RNN according \ + to `merge_mode`, `final_states` is a pair including `final_states` \ + of forward and backward RNN. + """ + if isinstance(initial_states, (list, tuple)): + assert len( + initial_states + ) == 2, "length of initial_states should be 2 when it is a list/tuple" + else: + initial_states = [initial_states, initial_states] + outputs_fw, states_fw = self.rnn_fw(inputs, initial_states[0], + sequence_length, **kwargs) + outputs_bw, states_bw = self.rnn_bw(inputs, initial_states[1], + sequence_length, **kwargs) + outputs = map_structure(self.merge_func, outputs_fw, + outputs_bw) if self.merge_func else (outputs_fw, + outputs_bw) + return outputs, (states_fw, states_bw) + + @staticmethod + def bidirect_param_attr(param_attr): + """ + Converts `param_attr` to a pair of `param_attr` when it is not a list + or tuple with length 2, also rename every one by appending a suffix to + avoid having same names when `param_attr` contains a name. + + Parameters: + param_attr (list|tuple|ParamAttr): A list, tuple or something can be + converted to a ParamAttr instance by `ParamAttr._to_attr`. When + it is a list or tuple, its length must be 2. + + Returns: + list: A pair composed of forward and backward RNN cell's `param_attr`. + """ + if isinstance(param_attr, (list, tuple)): + assert len( + param_attr + ) == 2, "length of param_attr should be 2 when it is a list/tuple" + param_attrs = param_attr + else: + param_attrs = [] + attr = fluid.ParamAttr._to_attr(param_attr) + attr_fw = copy.deepcopy(attr) + if attr.name: + attr_fw.name = attr_fw.name + "_fw" + param_attrs.append(attr_fw) + attr_bw = copy.deepcopy(attr) + if attr.name: + attr_bw.name = attr_bw.name + "_bw" + param_attrs.append(attr_bw) + return param_attrs + + +class BidirectionalLSTM(Layer): + """ + Applies a bidirectional multi-layer long short-term memory (LSTM) RNN to an + input sequence. + + Bidirection interaction can happen after each layer or only after the last + layer according to the `merge_each_layer` setting. The way to interact, + that is how to merge outputs of the two direction, is determined by `merge_mode`. + + The formula for LSTM used here is as follows: + + .. math:: + + i_{t} & = act_g(W_{x_{i}}x_{t} + W_{h_{i}}h_{t-1} + b_{i}) + + f_{t} & = act_g(W_{x_{f}}x_{t} + W_{h_{f}}h_{t-1} + b_{f} + forget\\_bias) + + c_{t} & = f_{t}c_{t-1} + i_{t} act_c (W_{x_{c}}x_{t} + W_{h_{c}}h_{t-1} + b_{c}) + + o_{t} & = act_g(W_{x_{o}}x_{t} + W_{h_{o}}h_{t-1} + b_{o}) + + h_{t} & = o_{t} act_c (c_{t}) + + + Parameters: + input_size (int): The input feature size for the first LSTM. + hidden_size (int): The hidden size for every LSTM. + gate_activation (function, optional): The activation function for gates + of LSTM, that is :math:`act_g` in the formula. Default: None, + representing for `fluid.layers.sigmoid`. + activation (function, optional): The non-gate activation function of + LSTM, that is :math:`act_c` in the formula. Default: None, + representing for 'fluid.layers.tanh'. + forget_bias (float, optional): forget bias used when computing forget + gate. It also can accept a boolean value `True`, which would set + :math:`forget\\_bias` as 0 but initialize :math:`b_{f}` as 1 and + :math:`b_{i}, b_{f}, b_{c}, b_{0}` as 0. This is recommended in + http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf . + Default 1.0. + num_layers(int, optional): The number of LSTM to be stacked. Default 1. + dropout(float|list|tuple, optional): The dropout probability after each + LSTM. It also can be a list or tuple, including dropout probabilities + for the corresponding LSTM. Default 0.0 + merge_mode (str|None, optional): The way to merget outputs of forward and + backward RNN. It can be `concat`, `sum`, `ave`, `mul`, `zip` and None, + where None stands for make the two `outputs` as a tuple, `zip` stands + for make each two corresponding tensors of the two `outputs` as a tuple. + Default `concat` + merge_each_layer (bool, optional): Indicate whether bidirection interaction + happens after each layer or only after the last layer. Default: `False`. + time_major (bool, optional): Indicate the data layout of Tensor included + in `input` and `output` tensors. If `False`, the data layout would + be batch major with shape `[batch_size, sequence_length, ...]`. If + `True`, the data layout would be time major with shape + `[sequence_length, batch_size, ...]`. Default: `False`. + param_attr (list|tuple|ParamAttr): A list, tuple or something can be + converted to a ParamAttr instance by `ParamAttr._to_attr`. If it is + a list or tuple, it's length must equal to `num_layers`. Otherwise, + construct a list by `StackedRNNCell.stack_param_attr(param_attr, num_layers)`. + Default None. + bias_attr (list|tuple|ParamAttr): A list, tuple or something can be + converted to a ParamAttr instance by `ParamAttr._to_attr`. If it is + a list or tuple, it's length must equal to `num_layers`. Otherwise, + construct a list by `StackedRNNCell.stack_param_attr(bias_attr, num_layers)`. + Default None. + dtype(string, optional): The data type used in this cell. It can be + float32 or float64. Default float32. + + Examples: + + .. code-block:: python + + import paddle + import paddle.fluid as fluid + from paddle.incubate.hapi.text import BidirectionalLSTM + + inputs = paddle.rand((2, 4, 32)) + bi_lstm = BidirectionalLSTM(input_size=32, hidden_size=64, num_layers=2) + outputs, _ = bi_lstm(inputs) # [2, 4, 128] + """ + + def __init__(self, + input_size, + hidden_size, + gate_activation=None, + activation=None, + forget_bias=1.0, + num_layers=1, + dropout=0.0, + merge_mode='concat', + merge_each_layer=False, + time_major=False, + param_attr=None, + bias_attr=None, + dtype='float32'): + super(BidirectionalLSTM, self).__init__() + self.num_layers = num_layers + self.merge_mode = merge_mode + self.merge_each_layer = merge_each_layer + param_attrs = BidirectionalRNN.bidirect_param_attr(param_attr) + bias_attrs = BidirectionalRNN.bidirect_param_attr(bias_attr) + if not merge_each_layer: + cell_fw = StackedLSTMCell(input_size, hidden_size, gate_activation, + activation, forget_bias, num_layers, + dropout, param_attrs[0], bias_attrs[0], + dtype) + cell_bw = StackedLSTMCell(input_size, hidden_size, gate_activation, + activation, forget_bias, num_layers, + dropout, param_attrs[1], bias_attrs[1], + dtype) + self.lstm = BidirectionalRNN( + cell_fw, cell_bw, merge_mode=merge_mode, time_major=time_major) + else: + fw_param_attrs = StackedRNNCell.stack_param_attr(param_attrs[0], + num_layers) + bw_param_attrs = StackedRNNCell.stack_param_attr(param_attrs[1], + num_layers) + fw_bias_attrs = StackedRNNCell.stack_param_attr(bias_attrs[0], + num_layers) + bw_bias_attrs = StackedRNNCell.stack_param_attr(bias_attrs[1], + num_layers) + + # maybe design cell including both forward and backward later + self.lstm = [] + for i in range(num_layers): + cell_fw = StackedLSTMCell( + input_size + if i == 0 else (hidden_size * 2 + if merge_mode == 'concat' else hidden_size), + hidden_size, gate_activation, activation, forget_bias, 1, + dropout, fw_param_attrs[i], fw_bias_attrs[i], dtype) + cell_bw = StackedLSTMCell( + input_size + if i == 0 else (hidden_size * 2 + if merge_mode == 'concat' else hidden_size), + hidden_size, gate_activation, activation, forget_bias, 1, + dropout, bw_param_attrs[i], bw_bias_attrs[i], dtype) + self.lstm.append( + self.add_sublayer( + "lstm_%d" % i, + BidirectionalRNN( + cell_fw, + cell_bw, + merge_mode=merge_mode, + time_major=time_major))) + + def forward(self, inputs, initial_states=None, sequence_length=None): + """ + Performs bidirectional multi-layer LSTM layer by layer. Each LSTM's `outputs` + is the `inputs` of the subsequent one, or when `merge_each_layer` is True, + merged outputs would be the `inputs` of the subsequent one. + + Parameters: + inputs (Variable): The inputs for the first LSTM. It is a float32 + or float64 tensor shaped `[batch_size, sequence_length, input_size]`. + initial_states (list|None, optional): A list containing initial states + of all stacked LSTM. If `merge_each_layer` is True, the length of + list should be `num_layers` and a single value would be reused for + `num_layers`; Otherwise, the length should be 2 and a single value + would be reused twice. If not provided, use 0 as initial states. + Default None. + sequence_length (Variable, optional): A tensor with shape `[batch_size]`. + It stores real length of each instance, thus enables users to extract + the last valid state when past a batch element's sequence length for + correctness. If not provided, the paddings would be treated same as + non-padding inputs. Default None. + + Returns: + tuple: A tuple( :code:`(outputs, final_states)` ), where `outputs` \ + is the output of last bidirectional LSTM; `final_states` is a \ + pair including `final_states` of forward and backward LSTM when \ + `merge_each_layer` is False or a list including `final_states` \ + of all stacked bidirectional LSTM, and it has tensors with same \ + shapes data types as `initial_states`. + """ + if not self.merge_each_layer: + return self.lstm(inputs, initial_states, sequence_length) + else: + if isinstance(initial_states, (list, tuple)): + assert len(initial_states) == self.num_layers, ( + "length of initial_states should be %d when it is a list/tuple" + % self.num_layers) + else: + initial_states = [initial_states] * self.num_layers + stacked_states = [] + for i in range(self.num_layers): + outputs, states = self.lstm[i](inputs, initial_states[i], + sequence_length) + inputs = outputs + stacked_states.append(states) + return outputs, stacked_states + + +class StackedGRUCell(RNNCell): + """ + Wrapper allowing a stack of GRU cells to behave as a single cell. It is used + to implement stacked GRU. + + The formula for GRU used here is as follows: + + .. math:: + + u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u) + + r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r) + + \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c) + + h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t} + + + Parameters: + input_size (int): The input size for the first GRU cell. + hidden_size (int): The hidden size for every GRU cell. + gate_activation (function, optional): The activation function for gates + of GRU, that is :math:`act_g` in the formula. Default: None, + representing for `fluid.layers.sigmoid`. + activation (function, optional): The non-gate activation function of + GRU, that is :math:`act_c` in the formula. Default: None, + representing for 'fluid.layers.tanh'. + num_layers(int, optional): The number of LSTM to be stacked. Default 1. + dropout(float|list|tuple, optional): The dropout probability after each + GRU. It also can be a list or tuple, including dropout probabilities + for the corresponding GRU. Default 0.0 + param_attr (list|tuple|ParamAttr): A list, tuple or something can be + converted to a ParamAttr instance by `ParamAttr._to_attr`. If it is + a list or tuple, it's length must equal to `num_layers`. Otherwise, + construct a list by `StackedRNNCell.stack_param_attr(param_attr, num_layers)`. + Default None. + bias_attr (list|tuple|ParamAttr): A list, tuple or something can be + converted to a ParamAttr instance by `ParamAttr._to_attr`. If it is + a list or tuple, it's length must equal to `num_layers`. Otherwise, + construct a list by `StackedRNNCell.stack_param_attr(bias_attr, num_layers)`. + Default None. + dtype(string, optional): The data type used in this cell. It can be + float32 or float64. Default float32. + + Examples: + + .. code-block:: python + + import paddle + import paddle.fluid as fluid + from paddle.incubate.hapi.text import StackedGRUCell, RNN + + inputs = paddle.rand((2, 4, 32)) + cell = StackedGRUCell(input_size=32, hidden_size=64) + rnn = RNN(cell=cell) + outputs, _ = rnn(inputs) # [2, 4, 64] + """ + + def __init__(self, + input_size, + hidden_size, + gate_activation=None, + activation=None, + num_layers=1, + dropout=0.0, + param_attr=None, + bias_attr=None, + dtype="float32"): + super(StackedGRUCell, self).