提交 a8f97a82 编写于 作者: P peizhilin

Merge branch 'windows/build' into windows/online

test=develop
...@@ -35,4 +35,4 @@ function(inference_analysis_test TARGET) ...@@ -35,4 +35,4 @@ function(inference_analysis_test TARGET)
endif() endif()
endfunction(inference_analysis_test) endfunction(inference_analysis_test)
inference_analysis_test(test_analyzer SRCS analyzer_tester.cc EXTRA_DEPS paddle_inference_api) inference_analysis_test(test_analyzer SRCS analyzer_tester.cc EXTRA_DEPS reset_tensor_array paddle_inference_api)
...@@ -13,25 +13,57 @@ See the License for the specific language governing permissions and ...@@ -13,25 +13,57 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h" #include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/plugin/avg_pool_op_plugin.h"
namespace paddle { namespace paddle {
namespace inference { namespace inference {
namespace tensorrt { namespace tensorrt {
void DealCeilMode(const nvinfer1::Dims &input_shape, std::vector<int> ksize,
std::vector<int> strides, std::vector<int> paddings,
nvinfer1::DimsHW *pre_pad, nvinfer1::DimsHW *post_pad,
int input_dims) {
int input_height = input_shape.d[input_dims - 2];
int input_width = input_shape.d[input_dims - 1];
int floor_h_output_size =
(input_height - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
int ceil_h_output_size =
(input_height - ksize[0] + 2 * paddings[0] + strides[0] - 1) /
strides[0] +
1;
int floor_w_output_size =
(input_width - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
int ceil_w_output_size =
(input_width - ksize[1] + 2 * paddings[1] + strides[1] - 1) / strides[1] +
1;
if (floor_h_output_size != ceil_h_output_size) {
post_pad->h() = strides[0] - 1;
}
if (floor_w_output_size != ceil_w_output_size) {
post_pad->w() = strides[1] - 1;
}
}
/* /*
* Pool2dOp, IPoolingLayer in TRT. This Layer doesn't has weights. * Pool2dOp, IPoolingLayer in TRT. This Layer doesn't has weights.
*/ */
class Pool2dOpConverter : public OpConverter { class Pool2dOpConverter : public OpConverter {
public: public:
void operator()(const framework::proto::OpDesc& op, void operator()(const framework::proto::OpDesc &op,
const framework::Scope& scope, bool test_mode) override { const framework::Scope &scope, bool test_mode) override {
VLOG(3) VLOG(40)
<< "convert a fluid pool2d op to tensorrt pool2d layer without bias"; << "convert a fluid pool2d op to tensorrt pool2d layer without bias";
framework::OpDesc op_desc(op, nullptr); framework::OpDesc op_desc(op, nullptr);
// Declare inputs // Declare inputs
PADDLE_ENFORCE_EQ(op_desc.Input("X").size(), 1); PADDLE_ENFORCE_EQ(op_desc.Input("X").size(), 1);
PADDLE_ENFORCE_EQ(op_desc.Output("Out").size(), 1); PADDLE_ENFORCE_EQ(op_desc.Output("Out").size(), 1);
auto* input1 = engine_->GetITensor(op_desc.Input("X")[0]); auto *input1 = engine_->GetITensor(op_desc.Input("X")[0]);
nvinfer1::Dims input_shape = input1->getDimensions();
int input_dims = input_shape.nbDims;
PADDLE_ENFORCE_EQ(input_dims, 3UL);
bool global_pooling = boost::get<bool>(op_desc.GetAttr("global_pooling")); bool global_pooling = boost::get<bool>(op_desc.GetAttr("global_pooling"));
std::string pool_type = std::string pool_type =
...@@ -44,23 +76,6 @@ class Pool2dOpConverter : public OpConverter { ...@@ -44,23 +76,6 @@ class Pool2dOpConverter : public OpConverter {
boost::get<std::vector<int>>(op_desc.GetAttr("paddings")); boost::get<std::vector<int>>(op_desc.GetAttr("paddings"));
bool ceil_mode = boost::get<bool>(op_desc.GetAttr("ceil_mode")); bool ceil_mode = boost::get<bool>(op_desc.GetAttr("ceil_mode"));
nvinfer1::Dims input_shape = input1->getDimensions();
int nbDims = input_shape.nbDims;
nvinfer1::DimsHW nv_ksize(ksize[0], ksize[1]);
nvinfer1::DimsHW nv_strides(strides[0], strides[1]);
nvinfer1::DimsHW nv_paddings(paddings[0], paddings[1]);
if (global_pooling == true) {
nv_ksize.d[0] = input_shape.d[nbDims - 2];
nv_ksize.d[1] = input_shape.d[nbDims - 1];
nv_strides.h() = 1;
nv_strides.w() = 1;
nv_paddings.h() = 0;
nv_paddings.w() = 0;
}
PADDLE_ENFORCE_EQ(input1->getDimensions().nbDims, 3UL);
nvinfer1::PoolingType nv_pool_type = nvinfer1::PoolingType::kMAX; nvinfer1::PoolingType nv_pool_type = nvinfer1::PoolingType::kMAX;
if (pool_type == "max") { if (pool_type == "max") {
nv_pool_type = nvinfer1::PoolingType::kMAX; nv_pool_type = nvinfer1::PoolingType::kMAX;
...@@ -70,42 +85,63 @@ class Pool2dOpConverter : public OpConverter { ...@@ -70,42 +85,63 @@ class Pool2dOpConverter : public OpConverter {