__init__() + self.dropout = utils.convert_to_list(dropout, num_layers, "dropout", + float) + param_attrs = StackedRNNCell.stack_param_attr(param_attr, num_layers) + bias_attrs = StackedRNNCell.stack_param_attr(bias_attr, num_layers) + + self.cells = [] + for i in range(num_layers): + self.cells.append( + self.add_sublayer( + "gru_%d" % i, + BasicGRUCell( + input_size=input_size if i == 0 else hidden_size, + hidden_size=hidden_size, + gate_activation=gate_activation, + activation=activation, + param_attr=param_attrs[i], + bias_attr=bias_attrs[i], + dtype=dtype))) + + def forward(self, inputs, states): + """ + Performs the stacked GRU cells sequentially. Each cell's `inputs` is + the `outputs` of the previous cell. And each cell's `states` is the + corresponding one in `states`. + + Parameters: + inputs (Variable): The inputs for the first cell. It is a float32 or + float64 tensor with shape `[batch_size, input_size]`. + states (list): A list containing states for all cells orderly. + **kwargs: Additional keyword arguments, which passed to `cell.forward` + for all including cells. + + Returns: + tuple: A tuple( :code:`(outputs, new_states)` ), where `outputs` is \ + a tensor with shape `[batch_size, hidden_size]`, corresponding \ + to :math:`h_{t}` in the formula of the last GRU; `new_states` \ + is a list composed of every GRU `new_states` which is also \ + :math:`h_{t}` in the formula, and the data type and structure \ + of these tensors all is same as that of `states`. + """ + new_states = [] + for i, cell in enumerate(self.cells): + outputs, new_state = cell(inputs, states[i]) + outputs = layers.dropout( + outputs, + self.dropout[i], + dropout_implementation='upscale_in_train') if self.dropout[ + i] > 0 else outputs + inputs = outputs + new_states.append(new_state) + return outputs, new_states + + @property + def state_shape(self): + """ + The `state_shape` of StackedGRUCell is a list composed of each including + GRU cell's `state_shape`. + + Returns: + list: A list composed of each including GRU cell's `state_shape`. + """ + return [cell.state_shape for cell in self.cells] + + +class GRU(Layer): + """ + Applies a stacked multi-layer gated recurrent unit (GRU) RNN to an input + sequence. + + The formula for GRU used here is as follows: + + .. math:: + + u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u) + + r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r) + + \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c) + + h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t} + + + Parameters: + input_size (int): The input feature size for the first GRU cell. + hidden_size (int): The hidden size for every GRU cell. + gate_activation (function, optional): The activation function for gates + of GRU, that is :math:`act_g` in the formula. Default: None, + representing for `fluid.layers.sigmoid`. + activation (function, optional): The non-gate activation function of + GRU, that is :math:`act_c` in the formula. Default: None, + representing for 'fluid.layers.tanh'. + num_layers(int, optional): The number of GRU to be stacked. Default 1. + dropout(float|list|tuple, optional): The dropout probability after each + GRU. It also can be a list or tuple, including dropout probabilities + for the corresponding GRU. Default 0.0 + is_reverse (bool, optional): Indicate whether to calculate in the reverse + order of input sequences. Default: `False`. + time_major (bool, optional): Indicate the data layout of Tensor included + in `input` and `output` tensors. If `False`, the data layout would + be batch major with shape `[batch_size, sequence_length, ...]`. If + `True`, the data layout would be time major with shape + `[sequence_length, batch_size, ...]`. Default: `False`. + param_attr (list|tuple|ParamAttr): A list, tuple or something can be + converted to a ParamAttr instance by `ParamAttr._to_attr`. If it is + a list or tuple, it's length must equal to `num_layers`. Otherwise, + construct a list by `StackedRNNCell.stack_param_attr(param_attr, num_layers)`. + Default None. + bias_attr (list|tuple|ParamAttr): A list, tuple or something can be + converted to a ParamAttr instance by `ParamAttr._to_attr`. If it is + a list or tuple, it's length must equal to `num_layers`. Otherwise, + construct a list by `StackedRNNCell.stack_param_attr(bias_attr, num_layers)`. + Default None. + dtype(string, optional): The data type used in this cell. It can be + float32 or float64. Default float32. + + Examples: + + .. code-block:: python + + import paddle + import paddle.fluid as fluid + from paddle.incubate.hapi.text import GRU + + inputs = paddle.rand((2, 4, 32)) + gru = GRU(input_size=32, hidden_size=64, num_layers=2) + outputs, _ = gru(inputs) # [2, 4, 64] + """ + + def __init__(self, + input_size, + hidden_size, + gate_activation=None, + activation=None, + num_layers=1, + dropout=0.0, + is_reverse=False, + time_major=False, + param_attr=None, + bias_attr=None, + dtype='float32'): + super(GRU, self).__init__() + gru_cell = StackedGRUCell(input_size, hidden_size, gate_activation, + activation, num_layers, dropout, param_attr, + bias_attr, dtype) + self.gru = RNN(gru_cell, is_reverse, time_major) + + def forward(self, inputs, initial_states=None, sequence_length=None): + """ + Performs the stacked multi-layer GRU layer by layer. Each GRU's `outputs` + is the `inputs` of the subsequent one. + + Parameters: + inputs (Variable): The inputs for the first GRU. It is a float32 + or float64 tensor shaped `[batch_size, sequence_length, input_size]`. + initial_states (list|None, optional): A list containing initial states + of all stacked GRU, and the initial states of each GRU is a tensor + shaped `[batch_size, hidden_size]`. If not provided, use 0 as initial + states. Default None. + sequence_length (Variable, optional): A tensor with shape `[batch_size]`. + It stores real length of each instance, thus enables users to extract + the last valid state when past a batch element's sequence length for + correctness. If not provided, the paddings would be treated same as + non-padding inputs. Default None. + + Returns: + tuple: A tuple( :code:`(outputs, final_states)` ), where `outputs` \ + is the output of last GRU and it is a tensor with shape \ + `[batch_size, sequence_length, hidden_size]` and has the same \ + data type as `inputs`, `final_states` is the counterpart of \ + `initial_states` at last time step, thus has the same structure \ + with it and has tensors with same shapes data types. + """ + return self.gru(inputs, initial_states, sequence_length) + + +class BidirectionalGRU(Layer): + """ + Applies a bidirectional multi-layer gated recurrent unit (GRU) RNN to an input + sequence. + + Bidirection interaction can happen after each layer or only after the last + layer according to the `merge_each_layer` setting. The way to interact, + that is how to merge outputs of the two direction, is determined by `merge_mode`. + + The formula for GRU used here is as follows: + + .. math:: + + u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u) + + r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r) + + \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c) + + h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t} + + + Parameters: + input_size (int): The input feature size for the first GRU cell. + hidden_size (int): The hidden size for every GRU cell. + gate_activation (function, optional): The activation function for gates + of GRU, that is :math:`act_g` in the formula. Default: None, + representing for `fluid.layers.sigmoid`. + activation (function, optional): The non-gate activation function of + GRU, that is :math:`act_c` in the formula. Default: None, + representing for 'fluid.layers.tanh'. + num_layers(int, optional): The number of GRU to be stacked. Default 1. + dropout(float|list|tuple, optional): The dropout probability after each + GRU. It also can be a list or tuple, including dropout probabilities + for the corresponding GRU. Default 0.0 + merge_mode (str|None, optional): The way to merget outputs of forward and + backward RNN. It can be `concat`, `sum`, `ave`, `mul`, `zip` and None, + where None stands for make the two `outputs` as a tuple, `zip` stands + for make each two corresponding tensors of the two `outputs` as a tuple. + Default `concat` + merge_each_layer (bool, optional): Indicate whether bidirection interaction + happens after each layer or only after the last layer. Default: `False`. + time_major (bool, optional): Indicate the data layout of Tensor included + in `input` and `output` tensors. If `False`, the data layout would + be batch major with shape `[batch_size, sequence_length, ...]`. If + `True`, the data layout would be time major with shape + `[sequence_length, batch_size, ...]`. Default: `False`. + param_attr (list|tuple|ParamAttr): A list, tuple or something can be + converted to a ParamAttr instance by `ParamAttr._to_attr`. If it is + a list or tuple, it's length must equal to `num_layers`. Otherwise, + construct a list by `StackedRNNCell.stack_param_attr(param_attr, num_layers)`. + Default None. + bias_attr (list|tuple|ParamAttr): A list, tuple or something can be + converted to a ParamAttr instance by `ParamAttr._to_attr`. If it is + a list or tuple, it's length must equal to `num_layers`. Otherwise, + construct a list by `StackedRNNCell.stack_param_attr(bias_attr, num_layers)`. + Default None. + dtype(string, optional): The data type used in this cell. It can be + float32 or float64. Default float32. + + Examples: + + .. code-block:: python + + import paddle + import paddle.fluid as fluid + from paddle.incubate.hapi.text import BidirectionalGRU + + inputs = paddle.rand((2, 4, 32)) + bi_gru = BidirectionalGRU(input_size=32, hidden_size=64, num_layers=2) + outputs, _ = bi_gru(inputs) # [2, 4, 128] + """ + + def __init__(self, + input_size, + hidden_size, + gate_activation=None, + activation=None, + forget_bias=1.0, + num_layers=1, + dropout=0.0, + merge_mode='concat', + merge_each_layer=False, + time_major=False, + param_attr=None, + bias_attr=None, + dtype='float32'): + super(BidirectionalGRU, self).__init__() + self.num_layers = num_layers + self.merge_mode = merge_mode + self.merge_each_layer = merge_each_layer + param_attrs = BidirectionalRNN.bidirect_param_attr(param_attr) + bias_attrs = BidirectionalRNN.bidirect_param_attr(bias_attr) + if not merge_each_layer: + cell_fw = StackedGRUCell(input_size, hidden_size, gate_activation, + activation, num_layers, dropout, + param_attrs[0], bias_attrs[0], dtype) + cell_bw = StackedGRUCell(input_size, hidden_size, gate_activation, + activation, num_layers, dropout, + param_attrs[1], bias_attrs[1], dtype) + self.gru = BidirectionalRNN( + cell_fw, cell_bw, merge_mode=merge_mode, time_major=time_major) + else: + fw_param_attrs = StackedRNNCell.stack_param_attr(param_attrs[0], + num_layers) + bw_param_attrs = StackedRNNCell.stack_param_attr(param_attrs[1], + num_layers) + fw_bias_attrs = StackedRNNCell.stack_param_attr(bias_attrs[0], + num_layers) + bw_bias_attrs = StackedRNNCell.stack_param_attr(bias_attrs[1], + num_layers) + + # maybe design cell including both forward and backward later + self.gru = [] + for i in range(num_layers): + cell_fw = StackedGRUCell(input_size if i == 0 else ( + hidden_size * 2 if merge_mode == 'concat' else + hidden_size), hidden_size, gate_activation, activation, 1, + dropout, fw_param_attrs[i], + fw_bias_attrs[i], dtype) + cell_bw = StackedGRUCell(input_size if i == 0 else ( + hidden_size * 2 if merge_mode == 'concat' else + hidden_size), hidden_size, gate_activation, activation, 1, + dropout, bw_param_attrs[i], + bw_bias_attrs[i], dtype) + self.gru.append( + self.add_sublayer( + "gru_%d" % i, + BidirectionalRNN( + cell_fw, + cell_bw, + merge_mode=merge_mode, + time_major=time_major))) + + def forward(self, inputs, initial_states=None, sequence_length=None): + """ + Performs bidirectional multi-layer GRU layer by layer. Each GRU's `outputs` + is the `inputs` of the subsequent one, or when `merge_each_layer` is True, + merged outputs would be the `inputs` of the subsequent one. + + Parameters: + inputs (Variable): The inputs for the first GRU. It is a float32 + or float64 tensor shaped `[batch_size, sequence_length, input_size]`. + initial_states (list|None, optional): A list containing initial states + of all stacked GRU. If `merge_each_layer` is True, the length of + list should be `num_layers` and a single value would be reused for + `num_layers`; Otherwise, the length should be 2 and a single value + would be reused twice. If not provided, use 0 as initial states. + Default None. + sequence_length (Variable, optional): A tensor with shape `[batch_size]`. + It stores real length of each instance, thus enables users to extract + the last valid state when past a batch element's sequence length for + correctness. If not provided, the paddings would be treated same as + non-padding inputs. Default None. + + Returns: + tuple: A tuple( :code:`(outputs, final_states)` ), where `outputs` \ + is the output of last bidirectional GRU; `final_states` is a \ + pair including `final_states` of forward and backward GRU when \ + `merge_each_layer` is False or a list including `final_states` \ + of all stacked bidirectional GRU, and it has tensors with same \ + shapes data types as `initial_states`. + """ + if not self.merge_each_layer: + return self.gru(inputs, initial_states, sequence_length) + else: + if isinstance(initial_states, (list, tuple)): + assert len(initial_states) == self.num_layers, ( + "length of initial_states should be %d when it is a list/tuple" + % self.num_layers) + else: + initial_states = [initial_states] * self.num_layers + stacked_states = [] + for i in range(self.num_layers): + outputs, states = self.gru[i](inputs, initial_states[i], + sequence_length) + inputs = outputs + stacked_states.append(states) + return outputs, stacked_states + + +class DynamicDecode(Layer): + """ + DynamicDecode integrates an Decoder instance to perform dynamic decoding. + + It performs :code:`decoder.step()` repeatedly until the returned Tensor + indicating finished status contains all True values or the number of + decoding step reaches to :attr:`max_step_num`. + + :code:`decoder.initialize()` would be called once before the decoding loop. + If the `decoder` has implemented `finalize` method, :code:`decoder.finalize()` + would be called once after the decoding loop. + + Parameters: + decoder (Decoder): An instance of `Decoder`. + max_step_num (int, optional): The maximum number of steps. If not provided, + decode until the decoder is fully done, or in other words, the returned + Tensor by :code:`decoder.step()` indicating finished status contains + all True. Default `None`. + output_time_major (bool, optional): Indicate the data layout of Tensor included + in the final outputs(the first returned value of this method). If + attr:`False`, the data layout would be batch major with shape + `[batch_size, seq_len, ...]`. If attr:`True`, the data layout would + be time major with shape `[seq_len, batch_size, ...]`. Default: `False`. + impute_finished (bool, optional): If `True`, then states get copied through + for batch entries which are marked as finished, which differs with the + unfinished using the new states returned by :code:`decoder.step()` and + ensures that the final states have the correct values. Otherwise, states + wouldn't be copied through when finished. If the returned `final_states` + is needed, it should be set as True, which causes some slowdown. + Default `False`. + is_test (bool, optional): A flag indicating whether to use test mode. In + test mode, it is more memory saving. Default `False`. + return_length (bool, optional): A flag indicating whether to return an + extra Tensor variable in the output tuple, which stores the actual + lengths of all decoded sequences. Default `False`. + + Examples: + + .. code-block:: python + + import paddle + import paddle.fluid as fluid + from paddle.fluid.layers import BeamSearchDecoder + from paddle.incubate.hapi.text import StackedLSTMCell, DynamicDecode + + paddle.enable_dygraph() + + vocab_size, d_model, = 100, 32 + encoder_output = paddle.rand((2, 4, d_model)) + trg_embeder = fluid.dygraph.Embedding(size=[vocab_size, d_model]) + output_layer = fluid.dygraph.Linear(d_model, vocab_size) + cell = StackedLSTMCell(input_size=d_model, hidden_size=d_model) + decoder = BeamSearchDecoder(cell, + start_token=0, + end_token=1, + beam_size=4, + embedding_fn=trg_embeder, + output_fn=output_layer) + dynamic_decoder = DynamicDecode(decoder, max_step_num=10) + outputs = dynamic_decoder(cell.get_initial_states(encoder_output)) + """ + + def __init__(self, + decoder, + max_step_num=None, + output_time_major=False, + impute_finished=False, + is_test=False, + return_length=False): + super(DynamicDecode, self).__init__() + self.decoder = decoder + self.max_step_num = max_step_num + self.output_time_major = output_time_major + self.impute_finished = impute_finished + self.is_test = is_test + self.return_length = return_length + + def forward(self, inits=None, **kwargs): + """ + Performs :code:`decoder.step()` repeatedly until the returned Tensor + indicating finished status contains all True values or the number of + decoding step reaches to :attr:`max_step_num`. + + :code:`decoder.initialize()` would be called once before the decoding loop. + If the `decoder` has implemented `finalize` method, :code:`decoder.finalize()` + would be called once after the decoding loop. + + Parameters: + inits (object, optional): Argument passed to `decoder.initialize`. + Default `None`. + **kwargs: Additional keyword arguments. Arguments passed to `decoder.step`. + + Returns: + tuple: A tuple( :code:`(final_outputs, final_states, sequence_lengths)` ) \ + when `return_length` is True, otherwise a tuple( :code:`(final_outputs, final_states)` ). \ + The final outputs and states, both are Tensor or nested structure of Tensor. \ + `final_outputs` has the same structure and data types as the :code:`outputs` \ + returned by :code:`decoder.step()` , and each Tenser in `final_outputs` \ + is the stacked of all decoding steps' outputs, which might be revised \ + by :code:`decoder.finalize()` if the decoder has implemented `finalize`. \ + `final_states` is the counterpart at last time step of initial states \ + returned by :code:`decoder.initialize()` , thus has the same structure \ + with it and has tensors with same shapes and data types. `sequence_lengths` \ + is an `int64` tensor with the same shape as `finished` returned \ + by :code:`decoder.initialize()` , and it stores the actual lengths of \ + all decoded sequences. + """ + if fluid.in_dygraph_mode(): + + class ArrayWrapper(object): + def __init__(self, x): + self.array = [x] + + def append(self, x): + self.array.append(x) + return self + + def __getitem__(self, item): + return self.array.__getitem__(item) + + def _maybe_copy(state, new_state, step_mask): + # TODO: use where_op + state_dtype = state.dtype + if convert_dtype(state_dtype) in ["bool"]: + state = layers.cast(state, dtype="float32") + new_state = layers.cast(new_state, dtype="float32") + if step_mask.dtype != state.dtype: + step_mask = layers.cast(step_mask, dtype=state.dtype) + # otherwise, renamed bool gradients of would be summed up leading + # to sum(bool) error. + step_mask.stop_gradient = True + new_state = layers.elementwise_mul( + state, step_mask, axis=0) - layers.elementwise_mul( + new_state, (step_mask - 1), axis=0) + if convert_dtype(state_dtype) in ["bool"]: + new_state = layers.cast(new_state, dtype=state_dtype) + return new_state + + initial_inputs, initial_states, initial_finished = self.decoder.initialize( + inits) + inputs, states, finished = (initial_inputs, initial_states, + initial_finished) + cond = layers.logical_not((layers.reduce_all(initial_finished))) + sequence_lengths = layers.cast( + layers.zeros_like(initial_finished), "int64") + outputs = None + + step_idx = 0 + step_idx_tensor = layers.fill_constant( + shape=[1], dtype="int64", value=step_idx) + while cond.numpy(): + (step_outputs, next_states, next_inputs, + next_finished) = self.decoder.step(step_idx_tensor, inputs, + states, **kwargs) + if not self.decoder.tracks_own_finished: + # BeamSearchDecoder would track it own finished, since + # beams would be reordered and the finished status of each + # entry might change. Otherwise, perform logical OR which + # would not change the already finished. + next_finished = layers.logical_or(next_finished, finished) + # To confirm states.finished/finished be consistent with + # next_finished. + layers.assign(next_finished, finished) + next_sequence_lengths = layers.elementwise_add( + sequence_lengths, + layers.cast( + layers.logical_not(finished), sequence_lengths.dtype)) + + if self.impute_finished: # rectify the states for the finished. + next_states = map_structure( + lambda x, y: _maybe_copy(x, y, finished), states, + next_states) + outputs = map_structure( + lambda x: ArrayWrapper(x), + step_outputs) if step_idx == 0 else map_structure( + lambda x, x_array: x_array.append(x), step_outputs, + outputs) + inputs, states, finished, sequence_lengths = ( + next_inputs, next_states, next_finished, + next_sequence_lengths) + + layers.increment(x=step_idx_tensor, value=1.0, in_place=True) + step_idx += 1 + + layers.logical_not(layers.reduce_all(finished), cond) + if self.max_step_num is not None and step_idx > self.max_step_num: + break + + final_outputs = map_structure( + lambda x: fluid.layers.stack(x.array, axis=0), outputs) + final_states = states + + try: + final_outputs, final_states = self.decoder.finalize( + final_outputs, final_states, sequence_lengths) + except NotImplementedError: + pass + + if not self.output_time_major: + final_outputs = map_structure( + lambda x: layers.transpose(x, [1, 0] + list( + range(2, len(x.shape)))), final_outputs) + + return (final_outputs, final_states, + sequence_lengths) if self.return_length else (final_outputs, + final_states) + else: + return fluid.layers.dynamic_decode( + self.decoder, + inits, + max_step_num=self.max_step_num, + output_time_major=self.output_time_major, + impute_finished=self.impute_finished, + is_test=self.is_test, + return_length=self.return_length, + **kwargs) + + +class Conv1dPoolLayer(Layer): + """ + This interface is used to construct a callable object of the ``Conv1DPoolLayer`` + class. The ``Conv1DPoolLayer`` class does a ``Conv1D`` and a ``Pool1D`` . + For more details, refer to code examples.The ``Conv1DPoolLayer`` layer calculates + the output based on the input, filter and strides, paddings, dilations, groups, + global_pooling, pool_type, ceil_mode, exclusive parameters. + + Parameters: + num_channels (int): The number of channels in the input data. + num_filters(int): The number of filters. It is the same as the output channels. + filter_size (int): The filter size of Conv1DPoolLayer. + pool_size (int): The pooling size of Conv1DPoolLayer. + conv_stride (int): The stride size of the conv Layer in Conv1DPoolLayer. + Default: 1 + pool_stride (int): The stride size of the pool layer in Conv1DPoolLayer. + Default: 1 + conv_padding (int): The padding size of the conv Layer in Conv1DPoolLayer. + Default: 0 + pool_padding (int): The padding of pool layer in Conv1DPoolLayer. + Default: 0 + act (str): Activation type for conv layer, if it is set to None, activation + is not appended. Default: None. + pool_type (str): Pooling type can be `max` for max-pooling or `avg` for + average-pooling. Default: `max` + dilation (int): The dilation size of the conv Layer. Default: 1. + groups (int): The groups number of the conv Layer. According to grouped + convolution in Alex Krizhevsky's Deep CNN paper: when group=2, the + first half of the filters is only connected to the first half of the + input channels, while the second half of the filters is only connected + to the second half of the input channels. Default: 1. + global_pooling (bool): Whether to use the global pooling. If it is true, + `pool_size` and `pool_padding` would be ignored. Default: False + ceil_mode (bool, optional): Whether to use the ceil function to calculate output + height and width.False is the default. If it is set to False, the floor function + will be used. Default: False. + exclusive (bool, optional): Whether to exclude padding points in average pooling mode. + Default: True. + use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn + library is installed. Default: False + param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights + of conv2d. If it is set to None or one attribute of ParamAttr, conv2d + will create ParamAttr as param_attr. If the Initializer of the param_attr + is not set, the parameter is initialized with :math:`Normal(0.0, std)`, + and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None. + bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d. + If it is set to False, no bias will be added to the output units. + If it is set to None or one attribute of ParamAttr, conv2d + will create ParamAttr as bias_attr. If the Initializer of the bias_attr + is not set, the bias is initialized zero. Default: None. + + Example: + .. code-block:: python + + import paddle + import paddle.fluid as fluid + from paddle.incubate.hapi.text import Conv1dPoolLayer + + # input: [batch_size, num_channels, sequence_length] + input = paddle.rand((2, 32, 4)) + cov2d = Conv1dPoolLayer(num_channels=32, + num_filters=64, + filter_size=2, + pool_size=2) + output = cov2d(input) + """ + + def __init__(self, + num_channels, + num_filters, + filter_size, + pool_size, + conv_stride=1, + pool_stride=1, + conv_padding=0, + pool_padding=0, + act=None, + pool_type='max', + global_pooling=False, + dilation=1, + groups=None, + ceil_mode=False, + exclusive=True, + use_cudnn=False, + param_attr=None, + bias_attr=None): + super(Conv1dPoolLayer, self).__init__() + self._conv2d = Conv2D( + num_channels=num_channels, + num_filters=num_filters, + filter_size=[filter_size, 1], + stride=[conv_stride, 1], + padding=[conv_padding, 0], + dilation=[dilation, 1], + groups=groups, + param_attr=param_attr, + bias_attr=bias_attr, + use_cudnn=use_cudnn, + act=act) + self._pool2d = Pool2D( + pool_size=[pool_size, 1], + pool_type=pool_type, + pool_stride=[pool_stride, 1], + pool_padding=[pool_padding, 0], + global_pooling=global_pooling, + use_cudnn=use_cudnn, + ceil_mode=ceil_mode, + exclusive=exclusive) + + def forward(self, input): + """ + Performs conv1d and pool1d on the input. + + Parameters: + input (Variable): A 3-D Tensor, shape is [N, C, H] where N, C and H + representing `batch_size`, `num_channels` and `sequence_length` + separately. data type can be float32 or float64 + + Returns: + Variable: The 3-D output tensor after conv and pool. It has the same \ + data type as input. + """ + x = fluid.layers.unsqueeze(input, axes=[-1]) + x = self._conv2d(x) + x = self._pool2d(x) + x = fluid.layers.squeeze(x, axes=[-1]) + return x + + +class CNNEncoder(Layer): + """ + This interface is used to construct a callable object of the ``CNNEncoder`` + class. The ``CNNEncoder`` is composed of multiple ``Conv1dPoolLayer`` . + ``CNNEncoder`` can define every Conv1dPoolLayer with different or same parameters. + The ``Conv1dPoolLayer`` in ``CNNEncoder`` is parallel. The results of every + ``Conv1dPoolLayer`` will concat at the channel dimension as the final output. + + Parameters: + num_channels(int|list|tuple): The number of channels in the input data. If + `num_channels` is a list or tuple, the length of `num_channels` must + equal to `num_layers`. If `num_channels` is a int, all conv1dpoollayer's + `num_channels` are the value of `num_channels`. + num_filters(int|list|tuple): The number of filters. It is the same as the + output channels. If `num_filters` is a list or tuple, the length of + `num_filters` must equal `num_layers`. If `num_filters` is a int, + all conv1dpoollayer's `num_filters` are the value of `num_filters`. + filter_size(int|list|tuple): The filter size of Conv1DPoolLayer in CNNEncoder. + If `filter_size` is a list or tuple, the length of `filter_size` must + equal `num_layers`. If `filter_size` is a int, all conv1dpoollayer's + `filter_size` are the value of `filter_size`. + pool_size(int|list|tuple): The pooling size of Conv1DPoolLayer in CNNEncoder. + If `pool_size` is a list or tuple, the length of `pool_size` must equal + `num_layers`. If `pool_size` is a int, all conv1dpoollayer's `pool_size` + are the value of `pool_size`. + num_layers(int): The number of conv1dpoolLayer used in CNNEncoder. + conv_stride(int|list|tuple): The stride size of the conv Layer in Conv1DPoolLayer. + If `conv_stride` is a list or tuple, the length of `conv_stride` must + equal `num_layers`. If conv_stride is a int, all conv1dpoollayer's `conv_stride` + are the value of `conv_stride`. Default: 1 + pool_stride(int|list|tuple): The stride size of the pool layer in Conv1DPoolLayer. + If `pool_stride` is a list or tuple, the length of `pool_stride` must + equal `num_layers`. If `pool_stride` is a int, all conv1dpoollayer's `pool_stride` + are the value of `pool_stride`. Default: 1 + conv_padding(int|list|tuple): The padding size of the conv Layer in Conv1DPoolLayer. + If `conv_padding` is a list or tuple, the length of `conv_padding` must + equal `num_layers`. If `conv_padding` is a int, all conv1dpoollayer's `conv_padding` + are the value of `conv_padding`. Default: 0 + pool_padding(int|list|tuple): The padding size of pool layer in Conv1DPoolLayer. + If `pool_padding` is a list or tuple, the length of `pool_padding` must + equal `num_layers`.If `pool_padding` is a int, all conv1dpoollayer's `pool_padding` + are the value of `pool_padding`. Default: 0 + act (str|list|tuple): Activation type for `Conv1dPoollayer` layer, if it is set to None, + activation is not appended. Default: None. + pool_type (str): Pooling type can be `max` for max-pooling or `avg` for + average-pooling. Default: `max` + global_pooling (bool): Whether to use the global pooling. If it is true, + `pool_size` and `pool_padding` would be ignored. Default: False + use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn + library is installed. Default: False + + Example: + .. code-block:: python + + import paddle + import paddle.fluid as fluid + from paddle.incubate.hapi.text import CNNEncoder + + # input: [batch_size, num_channels, sequence_length] + input = paddle.rand((2, 32, 8)) + cov_encoder = CNNEncoder(num_layers=2, + num_channels=32, + num_filters=64, + filter_size=[2, 3], + pool_size=[7, 6]) + output = cov_encoder(input) # [2, 128, 1] + """ + + def __init__(self, + num_channels, + num_filters, + filter_size, + pool_size, + num_layers=1, + conv_stride=1, + pool_stride=1, + conv_padding=0, + pool_padding=0, + act=None, + pool_type='max', + global_pooling=False, + use_cudnn=False): + super(CNNEncoder, self).