PADDLE_THROW("TensorRT unsupported pooling type!"); PADDLE_THROW("TensorRT unsupported pooling type!");
} }
if (ceil_mode) { nvinfer1::DimsHW nv_ksize(ksize[0], ksize[1]);
nvinfer1::DimsHW pre_pad(0, 0); nvinfer1::DimsHW nv_strides(strides[0], strides[1]);
nvinfer1::DimsHW post_pad(0, 0); nvinfer1::DimsHW nv_paddings(paddings[0], paddings[1]);
int input_height = input_shape.d[nbDims - 2];
int input_width = input_shape.d[nbDims - 1]; nvinfer1::ILayer *layer = nullptr;
int floor_h_output_size =
(input_height - ksize[0] + 2 * paddings[0]) / strides[0] + 1; if (global_pooling == true) {
int ceil_h_output_size = nv_ksize.d[0] = input_shape.d[input_dims - 2];
(input_height - ksize[0] + 2 * paddings[0] + strides[0] - 1) / nv_ksize.d[1] = input_shape.d[input_dims - 1];
strides[0] + auto *layer = TRT_ENGINE_ADD_LAYER(
1; engine_, Pooling, *const_cast<nvinfer1::ITensor *>(input1),
nv_pool_type, nv_ksize);
int floor_w_output_size = PADDLE_ENFORCE_NOT_NULL(layer, "pool layer could not be created.");
(input_width - ksize[1] + 2 * paddings[1]) / strides[1] + 1; auto output_name = op_desc.Output("Out")[0];
int ceil_w_output_size = layer->setName(("pool2d (Output: " + output_name + ")").c_str());
(input_width - ksize[1] + 2 * paddings[1] + strides[1] - 1) / layer->getOutput(0)->setName(output_name.c_str());
strides[1] + engine_->SetITensor(output_name, layer->getOutput(0));
1; if (test_mode) {
if (floor_h_output_size != ceil_h_output_size) { engine_->DeclareOutput(output_name);
post_pad.h() = strides[0] - 1;
} }
return;
}
if (floor_w_output_size != ceil_w_output_size) { if (pool_type == "max") {
post_pad.w() = strides[1] - 1; nvinfer1::DimsHW pre_pad(paddings[0], paddings[1]);
nvinfer1::DimsHW post_pad(paddings[0], paddings[1]);
if (ceil_mode) {
// If ceil mode is true, we will pad the appropriate size to the input.
DealCeilMode(input_shape, ksize, strides, paddings, &pre_pad, &post_pad,
input_dims);
auto *pad_layer = TRT_ENGINE_ADD_LAYER(
engine_, Padding, *const_cast<nvinfer1::ITensor *>(input1), pre_pad,
post_pad);
PADDLE_ENFORCE_NOT_NULL(
pad_layer, "pad layer in poolOp converter could not be created.");
input1 = pad_layer->getOutput(0);
}
auto *pool_layer = TRT_ENGINE_ADD_LAYER(
engine_, Pooling, *const_cast<nvinfer1::ITensor *>(input1),
nv_pool_type, nv_ksize);
PADDLE_ENFORCE_NOT_NULL(pool_layer, "pool layer could not be created.");
pool_layer->setStride(nv_strides);
pool_layer->setPadding(nv_paddings);
layer = pool_layer;
} else {
// Average pooling needs to exclude the padding pixels from the average
// mean.
// It is not supported well by TRT, we use a plugin here.
std::vector<int> input_shape_v;
for (int i = 0; i < input_dims; i++) {
input_shape_v.push_back(input_shape.d[i]);
} }
auto* layer = TRT_ENGINE_ADD_LAYER( plugin::AvgPoolPlugin *plugin = new plugin::AvgPoolPlugin(
engine_, Padding, *const_cast<nvinfer1::ITensor*>(input1), pre_pad, ceil_mode, ksize, strides, paddings, input_shape_v);
post_pad); auto *avg_pool_layer = engine_->AddPlugin(&input1, 1, plugin);
input1 = layer->getOutput(0); layer = avg_pool_layer;
} }
auto* layer = TRT_ENGINE_ADD_LAYER(engine_, Pooling,
*const_cast<nvinfer1::ITensor*>(input1),
nv_pool_type, nv_ksize);
PADDLE_ENFORCE_NOT_NULL(layer, "pool layer could not be created.");
layer->setStride(nv_strides);
layer->setPadding(nv_paddings);
auto output_name = op_desc.Output("Out")[0]; auto output_name = op_desc.Output("Out")[0];
layer->setName(("pool2d (Output: " + output_name + ")").c_str()); layer->setName(("pool2d (Output: " + output_name + ")").c_str());
......
...@@ -20,20 +20,21 @@ namespace paddle { ...@@ -20,20 +20,21 @@ namespace paddle {
namespace inference { namespace inference {
namespace tensorrt { namespace tensorrt {
void test_pool2d(bool global_pooling, bool ceil_mode) { void test_pool2d(bool global_pooling, bool ceil_mode,
std::string pool_type = "max") {
framework::Scope scope; framework::Scope scope;
std::unordered_set<std::string> parameters; std::unordered_set<std::string> parameters;
TRTConvertValidation validator(5, parameters, scope, 1 << 15); TRTConvertValidation validator(5, parameters, scope, 1 << 15);
// The ITensor's Dims should not contain the batch size. // The ITensor's Dims should not contain the batch size.
// So, the ITensor's Dims of input and output should be C * H * W. // So, the ITensor's Dims of input and output should be C * H * W.