__init__() + self.num_layers = num_layers + self.num_channels = num_channels + self.num_filters = num_filters + self.filter_size = filter_size + self.pool_size = pool_size + self.conv_stride = conv_stride + self.pool_stride = pool_stride + self.conv_padding = conv_padding + self.pool_padding = pool_padding + self.use_cudnn = use_cudnn + self.act = act + self.pool_type = pool_type + self.global_pooling = global_pooling + self.conv1d_pool_layers = fluid.dygraph.LayerList([ + Conv1dPoolLayer( + num_channels=self.num_channels + if isinstance(self.num_channels, int) else self.num_channels[i], + num_filters=self.num_filters + if isinstance(self.num_channels, int) else self.num_filters[i], + filter_size=self.filter_size + if isinstance(self.filter_size, int) else self.filter_size[i], + pool_size=self.pool_size + if isinstance(self.pool_size, int) else self.pool_size[i], + conv_stride=self.conv_stride + if isinstance(self.conv_stride, int) else self.conv_stride[i], + pool_stride=self.pool_stride + if isinstance(self.pool_stride, int) else self.pool_stride[i], + conv_padding=self.conv_padding + if isinstance(self.conv_padding, int) else self.conv_padding[i], + pool_padding=self.pool_padding + if isinstance(self.pool_padding, int) else self.pool_padding[i], + act=self.act[i] + if isinstance(self.act, (list, tuple)) else self.act, + pool_type=self.pool_type, + global_pooling=self.global_pooling, + use_cudnn=self.use_cudnn) for i in range(num_layers) + ]) + + def forward(self, input): + """ + Performs multiple parallel conv1d and pool1d, and concat the results of + them at the channel dimension to produce the final output. + + Parameters: + input (Variable): A 3-D Tensor, shape is [N, C, H] where N, C and H + representing `batch_size`, `num_channels` and `sequence_length` + separately. data type can be float32 or float64 + + Returns: + Variable: The 3-D output tensor produced by concatenating results of \ + all Conv1dPoolLayer. It has the same data type as input. + """ + res = [ + conv1d_pool_layer(input) + for conv1d_pool_layer in self.conv1d_pool_layers + ] + out = fluid.layers.concat(input=res, axis=1) + return out + + +class TransformerCell(RNNCell): + """ + TransformerCell wraps a Transformer decoder producing logits from `inputs` + composed by ids and position. + + Parameters: + decoder(callable): A TransformerDecoder instance. Or a wrapper of it that + includes a embedding layer accepting ids and positions instead of embeddings + and includes a output layer transforming decoder output features to logits. + embedding_fn(function, optional): A callable that accepts ids and position + as arguments and return embeddings as input of `decoder`. It can be + None if `decoder` includes a embedding layer. Default None. + output_fn(callable, optional): A callable applid on `decoder` output to + transform decoder output features to get logits. Mostly it is a Linear + layer with vocabulary size. It can be None if `decoder` includes a + output layer. Default None. + + Examples: + + .. code-block:: python + + import paddle + import paddle.fluid as fluid + from paddle.fluid.dygraph import Embedding, Linear + from paddle.incubate.hapi.text import TransformerDecoder + from paddle.incubate.hapi.text import TransformerCell + from paddle.incubate.hapi.text import TransformerBeamSearchDecoder + from paddle.incubate.hapi.text import DynamicDecode + + paddle.enable_dygraph() + + class Embedder(fluid.dygraph.Layer): + def __init__(self): + super(Embedder, self).__init__() + self.word_embedder = Embedding(size=[1000, 128]) + self.pos_embedder = Embedding(size=[500, 128]) + + def forward(self, word, position): + return self.word_embedder(word) + self.pos_embedder(position) + + embedder = Embedder() + output_layer = Linear(128, 1000) + decoder = TransformerDecoder(2, 2, 64, 64, 128, 512) + transformer_cell = TransformerCell(decoder, embedder, output_layer) + dynamic_decoder = DynamicDecode( + TransformerBeamSearchDecoder( + transformer_cell, + start_token=0, + end_token=1, + beam_size=4, + var_dim_in_state=2), + max_step_num=10, + is_test=True) + + enc_output = paddle.rand((2, 4, 128)) + # cross attention bias: [batch_size, n_head, trg_len, src_len] + trg_src_attn_bias = paddle.rand((2, 2, 1, 4)) + # inputs for beam search on Transformer + caches = transformer_cell.get_initial_states(enc_output) + enc_output = TransformerBeamSearchDecoder.tile_beam_merge_with_batch( + enc_output, beam_size=4) + trg_src_attn_bias = TransformerBeamSearchDecoder.tile_beam_merge_with_batch( + trg_src_attn_bias, beam_size=4) + static_caches = decoder.prepare_static_cache(enc_output) + outputs = dynamic_decoder( + inits=caches, + enc_output=enc_output, + trg_src_attn_bias=trg_src_attn_bias, + static_caches=static_caches) + """ + + def __init__(self, decoder, embedding_fn=None, output_fn=None): + super(TransformerCell, self).__init__() + self.decoder = decoder + self.embedding_fn = embedding_fn + self.output_fn = output_fn + + def forward(self, + inputs, + states=None, + enc_output=None, + trg_slf_attn_bias=None, + trg_src_attn_bias=None, + static_caches=[]): + """ + Produces logits from `inputs` composed by ids and positions. + + Parameters: + inputs(tuple): A tuple includes target ids and positions. The two + tensors both have int64 data type and with 2D shape + `[batch_size, sequence_length]` where `sequence_length` is 1 + for inference. + states(list): It caches the multi-head attention intermediate results + of history decoding steps. It is a list of dict where the length + of list is decoder layer number, and each dict has `k` and `v` as + keys and values are cached results. Default None + enc_output(Variable): The output of Transformer encoder. It is a tensor + with shape `[batch_size, sequence_length, d_model]`. The data type + should be float32 or float64. + trg_slf_attn_bias(Variable, optional): A tensor used in decoder self + attention to mask out attention on unwanted target positions. It + is a tensor with shape `[batch_size, n_head, target_length, target_length]`, + where the unwanted positions have `-INF` values and the others + have 0 values. It can be None when nothing wanted or needed to + be masked out. It can be None for inference. The data type should + be float32 or float64. Default None + trg_src_attn_bias(Variable, optional): A tensor used in decoder-encoder + cross attention to mask out unwanted attention on source (encoder output). + It is a tensor with shape `[batch_size, n_head, target_length, source_length]`, + where the unwanted positions have `-INF` values and the others + have 0 values. It can be None when nothing wanted or needed to + be masked out. The data type should be float32 or float64. Default None + static_caches(list): It stores projected results of encoder output + to be used as keys and values in decoder-encoder cross attention + It is a list of dict where the length of list is decoder layer + number, and each dict has `static_k` and `static_v` as keys and + values are stored results. Default empty list + + Returns: + tuple: A tuple( :code:`(outputs, new_states)` ), where `outputs` \ + is a float32 or float64 3D tensor representing logits shaped \ + `[batch_size, sequence_length, vocab_size]`. `new_states has \ + the same structure and data type with `states` while the length \ + is one larger since the intermediate results of current step are \ + concatenated into it. + """ + trg_word, trg_pos = inputs + if states and static_caches: + for cache, static_cache in zip(states, static_caches): + cache.update(static_cache) + if self.embedding_fn is not None: + dec_input = self.embedding_fn(trg_word, trg_pos) + outputs = self.decoder(dec_input, enc_output, None, + trg_src_attn_bias, states) + else: + outputs = self.decoder(trg_word, trg_pos, enc_output, None, + trg_src_attn_bias, states) + if self.output_fn is not None: + outputs = self.output_fn(outputs) + + new_states = [{ + "k": cache["k"], + "v": cache["v"] + } for cache in states] if states else states + return outputs, new_states + + @property + def state_shape(self): + """ + States of TransformerCell cache the multi-head attention intermediate + results of history decoding steps, and have a increasing length as + decoding continued. + + `state_shape` of TransformerCell is used to initialize states. It is a + list of dict where the length of list is decoder layer, and each dict + has `k` and `v` as keys and values are `[n_head, 0, d_key]`, `[n_head, 0, d_value]` + separately. (-1 for batch size would be automatically inserted into shape). + + Returns: + list: It is a list of dict where the length of list is decoder layer \ + number, and each dict has `k` and `v` as keys and values are cached \ + results. + """ + return [{ + "k": [self.decoder.n_head, 0, self.decoder.d_key], + "v": [self.decoder.n_head, 0, self.decoder.d_value], + } for i in range(self.decoder.n_layer)] + + +class TransformerBeamSearchDecoder(layers.BeamSearchDecoder): + """ + Compared with a RNN step :code:`outputs, new_states = cell(inputs, states)`, + Transformer decoder's `inputs` uses 2D tensor shaped `[batch_size * beam_size, 1]` + and includes extra position data. And its `states` (caches) has increasing + length. These are not consistent with `BeamSearchDecoder`, thus subclass + `BeamSearchDecoder` to make beam search adapt to Transformer decoder. + + Parameters: + cell(TransformerCell): An instance of `TransformerCell`. + start_token(int): The start token id. + end_token(int): The end token id. + beam_size(int): The beam width used in beam search. + var_dim_in_state(int): Indicate which dimension of states is variant. + + Examples: + + .. code-block:: python + + import paddle + import paddle.fluid as fluid + from paddle.fluid.dygraph import Embedding, Linear + from paddle.incubate.hapi.text import TransformerDecoder + from paddle.incubate.hapi.text import TransformerCell + from paddle.incubate.hapi.text import TransformerBeamSearchDecoder + from paddle.incubate.hapi.text import DynamicDecode + + paddle.enable_dygraph() + + class Embedder(fluid.dygraph.Layer): + def __init__(self): + super(Embedder, self).__init__() + self.word_embedder = Embedding(size=[1000, 128]) + self.pos_embedder = Embedding(size=[500, 128]) + + def forward(self, word, position): + return self.word_embedder(word) + self.pos_embedder(position) + + embedder = Embedder() + output_layer = Linear(128, 1000) + decoder = TransformerDecoder(2, 2, 64, 64, 128, 512) + transformer_cell = TransformerCell(decoder, embedder, output_layer) + dynamic_decoder = DynamicDecode( + TransformerBeamSearchDecoder( + transformer_cell, + start_token=0, + end_token=1, + beam_size=4, + var_dim_in_state=2), + max_step_num=10, + is_test=True) + + enc_output = paddle.rand((2, 4, 128)) + # cross attention bias: [batch_size, n_head, trg_len, src_len] + trg_src_attn_bias = paddle.rand((2, 2, 1, 4)) + # inputs for beam search on Transformer + caches = transformer_cell.get_initial_states(enc_output) + enc_output = TransformerBeamSearchDecoder.tile_beam_merge_with_batch( + enc_output, beam_size=4) + trg_src_attn_bias = TransformerBeamSearchDecoder.tile_beam_merge_with_batch( + trg_src_attn_bias, beam_size=4) + static_caches = decoder.prepare_static_cache(enc_output) + outputs = dynamic_decoder( + inits=caches, + enc_output=enc_output, + trg_src_attn_bias=trg_src_attn_bias, + static_caches=static_caches) + """ + + def __init__(self, cell, start_token, end_token, beam_size, + var_dim_in_state): + super(TransformerBeamSearchDecoder, + self).__init__(cell, start_token, end_token, beam_size) + self.cell = cell + self.var_dim_in_state = var_dim_in_state + + def _merge_batch_beams_with_var_dim(self, x): + """ + Reshape a tensor with shape `[batch_size, beam_size, ...]` to a new + tensor with shape `[batch_size * beam_size, ...]`. + + Parameters: + x(Variable): A tensor with shape `[batch_size, beam_size, ...]`. The + data type should be float32, float64, int32, int64 or bool. + + Returns: + Variable: A tensor with shape `[batch_size * beam_size, ...]`, whose \ + data type is same as `x`. + """ + # init length of cache is 0, and it increases with decoding carrying on, + # thus need to reshape elaborately + var_dim_in_state = self.var_dim_in_state + 1 # count in beam dim + x = layers.transpose(x, + list(range(var_dim_in_state, len(x.shape))) + + list(range(0, var_dim_in_state))) + x = layers.reshape( + x, [0] * (len(x.shape) - var_dim_in_state + ) + [self.batch_size * self.beam_size] + + [int(size) for size in x.shape[-var_dim_in_state + 2:]]) + x = layers.transpose( + x, + list(range((len(x.shape) + 1 - var_dim_in_state), len(x.shape))) + + list(range(0, (len(x.shape) + 1 - var_dim_in_state)))) + return x + + def _split_batch_beams_with_var_dim(self, x): + """ + Reshape a tensor with shape `[batch_size * beam_size, ...]` to a new + tensor with shape `[batch_size, beam_size, ...]`. + + Parameters: + x(Variable): A tensor with shape `[batch_size * beam_size, ...]`. The + data type should be float32, float64, int32, int64 or bool. + + Returns: + Variable: A tensor with shape `[batch_size, beam_size, ...]`, whose \ + data type is same as `x`. + """ + var_dim_size = layers.shape(x)[self.var_dim_in_state] + x = layers.reshape( + x, [-1, self.beam_size] + + [int(size) + for size in x.shape[1:self.var_dim_in_state]] + [var_dim_size] + + [int(size) for size in x.shape[self.var_dim_in_state + 1:]]) + return x + + def step(self, time, inputs, states, **kwargs): + """ + Perform a beam search decoding step, which uses `cell` to get probabilities, + and follows a beam search step to calculate scores and select candidate + token ids. + + Note: compared with `BeamSearchDecoder.step`, it feed 2D id tensor shaped + `[batch_size * beam_size, 1]` rather than `[batch_size * beam_size]` combined + position data as inputs to `cell`. + + Parameters: + time(Variable): An `int64` tensor with shape `[1]` provided by the caller, + representing the current time step number of decoding. + inputs(Variable): A tensor variable. It is same as `initial_inputs` + returned by `initialize()` for the first decoding step and + `next_inputs` returned by `step()` for the others. It is a int64 + id tensor with shape `[batch_size * beam_size]` + states(Variable): A structure of tensor variables. + It is same as the `initial_states` returned by `initialize()` for + the first decoding step and `beam_search_state` returned by + `step()` for the others. + **kwargs: Additional keyword arguments, provided by the caller. + + Returns: + tuple: A tuple( :code:`(beam_search_output, beam_search_state, next_inputs, finished)` ). \ + `beam_search_state` and `next_inputs` have the same structure, \ + shape and data type as the input arguments `states` and `inputs` separately. \ + `beam_search_output` is a namedtuple(including scores, predicted_ids, \ + parent_ids as fields) of tensor variables, where \ + `scores, predicted_ids, parent_ids` all has a tensor value shaped \ + `[batch_size, beam_size]` with data type `float32, int64, int64`. \ + `finished` is a `bool` tensor with shape `[batch_size, beam_size]`. + """ + # compared to RNN, Transformer has 3D data at every decoding step + inputs = layers.reshape(inputs, [-1, 1]) # token + pos = layers.ones_like(inputs) * time # pos + cell_states = map_structure(self._merge_batch_beams_with_var_dim, + states.cell_states) + + cell_outputs, next_cell_states = self.cell((inputs, pos), cell_states, + **kwargs) + + # squeeze to adapt to BeamSearchDecoder which use 2D logits + cell_outputs = map_structure( + lambda x: layers.squeeze(x, [1]) if len(x.shape) == 3 else x, + cell_outputs) + cell_outputs = map_structure(self._split_batch_beams, cell_outputs) + next_cell_states = map_structure(self._split_batch_beams_with_var_dim, + next_cell_states) + + beam_search_output, beam_search_state = self._beam_search_step( + time=time, + logits=cell_outputs, + next_cell_states=next_cell_states, + beam_state=states) + next_inputs, finished = (beam_search_output.predicted_ids, + beam_search_state.finished) + + return (beam_search_output, beam_search_state, next_inputs, finished) + + +### Transformer Modules ### +class PrePostProcessLayer(Layer): + """ + PrePostProcessLayer is used before/after each multi-head attention(MHA) and + feed-forward network(FFN) sub-layer to perform some specific process on + inputs/outputs. + + Parameters: + process_cmd (str): The process applied before/after each MHA and + FFN sub-layer. It should be a string composed of `d`, `a`, `n`, + where `d` for dropout, `a` for add residual connection, `n` for + layer normalization. + d_model (int): The expected feature size in the input and output. + dropout_rate (float): The dropout probability if the process includes + dropout. Default 0.1 + + Examples: + + .. code-block:: python + + import paddle + import paddle.fluid as fluid + from paddle.incubate.hapi.text import PrePostProcessLayer + + # input: [batch_size, sequence_length, d_model] + x = paddle.rand((2, 4, 32)) + process = PrePostProcessLayer('n', 32) + out = process(x) # [2, 4, 32] + """ + + def __init__(self, process_cmd, d_model, dropout_rate=0.1): + super(PrePostProcessLayer, self).__init__() + self.process_cmd = process_cmd + self.functors = [] + for cmd in self.process_cmd: + if cmd == "a": # add residual connection + self.functors.append(lambda x, y: x + y if y is not None else x) + elif cmd == "n": # add layer normalization + layer_norm = LayerNorm( + normalized_shape=d_model, + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.Constant(1.)), + bias_attr=fluid.ParamAttr( + initializer=fluid.initializer.Constant(0.))) + + self.functors.append( + self.add_sublayer( + "layer_norm_%d" % len( + self.sublayers(include_sublayers=False)), + layer_norm)) + elif cmd == "d": # add dropout + self.functors.append(lambda x: layers.dropout( + x, dropout_prob=dropout_rate, is_test=False) + if dropout_rate else x) + + def forward(self, x, residual=None): + """ + Applies `process_cmd` specified process on `x`. + + Parameters: + x (Variable): The tensor to be processed. The data type should be float32 + or float64. The shape is `[batch_size, sequence_length, d_model]`. + + residual (Variable, optional): Only used if the process includes + residual connection. It has the same shape and data type as `x`. + Default None + + Returns: + Variable: The processed tensor. It has the same shape and data type \ + as `x`. + """ + for i, cmd in enumerate(self.process_cmd): + if cmd == "a": + x = self.functors[i](x, residual) + else: + x = self.functors[i](x) + return x + + +class MultiHeadAttention(Layer): + """ + MultiHead Attention mapps queries and a set of key-value pairs to outputs + by jointly attending to information from different representation subspaces, + as what multi-head indicates it performs multiple attention in parallel. + + Please refer to `Attention Is All You Need `_ + for more details. + + Parameters: + d_key (int): The feature size to transformer queries and keys as in + multi-head attention. Mostly it equals to `d_model // n_head`. + d_value (int): The feature size to transformer values as in multi-head + attention. Mostly it equals to `d_model // n_head`. + d_model (int): The expected feature size in the input and output. + n_head (int): The number of heads in multi-head attention(MHA). + dropout_rate (float, optional): The dropout probability used in MHA to + drop some attention target. Default 0.1 + + Examples: + + .. code-block:: python + + import paddle + import paddle.fluid as fluid + from paddle.incubate.hapi.text import MultiHeadAttention + + # encoder input: [batch_size, sequence_length, d_model] + query = paddle.rand((2, 4, 128)) + # self attention bias: [batch_size, n_head, src_len, src_len] + attn_bias = paddle.rand((2, 2, 4, 4)) + multi_head_attn = MultiHeadAttention(64, 64, 128, n_head=2) + output = multi_head_attn(query, attn_bias=attn_bias) # [2, 4, 128] + """ + + def __init__(self, d_key, d_value, d_model, n_head, dropout_rate=0.1): + + super(MultiHeadAttention, self).__init__() + self.n_head = n_head + self.d_key = d_key + self.d_value = d_value + self.d_model = d_model + self.dropout_rate = dropout_rate + + self.q_fc = Linear( + input_dim=d_model, output_dim=d_key * n_head, bias_attr=False) + self.k_fc = Linear( + input_dim=d_model, output_dim=d_key * n_head, bias_attr=False) + self.v_fc = Linear( + input_dim=d_model, output_dim=d_value * n_head, bias_attr=False) + self.proj_fc = Linear( + input_dim=d_value * n_head, output_dim=d_model, bias_attr=False) + + def _prepare_qkv(self, queries, keys, values, cache=None): + """ + Prapares linear projected queries, keys and values for usage of subsequnt + multiple attention in parallel. If `cache` is not None, using cached + results to reduce redundant calculations. + + Parameters: + queries (Variable): The queries for multi-head attention. It is a + tensor with shape `[batch_size, sequence_length, d_model]`. The + data type should be float32 or float64. + keys (Variable, optional): The keys for multi-head attention. It is + a tensor with shape `[batch_size, sequence_length, d_model]`. The + data type should be float32 or float64. + values (Variable, optional): The values for multi-head attention. It + is a tensor with shape `[batch_size, sequence_length, d_model]`. + The data type should be float32 or float64. + cache(dict, optional): It is a dict with `k` and `v` as keys, and + values cache the multi-head attention intermediate results of + history decoding steps for decoder self attention; Or a dict + with `static_k` and `statkc_v` as keys, and values stores intermediate + results of encoder output for decoder-encoder cross attention. + If it is for decoder self attention, values for `k` and `v` would + be updated by new tensors concatanating raw tensors with intermediate + results of current step. It is only used for inference and should + be None for training. Default None + + Returns: + tuple: A tuple including linear projected keys and values. These two \ + tensors have shapes `[batch_size, n_head, sequence_length, d_key]` \ + and `[batch_size, n_head, sequence_length, d_value]` separately, \ + and their data types are same as inputs. + """ + if keys is None: # self-attention + keys, values = queries, queries + static_kv = False + else: # cross-attention + static_kv = True + + q = self.q_fc(queries) + q = layers.reshape(x=q, shape=[0, 0, self.n_head, self.d_key]) + q = layers.transpose(x=q, perm=[0, 2, 1, 3]) + + if cache is not None and static_kv and "static_k" in cache: + # for encoder-decoder attention in inference and has cached + k = cache["static_k"] + v = cache["static_v"] + else: + k = self.k_fc(keys) + v = self.v_fc(values) + k = layers.reshape(x=k, shape=[0, 0, self.n_head, self.d_key]) + k = layers.transpose(x=k, perm=[0, 2, 1, 3]) + v = layers.reshape(x=v, shape=[0, 0, self.n_head, self.d_value]) + v = layers.transpose(x=v, perm=[0, 2, 1, 3]) + + if cache is not None: + if static_kv and not "static_k" in cache: + # for encoder-decoder attention in inference and has not cached + cache["static_k"], cache["static_v"] = k, v + elif not static_kv: + # for decoder self-attention in inference + cache_k, cache_v = cache["k"], cache["v"] + k = layers.concat([cache_k, k], axis=2) + v = layers.concat([cache_v, v], axis=2) + cache["k"], cache["v"] = k, v + + return q, k, v + + def forward(self, + queries, + keys=None, + values=None, + attn_bias=None, + cache=None): + """ + Applies multi-head attention to map queries and a set of key-value pairs + to outputs. + + Parameters: + queries (Variable): The queries for multi-head attention. It is a + tensor with shape `[batch_size, sequence_length, d_model]`. The + data type should be float32 or float64. + keys (Variable, optional): The keys for multi-head attention. It is + a tensor with shape `[batch_size, sequence_length, d_model]`. The + data type should be float32 or float64. + values (Variable, optional): The values for multi-head attention. It + is a tensor with shape `[batch_size, sequence_length, d_model]`. + The data type should be float32 or float64. + attn_bias (Variable, optional): A tensor used in multi-head attention + to mask out attention on unwanted positions, usually the + paddings or the subsequent positions. It is a tensor with shape + `[batch_size, n_head, sequence_length, sequence_length]`, + where the unwanted positions have `-INF` values and the others + have 0 values. The data type should be float32 or float64. It can + be None when nothing wanted or needed to be masked out. Default None + cache(dict, optional): It is a dict with `k` and `v` as keys, and + values cache the multi-head attention intermediate results of + history decoding steps for decoder self attention; Or a dict + with `static_k` and `statkc_v` as keys, and values stores intermediate + results of encoder output for decoder-encoder cross attention. + If it is for decoder self attention, values for `k` and `v` would + be updated by new tensors concatanating raw tensors with intermediate + results of current step. It is only used for inference and should + be None for training. Default None + + Returns: + Variable: The output of multi-head attention. It is a tensor \ + that has the same shape and data type as `queries`. + """ + # compute q ,k ,v + q, k, v = self._prepare_qkv(queries, keys, values, cache) + + # scale dot product attention + product = layers.matmul( + x=q, y=k, transpose_y=True, alpha=self.d_key**-0.5) + if attn_bias is not None: + product += attn_bias + weights = layers.softmax(product) + if self.dropout_rate: + weights = layers.dropout( + weights, dropout_prob=self.dropout_rate, is_test=False) + + out = layers.matmul(weights, v) + + # combine heads + out = layers.transpose(out, perm=[0, 2, 1, 3]) + out = layers.reshape(x=out, shape=[0, 0, out.shape[2] * out.shape[3]]) + + # project to output + out = self.proj_fc(out) + return out + + def cal_kv(self, keys, values): + """ + Applies linear projection on input keys and values, then splits heads + (reshape and transpose) to get keys and values from different representation + subspaces for usage of subsequnt multiple attention in parallel. + + Parameters: + keys (Variable, optional): The keys for multi-head attention. It is + a tensor with shape `[batch_size, sequence_length, d_model]`. The + data type should be float32 or float64. + values (Variable, optional): The values for multi-head attention. It + is a tensor with shape `[batch_size, sequence_length, d_model]`. + The data type should be float32 or float64. + + Returns: + tuple: A tuple including linear projected keys and values. These two \ + tensors have shapes `[batch_size, n_head, sequence_length, d_key]` \ + and `[batch_size, n_head, sequence_length, d_value]` separately, \ + and their data types are same as inputs. + """ + k = self.k_fc(keys) + v = self.v_fc(values) + k = layers.reshape(x=k, shape=[0, 0, self.n_head, self.d_key]) + k = layers.transpose(x=k, perm=[0, 2, 1, 3]) + v = layers.reshape(x=v, shape=[0, 0, self.n_head, self.d_value]) + v = layers.transpose(x=v, perm=[0, 2, 1, 3]) + return k, v + + +class FFN(Layer): + """ + A fully connected feed-forward network applied to each position separately + and identically. This consists of two linear transformations with a activation + and dropout in between. + + Parameters: + d_inner_hid (int): The hidden size in the feedforward network(FFN). + d_model (int): The expected feature size in the input and output. + dropout_rate (float, optional): The dropout probability used after + activition. Default 0.1 + ffn_fc1_act (str, optional): The activation function in the feedforward + network. Default relu. + + Examples: + + .. code-block:: python + + import paddle + import paddle.fluid as fluid + from paddle.incubate.hapi.text import FFN + + # input: [batch_size, sequence_length, d_model] + x = paddle.rand((2, 4, 32)) + ffn = FFN(128, 32) + out = ffn(x) # [2, 4, 32] + """ + + def __init__(self, d_inner_hid, d_model, dropout_rate=0.1, fc1_act="relu"): + super(FFN, self).