validator.DeclInputVar("pool2d-X", nvinfer1::Dims3(3, 13, 14)); validator.DeclInputVar("pool2d-X", nvinfer1::Dims3(3, 6, 7));
if (global_pooling) if (global_pooling)
validator.DeclOutputVar("pool2d-Out", nvinfer1::Dims3(3, 1, 1)); validator.DeclOutputVar("pool2d-Out", nvinfer1::Dims3(3, 1, 1));
else if (ceil_mode) else if (ceil_mode)
validator.DeclOutputVar("pool2d-Out", nvinfer1::Dims3(3, 6, 7)); validator.DeclOutputVar("pool2d-Out", nvinfer1::Dims3(3, 3, 4));
else else
validator.DeclOutputVar("pool2d-Out", nvinfer1::Dims3(3, 6, 6)); validator.DeclOutputVar("pool2d-Out", nvinfer1::Dims3(3, 3, 3));
// Prepare Op description // Prepare Op description
framework::OpDesc desc; framework::OpDesc desc;
...@@ -41,10 +42,10 @@ void test_pool2d(bool global_pooling, bool ceil_mode) { ...@@ -41,10 +42,10 @@ void test_pool2d(bool global_pooling, bool ceil_mode) {
desc.SetInput("X", {"pool2d-X"}); desc.SetInput("X", {"pool2d-X"});
desc.SetOutput("Out", {"pool2d-Out"}); desc.SetOutput("Out", {"pool2d-Out"});
std::vector<int> ksize({3, 3}); std::vector<int> ksize({2, 2});
std::vector<int> strides({2, 2}); std::vector<int> strides({2, 2});
std::vector<int> paddings({0, 0}); std::vector<int> paddings({0, 0});
std::string pooling_t = "max"; std::string pooling_t = pool_type;
desc.SetAttr("pooling_type", pooling_t); desc.SetAttr("pooling_type", pooling_t);
desc.SetAttr("ksize", ksize); desc.SetAttr("ksize", ksize);
...@@ -63,7 +64,8 @@ void test_pool2d(bool global_pooling, bool ceil_mode) { ...@@ -63,7 +64,8 @@ void test_pool2d(bool global_pooling, bool ceil_mode) {
TEST(Pool2dOpConverter, normal) { test_pool2d(false, false); } TEST(Pool2dOpConverter, normal) { test_pool2d(false, false); }
TEST(Pool2dOpConverter, test_global_pooling) { test_pool2d(true, false); } TEST(Pool2dOpConverter, test_global_pooling) { test_pool2d(true, false); }
TEST(Pool2dOpConverter, test_ceil_mode) { test_pool2d(false, true); } TEST(Pool2dOpConverter, max_ceil_test) { test_pool2d(false, true); }
TEST(Pool2dOpConverter, avg_ceil_test) { test_pool2d(false, true, "avg"); }
} // namespace tensorrt } // namespace tensorrt
} // namespace inference } // namespace inference
......
nv_library(tensorrt_plugin nv_library(tensorrt_plugin
SRCS trt_plugin.cc split_op_plugin.cu elementwise_op_plugin.cu prelu_op_plugin.cu SRCS trt_plugin.cc split_op_plugin.cu elementwise_op_plugin.cu prelu_op_plugin.cu
avg_pool_op_plugin.cu
DEPS enforce tensorrt_engine) DEPS enforce tensorrt_engine)
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/tensorrt/plugin/avg_pool_op_plugin.h"
#include "paddle/fluid/operators/math/pooling.h"
namespace paddle {
namespace inference {
namespace tensorrt {
namespace plugin {
nvinfer1::Dims AvgPoolPlugin::getOutputDimensions(
int index, const nvinfer1::Dims* inputDims, int nbInputs) {
assert(nbInputs == 1);
assert(index == 0);
assert(inputDims[0].nbDims == 3);
nvinfer1::Dims const& input_dims = inputDims[0];
nvinfer1::Dims output_dims = input_dims;
output_dims.d[1] = output_shape_[1];
output_dims.d[2] = output_shape_[2];
return output_dims;
}
int AvgPoolPlugin::enqueue(int batchSize, const void* const* inputs,
void** outputs, void* workspace,
cudaStream_t stream) {
auto const& input_dims = this->getInputDims(0);
int input_size = 0;
float const* idata = reinterpret_cast<float const*>(inputs[0]);
float** odatas = reinterpret_cast<float**>(outputs);
paddle::operators::math::AvgPool<float> pool_process;
paddle::operators::math::Pool2dDirectCUDAFunctor<
paddle::operators::math::AvgPool<float>, float>
pool2d_forward;
std::vector<int> input_shape = input_shape_;
std::vector<int> output_shape = output_shape_;
input_shape.insert(input_shape.begin(), batchSize);
output_shape.insert(output_shape.begin(), batchSize);
pool2d_forward(idata, input_shape, output_shape, ksize_, strides_, paddings_,
pool_process, true, odatas[0], stream);
return cudaGetLastError() != cudaSuccess;
}
} // namespace plugin
} // namespace tensorrt
} // namespace inference
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <cassert>
#include <vector>
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
namespace paddle {
namespace inference {
namespace tensorrt {
namespace plugin {
class AvgPoolPlugin : public PluginTensorRT {
private:
bool ceil_mode_;
std::vector<int> ksize_;
std::vector<int> strides_;
std::vector<int> paddings_;
std::vector<int> input_shape_;
std::vector<int> output_shape_;
protected:
size_t getSerializationSize() override {
return SerializedSize(ceil_mode_) + SerializedSize(ksize_) +
SerializedSize(strides_) + SerializedSize(paddings_) +
SerializedSize(input_shape_) + getBaseSerializationSize();
}
// TRT will call this func when we need to serialize the configuration of
// tensorrt.
// It should not be called by users.
void serialize(void *buffer) override {
serializeBase(buffer);
SerializeValue(&buffer, ceil_mode_);
SerializeValue(&buffer, ksize_);
SerializeValue(&buffer, strides_);
SerializeValue(&buffer, paddings_);
SerializeValue(&buffer, input_shape_);
}
public:
AvgPoolPlugin(bool ceil_mode, std::vector<int> ksize,
std::vector<int> strides, std::vector<int> paddings,
std::vector<int> input_shape)
: ceil_mode_(ceil_mode),
ksize_(ksize),
strides_(strides),
paddings_(paddings),
input_shape_(input_shape) {
int output_h, output_w;
output_shape_ = input_shape_;
if (!ceil_mode_) {
output_h =
(input_shape[1] - ksize_[0] + 2 * paddings_[0]) / strides_[0] + 1;
output_w =
(input_shape[2] - ksize_[1] + 2 * paddings_[1]) / strides_[1] + 1;
} else {
output_h =
(input_shape[1] - ksize_[0] + 2 * paddings_[0] + strides_[0] - 1) /
strides_[0] +
1;
output_w =
(input_shape[2] - ksize_[1] + 2 * paddings_[1] + strides_[1] - 1) /
strides_[1] +
1;
}
output_shape_[1] = output_h;
output_shape_[2] = output_w;
}
// It was used for tensorrt deserialization.
// It should not be called by users.
AvgPoolPlugin(void const *serialData, size_t serialLength) {
deserializeBase(serialData, serialLength);
DeserializeValue(&serialData, &serialLength, &ceil_mode_);
DeserializeValue(&serialData, &serialLength, &ksize_);
DeserializeValue(&serialData, &serialLength, &strides_);
DeserializeValue(&serialData, &serialLength, &paddings_);
DeserializeValue(&serialData, &serialLength, &input_shape_);
}
AvgPoolPlugin *clone() const override {
return new AvgPoolPlugin(ceil_mode_, ksize_, strides_, paddings_,
input_shape_);
}
const char *getPluginType() const override { return "avg_pool"; }
int getNbOutputs() const override { return 1; }
nvinfer1::Dims getOutputDimensions(int index, const nvinfer1::Dims *inputs,
int nbInputDims) override;
int initialize() override { return 0; }
int enqueue(int batchSize, const void *const *inputs, void **outputs,
void *workspace, cudaStream_t stream) override;
};
} // namespace plugin
} // namespace tensorrt
} // namespace inference
} // namespace paddle
...@@ -13,6 +13,7 @@ ...@@ -13,6 +13,7 @@
// limitations under the License. // limitations under the License.
#include "paddle/fluid/memory/allocation/best_fit_allocator.h" #include "paddle/fluid/memory/allocation/best_fit_allocator.h"
#include <random>
#include <thread> // NOLINT #include <thread> // NOLINT
#include <vector> #include <vector>
#include "gtest/gtest.h" #include "gtest/gtest.h"
......
...@@ -12,6 +12,7 @@ ...@@ -12,6 +12,7 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
#include <random>
#include <thread> // NOLINT #include <thread> // NOLINT
#include <vector> #include <vector>
#include "gtest/gtest.h" #include "gtest/gtest.h"
......
...@@ -32,31 +32,39 @@ if (WITH_GPU AND TENSORRT_FOUND) ...@@ -32,31 +32,39 @@ if (WITH_GPU AND TENSORRT_FOUND)
add_subdirectory(tensorrt) add_subdirectory(tensorrt)
endif() endif()
register_operators(EXCLUDES warpctc_op conv_fusion_op) SET(OP_HEADER_DEPS xxhash)
if (WITH_GPU)
SET(OP_HEADER_DEPS ${OP_HEADER_DEPS} cub)
endif()
# warpctc_cudnn need cudnn 7 above register_operators(EXCLUDES warpctc_op conv_fusion_op DEPS ${OP_HEADER_DEPS})
# warpctc_op needs cudnn 7 above
if (WITH_GPU AND NOT WIN32) if (WITH_GPU AND NOT WIN32)
if (${CUDNN_MAJOR_VERSION} VERSION_LESS 7) if (${CUDNN_MAJOR_VERSION} VERSION_LESS 7)
op_library(warpctc_op DEPS dynload_warpctc sequence_padding sequence_scale SRCS warpctc_op.cc warpctc_op.cu.cc) op_library(warpctc_op DEPS dynload_warpctc sequence_padding sequence_scale SRCS warpctc_op.cc warpctc_op.cu.cc)
else() else()
op_library(warpctc_op DEPS dynload_warpctc sequence_padding sequence_scale) op_library(warpctc_op DEPS dynload_warpctc sequence_padding sequence_scale)
endif() endif()
op_library(conv_fusion_op) # conv_fusion_op needs cudnn 7 above
file(APPEND ${pybind_file} "USE_CUDA_ONLY_OP(conv2d_fusion);\n") if (NOT ${CUDNN_MAJOR_VERSION} VERSION_LESS 7)
op_library(conv_fusion_op)
file(APPEND ${pybind_file} "USE_CUDA_ONLY_OP(conv2d_fusion);\n")
endif()
else() else()
op_library(warpctc_op DEPS dynload_warpctc sequence_padding sequence_scale) op_library(warpctc_op DEPS dynload_warpctc sequence_padding sequence_scale)
endif() endif()
set(COMMON_OP_DEPS "") set(COMMON_OP_DEPS ${OP_HEADER_DEPS})
set(COMMON_OP_DEPS ${COMMON_OP_DEPS} xxhash selected_rows_functor selected_rows lod_tensor maxouting unpooling pooling lod_rank_table context_project sequence_pooling executor) set(COMMON_OP_DEPS ${COMMON_OP_DEPS} selected_rows_functor selected_rows lod_tensor maxouting unpooling pooling lod_rank_table context_project sequence_pooling executor)
if (NOT WIN32) if (NOT WIN32)
set(COMMON_OP_DEPS ${COMMON_OP_DEPS} dynload_warpctc) set(COMMON_OP_DEPS ${COMMON_OP_DEPS} dynload_warpctc)
endif() endif()
set(COMMON_OP_DEPS ${COMMON_OP_DEPS} sequence_padding sequence_scale cos_sim_functor memory jit_kernel concat_and_split cross_entropy softmax vol2col im2col sampler) set(COMMON_OP_DEPS ${COMMON_OP_DEPS} sequence_padding sequence_scale cos_sim_functor memory jit_kernel concat_and_split cross_entropy softmax vol2col im2col sampler)
set(COMMON_OP_DEPS ${COMMON_OP_DEPS} sequence2batch lstm_compute matrix_bit_code gru_compute activation_functions) set(COMMON_OP_DEPS ${COMMON_OP_DEPS} sequence2batch lstm_compute matrix_bit_code gru_compute activation_functions)
if (WITH_GPU) if (WITH_GPU)
set(COMMON_OP_DEPS ${COMMON_OP_DEPS} depthwise_conv cub) set(COMMON_OP_DEPS ${COMMON_OP_DEPS} depthwise_conv)
endif() endif()
# FIXME(typhoonzero): operator deps may not needed. # FIXME(typhoonzero): operator deps may not needed.
......