__init__() + self.dropout_rate = dropout_rate + self.fc1 = Linear( + input_dim=d_model, output_dim=d_inner_hid, act=fc1_act) + self.fc2 = Linear(input_dim=d_inner_hid, output_dim=d_model) + + def forward(self, x): + """ + Applies a fully connected feed-forward network on each position of the + input sequences separately and identically. + + Parameters: + x (Variable): The input of feed-forward network. It is a tensor + with shape `[batch_size, sequence_length, d_model]`. The data + type should be float32 or float64. + + Returns: + Variable: The output of feed-forward network. It is a tensor that has \ + the same shape and data type as `enc_input`. + """ + hidden = self.fc1(x) + if self.dropout_rate: + hidden = layers.dropout( + hidden, dropout_prob=self.dropout_rate, is_test=False) + out = self.fc2(hidden) + return out + + +class TransformerEncoderLayer(Layer): + """ + TransformerEncoderLayer is composed of two sub-layers which are self (multi-head) + attention and feedforward network. Before and after each sub-layer, pre-process + and post-precess would be applied on the input and output. + + Parameters: + n_head (int): The number of heads in multi-head attention(MHA). + d_key (int): The feature size to transformer queries and keys as in + multi-head attention. Mostly it equals to `d_model // n_head`. + d_value (int): The feature size to transformer values as in multi-head + attention. Mostly it equals to `d_model // n_head`. + d_model (int): The expected feature size in the input and output. + d_inner_hid (int): The hidden layer size in the feedforward network(FFN). + prepostprocess_dropout (float, optional): The dropout probability used + in pre-process and post-precess of MHA and FFN sub-layer. Default 0.1 + attention_dropout (float, optional): The dropout probability used + in MHA to drop some attention target. Default 0.1 + relu_dropout (float, optional): The dropout probability used after FFN + activition. Default 0.1 + preprocess_cmd (str, optional): The process applied before each MHA and + FFN sub-layer, and it also would be applied on output of the last + stacked layer. It should be a string composed of `d`, `a`, `n`, + where `d` for dropout, `a` for add residual connection, `n` for + layer normalization. Default `n`. + postprocess_cmd (str, optional): The process applied after each MHA and + FFN sub-layer. Same as `preprocess_cmd`. It should be a string + composed of `d`, `a`, `n`, where `d` for dropout, `a` for add + residual connection, `n` for layer normalization. Default `da`. + ffn_fc1_act (str, optional): The activation function in the feedforward + network. Default relu. + + Examples: + + .. code-block:: python + + import paddle + import paddle.fluid as fluid + from paddle.incubate.hapi.text import TransformerEncoderLayer + + # encoder input: [batch_size, src_len, d_model] + enc_input = paddle.rand((2, 4, 128)) + # self attention bias: [batch_size, n_head, src_len, src_len] + attn_bias = paddle.rand((2, 2, 4, 4)) + encoder_layer = TransformerEncoderLayer(2, 64, 64, 128, 512) + enc_output = encoder_layer(enc_input, attn_bias) # [2, 4, 128] + """ + + def __init__(self, + n_head, + d_key, + d_value, + d_model, + d_inner_hid, + prepostprocess_dropout=0.1, + attention_dropout=0.1, + relu_dropout=0.1, + preprocess_cmd="n", + postprocess_cmd="da", + ffn_fc1_act="relu"): + + super(TransformerEncoderLayer, self).__init__() + + self.preprocesser1 = PrePostProcessLayer(preprocess_cmd, d_model, + prepostprocess_dropout) + self.self_attn = MultiHeadAttention(d_key, d_value, d_model, n_head, + attention_dropout) + self.postprocesser1 = PrePostProcessLayer(postprocess_cmd, d_model, + prepostprocess_dropout) + + self.preprocesser2 = PrePostProcessLayer(preprocess_cmd, d_model, + prepostprocess_dropout) + self.ffn = FFN(d_inner_hid, d_model, relu_dropout, fc1_act=ffn_fc1_act) + self.postprocesser2 = PrePostProcessLayer(postprocess_cmd, d_model, + prepostprocess_dropout) + + def forward(self, enc_input, attn_bias=None): + """ + Applies a Transformer encoder layer on the input. + + Parameters: + enc_input (Variable): The input of Transformer encoder layer. It is + a tensor with shape `[batch_size, sequence_length, d_model]`. + The data type should be float32 or float64. + attn_bias(Variable, optional): A tensor used in encoder self attention + to mask out attention on unwanted positions, usually the paddings. It + is a tensor with shape `[batch_size, n_head, sequence_length, sequence_length]`, + where the unwanted positions have `-INF` values and the others + have 0 values. The data type should be float32 or float64. It can + be None when nothing wanted or needed to be masked out. Default None + + Returns: + Variable: The output of Transformer encoder layer. It is a tensor that \ + has the same shape and data type as `enc_input`. + """ + attn_output = self.self_attn( + self.preprocesser1(enc_input), None, None, attn_bias) + attn_output = self.postprocesser1(attn_output, enc_input) + + ffn_output = self.ffn(self.preprocesser2(attn_output)) + ffn_output = self.postprocesser2(ffn_output, attn_output) + return ffn_output + + +class TransformerEncoder(Layer): + """ + TransformerEncoder is a stack of N encoder layers. + + Parameters: + n_layer (int): The number of encoder layers to be stacked. + n_head (int): The number of heads in multi-head attention(MHA). + d_key (int): The feature size to transformer queries and keys as in + multi-head attention. Mostly it equals to `d_model // n_head`. + d_value (int): The feature size to transformer values as in multi-head + attention. Mostly it equals to `d_model // n_head`. + d_model (int): The expected feature size in the input and output. + d_inner_hid (int): The hidden layer size in the feedforward network(FFN). + prepostprocess_dropout (float, optional): The dropout probability used + in pre-process and post-precess of MHA and FFN sub-layer. Default 0.1 + attention_dropout (float, optional): The dropout probability used + in MHA to drop some attention target. Default 0.1 + relu_dropout (float, optional): The dropout probability used after FFN + activition. Default 0.1 + preprocess_cmd (str, optional): The process applied before each MHA and + FFN sub-layer, and it also would be applied on output of the last + stacked layer. It should be a string composed of `d`, `a`, `n`, + where `d` for dropout, `a` for add residual connection, `n` for + layer normalization. Default `n`. + postprocess_cmd (str, optional): The process applied after each MHA and + FFN sub-layer. Same as `preprocess_cmd`. It should be a string + composed of `d`, `a`, `n`, where `d` for dropout, `a` for add + residual connection, `n` for layer normalization. Default `da`. + ffn_fc1_act (str, optional): The activation function in the feedforward + network. Default relu. + + Examples: + + .. code-block:: python + + import paddle + import paddle.fluid as fluid + from paddle.incubate.hapi.text import TransformerEncoder + + # encoder input: [batch_size, src_len, d_model] + enc_input = paddle.rand((2, 4, 128)) + # self attention bias: [batch_size, n_head, src_len, src_len] + attn_bias = paddle.rand((2, 2, 4, 4)) + encoder = TransformerEncoder(2, 2, 64, 64, 128, 512) + enc_output = encoder(enc_input, attn_bias) # [2, 4, 128] + """ + + def __init__(self, + n_layer, + n_head, + d_key, + d_value, + d_model, + d_inner_hid, + prepostprocess_dropout=0.1, + attention_dropout=0.1, + relu_dropout=0.1, + preprocess_cmd="n", + postprocess_cmd="da", + ffn_fc1_act="relu"): + + super(TransformerEncoder, self).__init__() + + self.encoder_layers = list() + for i in range(n_layer): + self.encoder_layers.append( + self.add_sublayer( + "layer_%d" % i, + TransformerEncoderLayer( + n_head, + d_key, + d_value, + d_model, + d_inner_hid, + prepostprocess_dropout, + attention_dropout, + relu_dropout, + preprocess_cmd, + postprocess_cmd, + ffn_fc1_act=ffn_fc1_act))) + self.processer = PrePostProcessLayer(preprocess_cmd, d_model, + prepostprocess_dropout) + + def forward(self, enc_input, attn_bias=None): + """ + Applies a stack of N Transformer encoder layers on input sequences. + + Parameters: + enc_input (Variable): The input of Transformer encoder. It is a tensor + with shape `[batch_size, sequence_length, d_model]`. The data + type should be float32 or float64. + attn_bias(Variable, optional): A tensor used in encoder self attention + to mask out attention on unwanted positions, usually the paddings. It + is a tensor with shape `[batch_size, n_head, sequence_length, sequence_length]`, + where the unwanted positions have `-INF` values and the others + have 0 values. The data type should be float32 or float64. It can + be None when nothing wanted or needed to be masked out. Default None + + Returns: + Variable: The output of Transformer encoder. It is a tensor that has \ + the same shape and data type as `enc_input`. + """ + for encoder_layer in self.encoder_layers: + enc_output = encoder_layer(enc_input, attn_bias) + enc_input = enc_output + + return self.processer(enc_output) + + +class TransformerDecoderLayer(Layer): + """ + TransformerDecoderLayer is composed of three sub-layers which are decoder + self (multi-head) attention, decoder-encoder cross attention and feedforward + network. Before and after each sub-layer, pre-process and post-precess would + be applied on the input and output. + + Parameters: + n_head (int): The number of heads in multi-head attention(MHA). + d_key (int): The feature size to transformer queries and keys as in + multi-head attention. Mostly it equals to `d_model // n_head`. + d_value (int): The feature size to transformer values as in multi-head + attention. Mostly it equals to `d_model // n_head`. + d_model (int): The expected feature size in the input and output. + d_inner_hid (int): The hidden layer size in the feedforward network(FFN). + prepostprocess_dropout (float, optional): The dropout probability used + in pre-process and post-precess of MHA and FFN sub-layer. Default 0.1 + attention_dropout (float, optional): The dropout probability used + in MHA to drop some attention target. Default 0.1 + relu_dropout (float, optional): The dropout probability used after FFN + activition. Default 0.1 + preprocess_cmd (str, optional): The process applied before each MHA and + FFN sub-layer, and it also would be applied on output of the last + stacked layer. It should be a string composed of `d`, `a`, `n`, + where `d` for dropout, `a` for add residual connection, `n` for + layer normalization. Default `n`. + postprocess_cmd (str, optional): The process applied after each MHA and + FFN sub-layer. Same as `preprocess_cmd`. It should be a string + composed of `d`, `a`, `n`, where `d` for dropout, `a` for add + residual connection, `n` for layer normalization. Default `da`. + ffn_fc1_act (str, optional): The activation function in the feedforward + network. Default relu. + + Examples: + + .. code-block:: python + + import paddle + import paddle.fluid as fluid + from paddle.incubate.hapi.text import TransformerDecoderLayer + + # decoder input: [batch_size, trg_len, d_model] + dec_input = paddle.rand((2, 4, 128)) + # encoder output: [batch_size, src_len, d_model] + enc_output = paddle.rand((2, 6, 128)) + # self attention bias: [batch_size, n_head, trg_len, trg_len] + self_attn_bias = paddle.rand((2, 2, 4, 4)) + # cross attention bias: [batch_size, n_head, trg_len, src_len] + cross_attn_bias = paddle.rand((2, 2, 4, 6)) + decoder_layer = TransformerDecoderLayer(2, 64, 64, 128, 512) + output = decoder_layer(dec_input, + enc_output, + self_attn_bias, + cross_attn_bias) # [2, 4, 128] + """ + + def __init__(self, + n_head, + d_key, + d_value, + d_model, + d_inner_hid, + prepostprocess_dropout=0.1, + attention_dropout=0.1, + relu_dropout=0.1, + preprocess_cmd="n", + postprocess_cmd="da", + ffn_fc1_act="relu"): + super(TransformerDecoderLayer, self).