...@@ -22,6 +22,7 @@ DECLARE_bool(cudnn_exhaustive_search); ...@@ -22,6 +22,7 @@ DECLARE_bool(cudnn_exhaustive_search);
namespace paddle { namespace paddle {
namespace operators { namespace operators {
#if CUDNN_VERSION >= 7001
using Tensor = framework::Tensor; using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor; using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor; using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
...@@ -178,10 +179,13 @@ class CUDNNConvFusionOpKernel : public framework::OpKernel<T> { ...@@ -178,10 +179,13 @@ class CUDNNConvFusionOpKernel : public framework::OpKernel<T> {
workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes); workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes);
} }
}; };
#endif
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
#if CUDNN_VERSION >= 7001
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(conv2d_fusion, ops::CUDNNConvFusionOpKernel<float>, REGISTER_OP_CUDA_KERNEL(conv2d_fusion, ops::CUDNNConvFusionOpKernel<float>,
ops::CUDNNConvFusionOpKernel<double>); ops::CUDNNConvFusionOpKernel<double>);
#endif
...@@ -153,6 +153,37 @@ __global__ void KernelMaxPool2DGrad( ...@@ -153,6 +153,37 @@ __global__ void KernelMaxPool2DGrad(
} }
} }
template <typename PoolProcess, typename T>
void Pool2dDirectCUDAFunctor<PoolProcess, T>::operator()(
const T* input, const std::vector<int>& input_shape,
const std::vector<int>& output_shape, const std::vector<int>& ksize,
const std::vector<int>& strides, const std::vector<int>& paddings,
PoolProcess pool_compute, bool exclusive, T* output, cudaStream_t stream) {
const int batch_size = input_shape[0];
const int input_channels = input_shape[1];
const int input_height = input_shape[2];
const int input_width = input_shape[3];
const int output_channels = output_shape[1];
const int output_height = output_shape[2];
const int output_width = output_shape[3];
const int ksize_height = ksize[0];
const int ksize_width = ksize[1];
const int stride_height = strides[0];
const int stride_width = strides[1];
const int padding_height = paddings[0];
const int padding_width = paddings[1];
int nthreads = batch_size * output_channels * output_height * output_width;
int blocks = (nthreads + 1024 - 1) / 1024;
dim3 threads(1024, 1);
dim3 grid(blocks, 1);
KernelPool2D<PoolProcess, T><<<grid, threads, 0, stream>>>(
nthreads, input, input_channels, input_height, input_width, output_height,
output_width, ksize_height, ksize_width, stride_height, stride_width,
padding_height, padding_width, pool_compute, exclusive, output);
}
/* /*
* All tensors are in NCHW format. * All tensors are in NCHW format.
* Ksize, strides, paddings are two elements. These two elements represent * Ksize, strides, paddings are two elements. These two elements represent
...@@ -291,6 +322,11 @@ class MaxPool2dGradFunctor<platform::CUDADeviceContext, T> { ...@@ -291,6 +322,11 @@ class MaxPool2dGradFunctor<platform::CUDADeviceContext, T> {
} }
}; };
template class Pool2dDirectCUDAFunctor<paddle::operators::math::MaxPool<float>,
float>;
template class Pool2dDirectCUDAFunctor<paddle::operators::math::AvgPool<float>,
float>;
template class MaxPool2dGradFunctor<platform::CUDADeviceContext, float>; template class MaxPool2dGradFunctor<platform::CUDADeviceContext, float>;
template class MaxPool2dGradFunctor<platform::CUDADeviceContext, double>; template class MaxPool2dGradFunctor<platform::CUDADeviceContext, double>;
......
...@@ -82,6 +82,19 @@ class AvgPoolGrad { ...@@ -82,6 +82,19 @@ class AvgPoolGrad {
* This is different from average pooling. So we rewrite the max_pool_grad: * This is different from average pooling. So we rewrite the max_pool_grad:
* MaxPool2dGradFunctor, MaxPool3dGradFunctor. * MaxPool2dGradFunctor, MaxPool3dGradFunctor.
*/ */
#ifdef PADDLE_WITH_CUDA
template <typename PoolProcess, typename T>
class Pool2dDirectCUDAFunctor {
public:
void operator()(const T* input, const std::vector<int>& input_shape,
const std::vector<int>& output_shape,
const std::vector<int>& ksize,
const std::vector<int>& strides,
const std::vector<int>& paddings, PoolProcess pool_compute,
bool exclusive, T* output, cudaStream_t stream);
};
#endif
template <typename DeviceContext, typename PoolProcess, typename T> template <typename DeviceContext, typename PoolProcess, typename T>
class Pool2dFunctor { class Pool2dFunctor {
public: public:
......
...@@ -724,11 +724,11 @@ def dynamic_gru(input, ...@@ -724,11 +724,11 @@ def dynamic_gru(input,
create ParamAttr as param_attr. If the Initializer of the param_attr create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with Xavier. Default: None. is not set, the parameter is initialized with Xavier. Default: None.
bias_attr (ParamAttr|bool|None): The parameter attribute for the bias bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
the bias in the update gate, reset gate and candidate calculations. the bias in the update gate, reset gate and candidate calculations.
If it is set to False, no bias will be applied to the update gate, If it is set to False, no bias will be applied to the update gate,
reset gate and candidate calculations. If it is set to None or one reset gate and candidate calculations. If it is set to None or one
attribute of ParamAttr, dynamic_gru will create ParamAttr as attribute of ParamAttr, dynamic_gru will create ParamAttr as
bias_attr. If the Initializer of the bias_attr is not set, the bias bias_attr. If the Initializer of the bias_attr is not set, the bias
is initialized zero. Default: None. is initialized zero. Default: None.
is_reverse(bool): Whether to compute reversed GRU, default is_reverse(bool): Whether to compute reversed GRU, default
...@@ -845,11 +845,11 @@ def gru_unit(input, ...@@ -845,11 +845,11 @@ def gru_unit(input,
create ParamAttr as param_attr. If the Initializer of the param_attr create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with Xavier. Default: None. is not set, the parameter is initialized with Xavier. Default: None.
bias_attr (ParamAttr|bool|None): The parameter attribute for the bias bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
the bias in the update gate, reset gate and candidate calculations. the bias in the update gate, reset gate and candidate calculations.
If it is set to False, no bias will be applied to the update gate, If it is set to False, no bias will be applied to the update gate,
reset gate and candidate calculations. If it is set to None or one reset gate and candidate calculations. If it is set to None or one
attribute of ParamAttr, gru_unit will create ParamAttr as attribute of ParamAttr, gru_unit will create ParamAttr as
bias_attr. If the Initializer of the bias_attr is not set, the bias bias_attr. If the Initializer of the bias_attr is not set, the bias
is initialized zero. Default: None. is initialized zero. Default: None.
activation (string): The activation type for cell (actNode). activation (string): The activation type for cell (actNode).
...@@ -1058,9 +1058,9 @@ def dropout(x, ...@@ -1058,9 +1058,9 @@ def dropout(x,
inference: out = input inference: out = input
(make is a tensor same shape with input, value is 0 or 1 (make is a tensor same shape with input, value is 0 or 1
ratio of 0 is dropout_prob) ratio of 0 is dropout_prob)
dropout op can be removed from the program. dropout op can be removed from the program.
the program will be efficient the program will be efficient
Returns: Returns:
...@@ -2143,7 +2143,7 @@ def pool2d(input, ...@@ -2143,7 +2143,7 @@ def pool2d(input,
ceil_mode (bool): ${ceil_mode_comment} ceil_mode (bool): ${ceil_mode_comment}
name (str|None): A name for this layer(optional). If set None, the name (str|None): A name for this layer(optional). If set None, the
layer will be named automatically. layer will be named automatically.
exclusive (bool): Whether to exclude padding points in average pooling exclusive (bool): Whether to exclude padding points in average pooling
mode, default is true mode, default is true
Returns: Returns:
...@@ -2234,7 +2234,7 @@ def pool3d(input, ...@@ -2234,7 +2234,7 @@ def pool3d(input,
ceil_mode (bool): ${ceil_mode_comment} ceil_mode (bool): ${ceil_mode_comment}
name (str): A name for this layer(optional). If set None, the layer name (str): A name for this layer(optional). If set None, the layer
will be named automatically. will be named automatically.
exclusive (bool): Whether to exclude padding points in average pooling exclusive (bool): Whether to exclude padding points in average pooling
mode, default is true mode, default is true
Returns: Returns:
...@@ -4336,7 +4336,7 @@ def nce(input, ...@@ -4336,7 +4336,7 @@ def nce(input,
sampler (str): The sampler used to sample class from negtive classes. sampler (str): The sampler used to sample class from negtive classes.
It can be 'uniform', 'log_uniform' or 'custom_dist'. It can be 'uniform', 'log_uniform' or 'custom_dist'.
default: 'uniform'. default: 'uniform'.
custom_dist (Variable): A tensor with shape [num_total_classes]. custom_dist (Variable): A tensor with shape [num_total_classes].
It is used when sampler is set to 'custom_dist'. It is used when sampler is set to 'custom_dist'.
custom_dist[i] is the probsbility of i-th class to be sampled. custom_dist[i] is the probsbility of i-th class to be sampled.
default: None. default: None.
...@@ -4379,7 +4379,7 @@ def nce(input, ...@@ -4379,7 +4379,7 @@ def nce(input,
num_neg_samples=3, num_neg_samples=3,
sampler="custom_dist", sampler="custom_dist",
custom_dist=dist) custom_dist=dist)
""" """
helper = LayerHelper('nce', **locals()) helper = LayerHelper('nce', **locals())
assert isinstance(input, Variable) assert isinstance(input, Variable)
...@@ -4550,9 +4550,9 @@ def transpose(x, perm, name=None): ...@@ -4550,9 +4550,9 @@ def transpose(x, perm, name=None):
Examples: Examples:
.. code-block:: python .. code-block:: python
# use append_batch_size=False to avoid prepending extra # use append_batch_size=False to avoid prepending extra
# batch size in shape # batch size in shape
x = fluid.layers.data(name='x', shape=[5, 10, 15], x = fluid.layers.data(name='x', shape=[5, 10, 15],
dtype='float32', append_batch_size=False) dtype='float32', append_batch_size=False)
x_transposed = layers.transpose(x, perm=[1, 0, 2]) x_transposed = layers.transpose(x, perm=[1, 0, 2])
""" """
...@@ -4829,7 +4829,7 @@ def softmax_with_cross_entropy(logits, ...@@ -4829,7 +4829,7 @@ def softmax_with_cross_entropy(logits,
3) If numeric_stable_mode is True, softmax is calculated first by: 3) If numeric_stable_mode is True, softmax is calculated first by:
.. math:: .. math::
max_j = \\max_{i=0}^{K}{\\text{logit}_i} max_j = \\max_{i=0}^{K}{\\text{logit}_i}
log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j) log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
...@@ -4852,18 +4852,18 @@ def softmax_with_cross_entropy(logits, ...@@ -4852,18 +4852,18 @@ def softmax_with_cross_entropy(logits,
numeric_stable_mode (bool): A flag to indicate whether to use a more numeric_stable_mode (bool): A flag to indicate whether to use a more
numerically stable algorithm. Only valid numerically stable algorithm. Only valid
when soft_label is False and GPU is used. when soft_label is False and GPU is used.
When soft_label is True or CPU is used, When soft_label is True or CPU is used,
the algorithm is always numerically stable. the algorithm is always numerically stable.