__init__() + + self.preprocesser1 = PrePostProcessLayer(preprocess_cmd, d_model, + prepostprocess_dropout) + self.self_attn = MultiHeadAttention(d_key, d_value, d_model, n_head, + attention_dropout) + self.postprocesser1 = PrePostProcessLayer(postprocess_cmd, d_model, + prepostprocess_dropout) + + self.preprocesser2 = PrePostProcessLayer(preprocess_cmd, d_model, + prepostprocess_dropout) + self.cross_attn = MultiHeadAttention(d_key, d_value, d_model, n_head, + attention_dropout) + self.postprocesser2 = PrePostProcessLayer(postprocess_cmd, d_model, + prepostprocess_dropout) + + self.preprocesser3 = PrePostProcessLayer(preprocess_cmd, d_model, + prepostprocess_dropout) + self.ffn = FFN(d_inner_hid, d_model, relu_dropout, fc1_act=ffn_fc1_act) + self.postprocesser3 = PrePostProcessLayer(postprocess_cmd, d_model, + prepostprocess_dropout) + + def forward(self, + dec_input, + enc_output, + self_attn_bias=None, + cross_attn_bias=None, + cache=None): + """ + Applies a Transformer decoder layer on the input. + + Parameters: + dec_input (Variable): The input of Transformer decoder. It is a tensor + with shape `[batch_size, target_length, d_model]`. The data type + should be float32 or float64. + enc_output (Variable): The output of Transformer encoder. It is a tensor + with shape `[batch_size, source_length, d_model]`. The data type + should be float32 or float64. + self_attn_bias (Variable, optional): A tensor used in decoder self attention + to mask out attention on unwanted positions, usually the subsequent positions. + It is a tensor with shape `[batch_size, n_head, target_length, target_length]`, + where the unwanted positions have `-INF` values and the others + have 0 values. The data type should be float32 or float64. It can + be None when nothing wanted or needed to be masked out. Default None + cross_attn_bias (Variable, optional): A tensor used in decoder-encoder cross + attention to mask out attention on unwanted positions, usually the paddings. + It is a tensor with shape `[batch_size, n_head, target_length, target_length]`, + where the unwanted positions have `-INF` values and the others + have 0 values. The data type should be float32 or float64. It can + be None when nothing wanted or needed to be masked out. Default None + caches(dict, optional): It caches the multi-head attention intermediate + results of history decoding steps and encoder output. It is a dict + has `k`, `v`, `static_k`, `statkc_v` as keys and values are cached + results. It is only used for inference and should be None for + training. Default None + + Returns: + Variable: The output of Transformer decoder layer. It is a tensor \ + that has the same shape and data type as `dec_input`. + """ + self_attn_output = self.self_attn( + self.preprocesser1(dec_input), None, None, self_attn_bias, cache) + self_attn_output = self.postprocesser1(self_attn_output, dec_input) + + cross_attn_output = self.cross_attn( + self.preprocesser2(self_attn_output), enc_output, enc_output, + cross_attn_bias, cache) + cross_attn_output = self.postprocesser2(cross_attn_output, + self_attn_output) + + ffn_output = self.ffn(self.preprocesser3(cross_attn_output)) + ffn_output = self.postprocesser3(ffn_output, cross_attn_output) + + return ffn_output + + +class TransformerDecoder(Layer): + """ + TransformerDecoder is a stack of N decoder layers. + + Parameters: + n_layer (int): The number of encoder layers to be stacked. + n_head (int): The number of heads in multi-head attention(MHA). + d_key (int): The feature size to transformer queries and keys as in + multi-head attention. Mostly it equals to `d_model // n_head`. + d_value (int): The feature size to transformer values as in multi-head + attention. Mostly it equals to `d_model // n_head`. + d_model (int): The expected feature size in the input and output. + d_inner_hid (int): The hidden layer size in the feedforward network(FFN). + prepostprocess_dropout (float, optional): The dropout probability used + in pre-process and post-precess of MHA and FFN sub-layer. Default 0.1 + attention_dropout (float, optional): The dropout probability used + in MHA to drop some attention target. Default 0.1 + relu_dropout (float, optional): The dropout probability used after FFN + activition. Default 0.1 + preprocess_cmd (str, optional): The process applied before each MHA and + FFN sub-layer, and it also would be applied on output of the last + stacked layer. It should be a string composed of `d`, `a`, `n`, + where `d` for dropout, `a` for add residual connection, `n` for + layer normalization. Default `n`. + postprocess_cmd (str, optional): The process applied after each MHA and + FFN sub-layer. Same as `preprocess_cmd`. It should be a string + composed of `d`, `a`, `n`, where `d` for dropout, `a` for add + residual connection, `n` for layer normalization. Default `da`. + ffn_fc1_act (str, optional): The activation function in the feedforward + network. Default relu. + + Examples: + + .. code-block:: python + + import paddle + import paddle.fluid as fluid + from paddle.incubate.hapi.text import TransformerDecoder + + # decoder input: [batch_size, trg_len, d_model] + dec_input = paddle.rand((2, 4, 128)) + # encoder output: [batch_size, src_len, d_model] + enc_output = paddle.rand((2, 6, 128)) + # self attention bias: [batch_size, n_head, trg_len, trg_len] + self_attn_bias = paddle.rand((2, 2, 4, 4)) + # cross attention bias: [batch_size, n_head, trg_len, src_len] + cross_attn_bias = paddle.rand((2, 2, 4, 6)) + decoder = TransformerDecoder(2, 2, 64, 64, 128, 512) + dec_output = decoder(dec_input, + enc_output, + self_attn_bias, + cross_attn_bias) # [2, 4, 128] + """ + + def __init__(self, + n_layer, + n_head, + d_key, + d_value, + d_model, + d_inner_hid, + prepostprocess_dropout=0.1, + attention_dropout=0.1, + relu_dropout=0.1, + preprocess_cmd="n", + postprocess_cmd="da", + ffn_fc1_act="relu"): + super(TransformerDecoder, self).__init__() + + self.n_layer = n_layer + self.n_head = n_head + self.d_key = d_key + self.d_value = d_value + + self.decoder_layers = list() + for i in range(n_layer): + self.decoder_layers.append( + self.add_sublayer( + "layer_%d" % i, + TransformerDecoderLayer(n_head, d_key, d_value, d_model, + d_inner_hid, prepostprocess_dropout, + attention_dropout, relu_dropout, + preprocess_cmd, postprocess_cmd))) + self.processer = PrePostProcessLayer(preprocess_cmd, d_model, + prepostprocess_dropout) + + def forward(self, + dec_input, + enc_output, + self_attn_bias=None, + cross_attn_bias=None, + caches=None): + """ + Applies a stack of N Transformer decoder layers on inputs. + + Parameters: + dec_input (Variable): The input of Transformer decoder. It is a tensor + with shape `[batch_size, target_length, d_model]`. The data type + should be float32 or float64. + enc_output (Variable): The output of Transformer encoder. It is a tensor + with shape `[batch_size, source_length, d_model]`. The data type + should be float32 or float64. + self_attn_bias (Variable, optional): A tensor used in decoder self attention + to mask out attention on unwanted positions, usually the subsequent positions. + It is a tensor with shape `[batch_size, n_head, target_length, target_length]`, + where the unwanted positions have `-INF` values and the others + have 0 values. The data type should be float32 or float64. It can + be None when nothing wanted or needed to be masked out. Default None + cross_attn_bias (Variable, optional): A tensor used in decoder-encoder cross + attention to mask out attention on unwanted positions, usually the paddings. + It is a tensor with shape `[batch_size, n_head, target_length, target_length]`, + where the unwanted positions have `-INF` values and the others + have 0 values. The data type should be float32 or float64. It can + be None when nothing wanted or needed to be masked out. Default None + caches(list, optional): It caches the multi-head attention intermediate results + of history decoding steps and encoder output. It is a list of dict + where the length of list is decoder layer number, and each dict + has `k`, `v`, `static_k`, `statkc_v` as keys and values are cached + results. It is only used for inference and should be None for + training. Default None + + Returns: + Variable: The output of Transformer decoder. It is a tensor that has \ + the same shape and data type as `dec_input`. + """ + for i, decoder_layer in enumerate(self.decoder_layers): + dec_output = decoder_layer(dec_input, enc_output, self_attn_bias, + cross_attn_bias, caches[i] + if caches else None) + dec_input = dec_output + + return self.processer(dec_output) + + def prepare_static_cache(self, enc_output): + """ + Generate a list of dict where the length of list is decoder layer number. + Each dict has `static_k`, `statkc_v` as keys, and values are projected + results of encoder output to be used as keys and values in decoder-encoder + cross (multi-head) attention. Used in inference. + + Parameters: + enc_output (Variable): The output of Transformer encoder. It is a tensor + with shape `[batch_size, source_length, d_model]`. The data type + should be float32 or float64. + + Returns: + list: A list of dict. Each dict has `static_k`, `statkc_v` as keys, \ + and values are projected results of encoder output to be used as \ + keys and values in decoder-encoder cross (multi-head) attention. + """ + return [ + dict( + zip(("static_k", "static_v"), + decoder_layer.cross_attn.cal_kv(enc_output, enc_output))) + for decoder_layer in self.decoder_layers + ] + + def prepare_incremental_cache(self, enc_output): + """ + Generate a list of dict where the length of list is decoder layer number. + Each dict has `k`, `v` as keys, and values are empty tensors with shape + `[batch_size, n_head, 0, d_key]` and `[batch_size, n_head, 0, d_value]`, + representing the decoder self (multi-head) attention intermediate results, + and 0 is the initial length which would increase as inference decoding + continued. Used in inference. + + Parameters: + enc_output (Variable): The output of Transformer encoder. It is a tensor + with shape `[batch_size, source_length, d_model]`. The data type + should be float32 or float64. Actually, it is used to provide batch + size for Transformer initial states(caches), thus any tensor has + wanted batch size can be used here. + + Returns: + list: A list of dict. Each dict has `k`, `v` as keys, and values are \ + empty tensors representing intermediate results of history decoding \ + steps in decoder self (multi-head) attention at time step 0. + """ + return [{ + "k": layers.fill_constant_batch_size_like( + input=enc_output, + shape=[-1, self.n_head, 0, self.d_key], + dtype=enc_output.dtype, + value=0), + "v": layers.fill_constant_batch_size_like( + input=enc_output, + shape=[-1, self.n_head, 0, self.d_value], + dtype=enc_output.dtype, + value=0), + } for i in range(self.n_layer)] + + +class LinearChainCRF(Layer): + """ + Computes the negtive log-likelihood of tag sequences in a linear chain CRF. + Using terminologies of undirected probabilistic graph model, it calculates + probability using unary potentials (for emission) and binary potentials + (for transition). + + This layer creates a learnable parameter shaped `[size + 2, size]` (`size` + is for the number of tags), where: + + 1. the first row is for starting weights, denoted as $a$ here + + 2. the second row is for ending weights, denoted as $b$ here. + + 3. the remaining rows is a matrix for transition weights. + + Denote input tensor of unary potentials(emission) as $x$ , then the probability + of a tag sequence $s$ of length $L$ is defined as: + + $$P(s) = (1/Z) \exp(a_{s_1} + b_{s_L} + + \sum_{l=1}^L x_{s_l} + + \sum_{l=2}^L w_{s_{l-1},s_l})$$ + + where $Z$ is a normalization value so that the sum of $P(s)$ over + all possible sequences is 1, and $x$ is the emission feature weight + to the linear chain CRF. + + This operator implements the Forward-Backward algorithm for the linear chain + CRF. Please refer to http://www.cs.columbia.edu/~mcollins/fb.pdf and + http://cseweb.ucsd.edu/~elkan/250Bwinter2012/loglinearCRFs.pdf for details. + + NOTE: + + 1. The feature function for a CRF is made up of the emission features and the + transition features. The emission feature weights are NOT computed in + this operator. They MUST be computed first before this operator is called. + + 2. Because this operator performs global normalization over all possible + sequences internally, it expects UNSCALED emission feature weights. + Please do not call this op with the emission feature being output of any + nonlinear activation. + + 3. The 2nd dimension of input(emission) MUST be equal to the tag number. + + Parameters: + size (int): The number of tags. + param_attr (ParamAttr, optional): The attribute of the learnable parameter for + transition. Default: None + dtype (str, optional): Data type, it can be 'float32' or 'float64'. + Default: `float32` + + Examples: + + .. code-block:: python + + import numpy as np + import paddle + import paddle.fluid as fluid + from paddle.incubate.hapi.text import LinearChainCRF + + # emission: [batch_size, sequence_length, num_tags] + emission = paddle.rand((2, 8, 5)) + # label: [batch_size, sequence_length, num_tags] + # dummy label just for example usage + label = paddle.ones((2, 8), dtype='int64') + length = fluid.layers.assign(np.array([6, 8]).astype('int64')) + crf = LinearChainCRF(size=5) + cost = crf(emission, label, length) # [2, 1] + """ + + def __init__(self, size, param_attr=None, dtype='float32'): + super(LinearChainCRF, self).