Note that the speed may be slower when use Note that the speed may be slower when use
stable algorithm. Default: False stable algorithm. Default: False
return_softmax (bool): A flag indicating whether to return the softmax return_softmax (bool): A flag indicating whether to return the softmax
along with the cross entropy loss. Default: False along with the cross entropy loss. Default: False
Returns: Returns:
Variable or Tuple of two Variables: Return the cross entropy loss if Variable or Tuple of two Variables: Return the cross entropy loss if
`return_softmax` is False, otherwise the tuple `return_softmax` is False, otherwise the tuple
(loss, softmax), where the cross entropy loss is (loss, softmax), where the cross entropy loss is
a 2-D tensor with shape [N x 1], and softmax is a a 2-D tensor with shape [N x 1], and softmax is a
2-D tensor with shape [N x K]. 2-D tensor with shape [N x K].
Examples: Examples:
...@@ -5744,20 +5744,20 @@ def image_resize(input, ...@@ -5744,20 +5744,20 @@ def image_resize(input,
Default: None Default: None
name(str|None): A name for this layer(optional). If set None, the layer name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically. will be named automatically.
resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST' resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
currently. currently.
Default: 'BILINEAR' Default: 'BILINEAR'
actual_shape(Variable): An optional input to specify output shape actual_shape(Variable): An optional input to specify output shape
dynamically. If provided, image resize dynamically. If provided, image resize
according to this given shape rather than according to this given shape rather than
:attr:`out_shape` and :attr:`scale` specifying :attr:`out_shape` and :attr:`scale` specifying
shape. That is to say actual_shape has the shape. That is to say actual_shape has the
highest priority. It is recommended to use highest priority. It is recommended to use
actual_shape instead of :attr:`out_shape` if you actual_shape instead of :attr:`out_shape` if you
want to specify output shape dynamically. When want to specify output shape dynamically. When
using actual_shape to specify output shape, one of using actual_shape to specify output shape, one of
:attr:`out_shape` and :attr:`scale` should also be :attr:`out_shape` and :attr:`scale` should also be
set, otherwise errors would be occured in graph set, otherwise errors would be occured in graph
constructing stage. constructing stage.
Default: None Default: None
...@@ -5768,7 +5768,7 @@ def image_resize(input, ...@@ -5768,7 +5768,7 @@ def image_resize(input,
Raises: Raises:
TypeError: out_shape should be a list or tuple or Variable. TypeError: out_shape should be a list or tuple or Variable.
TypeError: actual_shape should either be Variable or None. TypeError: actual_shape should either be Variable or None.
ValueError: The 'resample' of image_resize can only be 'BILINEAR' ValueError: The 'resample' of image_resize can only be 'BILINEAR'
or 'NEAREST' currently. or 'NEAREST' currently.
ValueError: One of out_shape and scale must not be None. ValueError: One of out_shape and scale must not be None.
ValueError: out_shape length should be 2. ValueError: out_shape length should be 2.
...@@ -5840,17 +5840,17 @@ def resize_bilinear(input, ...@@ -5840,17 +5840,17 @@ def resize_bilinear(input,
name=None, name=None,
actual_shape=None): actual_shape=None):
""" """
Resize input by performing bilinear interpolation based on given Resize input by performing bilinear interpolation based on given
output shape which specified by actual_shape, out_shape and scale output shape which specified by actual_shape, out_shape and scale
in priority order. in priority order.
Bilinear interpolation is an extension of linear interpolation for Bilinear interpolation is an extension of linear interpolation for
interpolating functions of two variables (e.g. H-direction and interpolating functions of two variables (e.g. H-direction and
W-direction in this op) on a rectilinear 2D grid. The key idea is W-direction in this op) on a rectilinear 2D grid. The key idea is
to perform linear interpolation first in one direction, and then to perform linear interpolation first in one direction, and then
again in the other direction. again in the other direction.
For details of bilinear interpolation, please refer to Wikipedia: For details of bilinear interpolation, please refer to Wikipedia:
https://en.wikipedia.org/wiki/Bilinear_interpolation https://en.wikipedia.org/wiki/Bilinear_interpolation
Args: Args:
...@@ -5863,17 +5863,17 @@ def resize_bilinear(input, ...@@ -5863,17 +5863,17 @@ def resize_bilinear(input,
a higher priority than scale. Default: None. a higher priority than scale. Default: None.
name(str|None): The output variable name. name(str|None): The output variable name.
actual_shape(Variable): An optional input to specify output shape actual_shape(Variable): An optional input to specify output shape
dynamically. If provided, image resize dynamically. If provided, image resize
according to this given shape rather than according to this given shape rather than
:attr:`out_shape` and :attr:`scale` specifying :attr:`out_shape` and :attr:`scale` specifying
shape. That is to say actual_shape has the shape. That is to say actual_shape has the
highest priority. It is recommended to use highest priority. It is recommended to use
actual_shape instead of :attr:`out_shape` if you actual_shape instead of :attr:`out_shape` if you
want to specify output shape dynamically. When want to specify output shape dynamically. When
using actual_shape to specify output shape, one of using actual_shape to specify output shape, one of
:attr:`out_shape` and :attr:`scale` should also be :attr:`out_shape` and :attr:`scale` should also be
set, otherwise errors would be occured in graph set, otherwise errors would be occured in graph
constructing stage. constructing stage.
Default: None Default: None
...@@ -5897,11 +5897,11 @@ def resize_nearest(input, ...@@ -5897,11 +5897,11 @@ def resize_nearest(input,
actual_shape=None): actual_shape=None):
""" """
Resize input by performing nearest neighbor interpolation in both the Resize input by performing nearest neighbor interpolation in both the
3rd dimention(in height direction) and the 4th dimention(in width 3rd dimention(in height direction) and the 4th dimention(in width
direction) based on given output shape which specified by actual_shape, direction) based on given output shape which specified by actual_shape,
out_shape and scale in priority order. out_shape and scale in priority order.