__init__() + self._param_attr = param_attr + self._dtype = dtype + self._size = size + self._transition = self.create_parameter( + attr=self._param_attr, + shape=[self._size + 2, self._size], + dtype=self._dtype) + + @property + def weight(self): + """ + getter for transition matrix parameter + + Returns: + Parameter: The learnable transition parameter shaped `[size + 2, size]` \ + (`size` is for the number of tags). The data type should be float32 \ + or float64. + """ + return self._transition + + @weight.setter + def weight(self, value): + """ + setter for transition matrix parameter + + Parameters: + value (Parameter): The learnable transition parameter shaped `[size + 2, size]` \ + (`size` is for the number of tags). The data type should be float32 \ + or float64. + """ + self._transition = value + + def forward(self, input, label, length): + """ + Computes the log-likelihood of tag sequences in a linear chain CRF. + + Parameters: + input (Variable): The input of unary potentials(emission). It is a + tensor with shape `[batch_size, sequence_length, num_tags]`. + The data type should be float32 or float64. + label (Variable): The golden sequence tags. It is a tensor + with shape `[batch_size, sequence_length]`. The data type + should be int64. + length (Variable): A tensor with shape `[batch_size]`. It stores real + length of each sequence for correctness. + + Returns: + Variable: The negtive log-likelihood of tag sequences. It is a tensor \ + with shape `[batch_size, 1]` and has float32 or float64 data type. + """ + alpha = self._helper.create_variable_for_type_inference( + dtype=self._dtype) + emission_exps = self._helper.create_variable_for_type_inference( + dtype=self._dtype) + transition_exps = self._helper.create_variable_for_type_inference( + dtype=self._dtype) + log_likelihood = self._helper.create_variable_for_type_inference( + dtype=self._dtype) + this_inputs = { + "Emission": [input], + "Transition": self._transition, + "Label": [label] + } + if length is not None: + this_inputs['Length'] = [length] + self._helper.append_op( + type='linear_chain_crf', + inputs=this_inputs, + outputs={ + "Alpha": [alpha], + "EmissionExps": [emission_exps], + "TransitionExps": transition_exps, + "LogLikelihood": log_likelihood + }) + return log_likelihood + + +class CRFDecoding(Layer): + """ + CRFDecoding reads the emission feature weights and the transition + feature weights learned by the `LinearChainCRF` and performs decoding. + It implements the Viterbi algorithm which is a dynamic programming algorithm + for finding the most likely sequence of hidden states, called the Viterbi path, + that results in a sequence of observed tags. + + The output of this layer changes according to whether `label` is given: + + 1. `label` is given: + + This happens in training. This operator is used to co-work with the chunk_eval + operator. When `label` is given, it returns tensor with the same shape as + `label` whose values are fixed to be 0, indicating an incorrect prediction, + or 1 indicating a tag is correctly predicted. Such an output is the input to + chunk_eval operator. + + 2. `label` is not given: + + This is the standard decoding process and get the highest scoring sequence + of tags. + + Parameters: + size (int): The number of tags. + param_attr (ParamAttr, optional): The attribute of the learnable parameter for + transition. Default: None + dtype (str, optional): Data type, it can be 'float32' or 'float64'. + Default: `float32` + + Examples: + + .. code-block:: python + + import numpy as np + import paddle + import paddle.fluid as fluid + from paddle.incubate.hapi.text import CRFDecoding + + # emission: [batch_size, sequence_length, num_tags] + emission = paddle.rand((2, 8, 5)) + length = fluid.layers.assign(np.array([6, 8]).astype('int64')) + crf_decoding = CRFDecoding(size=5) + cost = crf_decoding(emission, length) # [2, 8] + """ + + def __init__(self, size, param_attr=None, dtype='float32'): + super(CRFDecoding, self).__init__() + self._dtype = dtype + self._size = size + self._param_attr = param_attr + self._transition = self.create_parameter( + attr=self._param_attr, + shape=[self._size + 2, self._size], + dtype=self._dtype) + + @property + def weight(self): + """ + getter for transition matrix parameter + + Returns: + Parameter: The learnable transition parameter shaped `[size + 2, size]` \ + (`size` is for the number of tags). The data type should be float32 \ + or float64. + """ + return self._transition + + @weight.setter + def weight(self, value): + """ + setter for transition matrix parameter + + Parameters: + value (Parameter): The learnable transition parameter shaped `[size + 2, size]` \ + (`size` is for the number of tags). The data type should be float32 \ + or float64. + """ + self._transition = value + + def forward(self, input, length, label=None): + """ + Performs sequence tagging prediction. + + Parameters: + input (Variable): The input of unary potentials(emission). It is a + tensor with shape `[batch_size, sequence_length, num_tags]`. + The data type should be float32 or float64. + length (Variable): A tensor with shape `[batch_size]`. + It stores real length of each sequence for correctness. + label (Variable, optional): The golden sequence tags. It is a tensor + with shape `[batch_size, sequence_length]`. The data type + should be int64. Default None. + + Returns: + Variable: A tensor with shape `[batch_size, sequence_length]` and \ + int64 data type. If `label` is None, the tensor has binary values \ + indicating a correct or incorrect prediction. Otherwise its values \ + range from 0 to maximum tag number - 1, each element indicates \ + an index of a predicted tag. + """ + + viterbi_path = self._helper.create_variable_for_type_inference( + dtype=self._dtype) + this_inputs = { + "Emission": [input], + "Transition": self._transition, + "Label": label + } + if length is not None: + this_inputs['Length'] = [length] + self._helper.append_op( + type='crf_decoding', + inputs=this_inputs, + outputs={"ViterbiPath": [viterbi_path]}) + return viterbi_path + + +class _GRUEncoder(Layer): + """ + A multi-layer bidirectional GRU encoder used by SequenceTagging. + """ + + def __init__(self, + input_dim, + grnn_hidden_dim, + init_bound, + num_layers=1, + is_bidirection=False): + super(_GRUEncoder, self).__init__() + self.num_layers = num_layers + self.is_bidirection = is_bidirection + self.gru_list = [] + self.gru_r_list = [] + for i in range(num_layers): + self.basic_gru_cell = BasicGRUCell( + input_size=input_dim if i == 0 else input_dim * 2, + hidden_size=grnn_hidden_dim, + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.UniformInitializer( + low=-init_bound, high=init_bound), + regularizer=fluid.regularizer.L2DecayRegularizer( + regularization_coeff=1e-4))) + self.gru_list.append( + self.add_sublayer( + "gru_%d" % i, + RNN(self.basic_gru_cell, is_reverse=False, + time_major=False))) + if self.is_bidirection: + for i in range(num_layers): + self.basic_gru_cell_r = BasicGRUCell( + input_size=input_dim if i == 0 else input_dim * 2, + hidden_size=grnn_hidden_dim, + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.UniformInitializer( + low=-init_bound, high=init_bound), + regularizer=fluid.regularizer.L2DecayRegularizer( + regularization_coeff=1e-4))) + self.gru_r_list.append( + self.add_sublayer( + "gru_r_%d" % i, + RNN(self.basic_gru_cell_r, + is_reverse=True, + time_major=False))) + + def forward(self, input_feature, h0=None): + for i in range(self.num_layers): + pre_gru, pre_state = self.gru_list[i](input_feature) + if self.is_bidirection: + gru_r, r_state = self.gru_r_list[i](input_feature) + out = fluid.layers.concat(input=[pre_gru, gru_r], axis=-1) + else: + out = pre_gru + input_feature = out + return out + + +class SequenceTagging(Layer): + """ + Sequence tagging model using multi-layer bidirectional GRU as backbone and + linear chain CRF as output layer. + + Parameters: + vocab_size (int): The size of vocabulary. + num_labels (int): The number of labels. + word_emb_dim (int, optional): The embedding size. Defalut 128 + grnn_hidden_dim (int, optional): The hidden size of GRU. Defalut 128 + emb_learning_rate (int, optional): The partial learning rate for embedding. + The actual learning rate for embedding would multiply it with the global + learning rate. Default 0.1 + crf_learning_rate (int, optional): The partial learning rate for crf. The + actual learning rate for embedding would multiply it with the global + learning rate. Default 0.1 + bigru_num (int, optional): The number of bidirectional GRU layers. + Default 2 + init_bound (float, optional): The range for uniform initializer would + be `(-init_bound, init_bound)`. It would be used for all parameters + except CRF transition matrix. Default 0.1 + + Examples: + + .. code-block:: python + + import numpy as np + import paddle + import paddle.fluid as fluid + from paddle.incubate.hapi.text import SequenceTagging + + # word: [batch_size, sequence_length] + # dummy input just for example + word = paddle.ones((2, 8), dtype='int64') + length = fluid.layers.assign(np.array([6, 8]).astype('int64')) + seq_tagger = SequenceTagging(vocab_size=100, num_labels=5) + outputs = seq_tagger(word, length) + """ + + def __init__(self, + vocab_size, + num_labels, + word_emb_dim=128, + grnn_hidden_dim=128, + emb_learning_rate=0.1, + crf_learning_rate=0.1, + bigru_num=2, + init_bound=0.1): + super(SequenceTagging, self).__init__() + self.word_emb_dim = word_emb_dim + self.vocab_size = vocab_size + self.num_labels = num_labels + self.grnn_hidden_dim = grnn_hidden_dim + self.emb_lr = emb_learning_rate + self.crf_lr = crf_learning_rate + self.bigru_num = bigru_num + self.init_bound = 0.1 + + self.word_embedding = Embedding( + size=[self.vocab_size, self.word_emb_dim], + dtype='float32', + param_attr=fluid.ParamAttr( + learning_rate=self.emb_lr, + name="word_emb", + initializer=fluid.initializer.Uniform( + low=-self.init_bound, high=self.init_bound))) + + self.gru_encoder = _GRUEncoder( + input_dim=self.grnn_hidden_dim, + grnn_hidden_dim=self.grnn_hidden_dim, + init_bound=self.init_bound, + num_layers=self.bigru_num, + is_bidirection=True) + + self.fc = Linear( + input_dim=self.grnn_hidden_dim * 2, + output_dim=self.num_labels, + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.Uniform( + low=-self.init_bound, high=self.init_bound), + regularizer=fluid.regularizer.L2DecayRegularizer( + regularization_coeff=1e-4))) + + self.linear_chain_crf = LinearChainCRF( + param_attr=fluid.ParamAttr( + name='linear_chain_crfw', learning_rate=self.crf_lr), + size=self.num_labels) + + self.crf_decoding = CRFDecoding( + param_attr=fluid.ParamAttr( + name='crfw', learning_rate=self.crf_lr), + size=self.num_labels) + + def forward(self, word, lengths, target=None): + """ + Performs sequence tagging. If `target` is None, it is for training and + loss would be returned, otherwise it is for inference and returns the + predicted tags. + + Parameters: + word (Variable): The input sequences to be labeled. It is a tensor + with shape `[batch_size, sequence_length]`. The data type should + be int64. + lengths (Variable): A tensor with shape `[batch_size]`. It stores real + length of each sequence. + target (Variable, optional): The golden sequence tags. It is a tensor + with shape `[batch_size, sequence_length]`. The data type + should be int64. It could be None for inference. Default None. + + Returns: + tuple: A tuple( :code:`(crf_decode, avg_cost, lengths)` ) If input \ + argument `target` is provided, including the most likely sequence \ + tags, the averaged CRF cost and the sequence lengths, the shapes \ + are `[batch_size, sequence_length]`, `[1]` and `[batch_size]`, \ + and the data types are int64, float32 and int64. Otherwise A \ + tuple( :code:`(crf_decode, lengths)` ) for inference. + """ + word_embed = self.word_embedding(word) + input_feature = word_embed + + bigru_output = self.gru_encoder(input_feature) + emission = self.fc(bigru_output) + + if target is not None: + crf_cost = self.linear_chain_crf( + input=emission, label=target, length=lengths) + avg_cost = fluid.layers.mean(x=crf_cost) + self.crf_decoding.weight = self.linear_chain_crf.weight + crf_decode = self.crf_decoding(input=emission, length=lengths) + return crf_decode, avg_cost, lengths + else: + self.linear_chain_crf.weight = self.crf_decoding.weight + crf_decode = self.crf_decoding(input=emission, length=lengths) + return crf_decode, lengths diff --git a/python/setup.py.in b/python/setup.py.in index 18ec9bb5925..ad2dcd2877b 100644 --- a/python/setup.py.in +++ b/python/setup.py.in @@ -183,6 +183,7 @@ packages=['paddle', 'paddle.incubate.hapi.vision', 'paddle.incubate.hapi.vision.models', 'paddle.incubate.hapi.vision.transforms', + 'paddle.incubate.hapi.text', 'paddle.io', 'paddle.nn', 'paddle.nn.functional', diff --git a/tools/wlist.json b/tools/wlist.json index 594b40d650c..5382bce6356 100644 --- a/tools/wlist.json +++ b/tools/wlist.json @@ -334,6 +334,34 @@ "ParallelEnv", "DataParallel", "DataParallel.scale_loss", - "DataParallel.apply_collective_grads" + "DataParallel.apply_collective_grads", + "BasicLSTMCell.forward", + "BasicGRUCell.forward", + "RNN.forward", + "StackedRNNCell.forward", + "StackedLSTMCell.forward", + "LSTM.forward", + "BidirectionalRNN.forward", + "BidirectionalLSTM.forward", + "StackedGRUCell.forward", + "GRU.forward", + "BidirectionalGRU.forward", + "DynamicDecode.forward", + "Conv1dPoolLayer.forward", + "CNNEncoder.forward", + "TransformerCell.forward", + "TransformerBeamSearchDecoder.step", + "MultiHeadAttention.forward", + "MultiHeadAttention.cal_kv", + "FFN.forward", + "TransformerEncoderLayer.forward", + "TransformerEncoder.forward", + "TransformerDecoderLayer.forward", + "TransformerDecoder.forward", + "TransformerDecoder.prepare_static_cache", + "TransformerDecoder.prepare_incremental_cache", + "LinearChainCRF.forward", + "CRFDecoding.forward", + "SequenceTagging.forward" ] } -- GitLab