For details of nearest neighbor interpolation, please refer to Wikipedia: For details of nearest neighbor interpolation, please refer to Wikipedia:
https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Args: Args:
...@@ -5914,17 +5914,17 @@ def resize_nearest(input, ...@@ -5914,17 +5914,17 @@ def resize_nearest(input,
a higher priority than scale. Default: None. a higher priority than scale. Default: None.
name(str|None): The output variable name. name(str|None): The output variable name.
actual_shape(Variable): An optional input to specify output shape actual_shape(Variable): An optional input to specify output shape
dynamically. If provided, image resize dynamically. If provided, image resize
according to this given shape rather than according to this given shape rather than
:attr:`out_shape` and :attr:`scale` specifying :attr:`out_shape` and :attr:`scale` specifying
shape. That is to say actual_shape has the shape. That is to say actual_shape has the
highest priority. It is recommended to use highest priority. It is recommended to use
actual_shape instead of :attr:`out_shape` if you actual_shape instead of :attr:`out_shape` if you
want to specify output shape dynamically. When want to specify output shape dynamically. When
using actual_shape to specify output shape, one of using actual_shape to specify output shape, one of
:attr:`out_shape` and :attr:`scale` should also be :attr:`out_shape` and :attr:`scale` should also be
set, otherwise errors would be occured in graph set, otherwise errors would be occured in graph
constructing stage. constructing stage.
Default: None Default: None
...@@ -6434,15 +6434,15 @@ def affine_grid(theta, out_shape, name=None): ...@@ -6434,15 +6434,15 @@ def affine_grid(theta, out_shape, name=None):
[x_14, x_15, x_16]] [x_14, x_15, x_16]]
[[x_21, x_22, x_23] [[x_21, x_22, x_23]
[x_24, x_25, x_26]]] [x_24, x_25, x_26]]]
out_shape = [2, 3, 5, 5] out_shape = [2, 3, 5, 5]
Step 1: Step 1:
Generate normalized coordinates according to out_shape. Generate normalized coordinates according to out_shape.
The values of the normalized coordinates are in the interval between -1 and 1. The values of the normalized coordinates are in the interval between -1 and 1.
The shape of the normalized coordinates is [2, H, W] as below: The shape of the normalized coordinates is [2, H, W] as below:
C = [[[-1. -1. -1. -1. -1. ] C = [[[-1. -1. -1. -1. -1. ]
[-0.5 -0.5 -0.5 -0.5 -0.5] [-0.5 -0.5 -0.5 -0.5 -0.5]
[ 0. 0. 0. 0. 0. ] [ 0. 0. 0. 0. 0. ]
...@@ -7690,6 +7690,15 @@ def logical_and(x, y, out=None, name=None): ...@@ -7690,6 +7690,15 @@ def logical_and(x, y, out=None, name=None):
Returns: Returns:
out(${out_type}): ${out_comment} out(${out_type}): ${out_comment}
Examples:
.. code-block:: python
left = fluid.layers.data(
name='left', shape=[1], dtype='int32')
right = fluid.layers.data(
name='right', shape=[1], dtype='int32')
result = fluid.layers.logical_and(x=left, y=right)
""" """
return _logical_op( return _logical_op(
...@@ -7709,6 +7718,15 @@ def logical_or(x, y, out=None, name=None): ...@@ -7709,6 +7718,15 @@ def logical_or(x, y, out=None, name=None):
Returns: Returns:
out(${out_type}): ${out_comment} out(${out_type}): ${out_comment}
Examples:
.. code-block:: python
left = fluid.layers.data(
name='left', shape=[1], dtype='int32')
right = fluid.layers.data(
name='right', shape=[1], dtype='int32')
result = fluid.layers.logical_or(x=left, y=right)
""" """
return _logical_op( return _logical_op(
...@@ -7728,6 +7746,15 @@ def logical_xor(x, y, out=None, name=None): ...@@ -7728,6 +7746,15 @@ def logical_xor(x, y, out=None, name=None):
Returns: Returns:
out(${out_type}): ${out_comment} out(${out_type}): ${out_comment}
Examples:
.. code-block:: python
left = fluid.layers.data(
name='left', shape=[1], dtype='int32')
right = fluid.layers.data(
name='right', shape=[1], dtype='int32')
result = fluid.layers.logical_xor(x=left, y=right)
""" """
return _logical_op( return _logical_op(
...@@ -7746,6 +7773,13 @@ def logical_not(x, out=None, name=None): ...@@ -7746,6 +7773,13 @@ def logical_not(x, out=None, name=None):
Returns: Returns:
out(${out_type}): ${out_comment} out(${out_type}): ${out_comment}
Examples:
.. code-block:: python
left = fluid.layers.data(
name='left', shape=[1], dtype='int32')
result = fluid.layers.logical_not(x=left)
""" """
return _logical_op( return _logical_op(
...@@ -7765,6 +7799,13 @@ def clip(x, min, max, name=None): ...@@ -7765,6 +7799,13 @@ def clip(x, min, max, name=None):
Returns: Returns:
out(${out_type}): ${out_comment} out(${out_type}): ${out_comment}
Examples:
.. code-block:: python
input = fluid.layers.data(
name='data', shape=[1], dtype='float32')
reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
""" """
helper = LayerHelper("clip", **locals()) helper = LayerHelper("clip", **locals())
...@@ -7797,6 +7838,13 @@ def clip_by_norm(x, max_norm, name=None): ...@@ -7797,6 +7838,13 @@ def clip_by_norm(x, max_norm, name=None):
Returns: Returns:
out(${out_type}): ${out_comment} out(${out_type}): ${out_comment}
Examples:
.. code-block:: python
input = fluid.layers.data(
name='data', shape=[1], dtype='float32')
reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
""" """
helper = LayerHelper("clip_by_norm", **locals()) helper = LayerHelper("clip_by_norm", **locals())
...@@ -7942,19 +7990,19 @@ def maxout(x, groups, name=None): ...@@ -7942,19 +7990,19 @@ def maxout(x, groups, name=None):
def space_to_depth(x, blocksize, name=None): def space_to_depth(x, blocksize, name=None):
""" """
Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width] Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
input LoDtensor where values from the height and width dimensions are moved to the channel dimension. input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
The attr blocksize indicates the input block size. The attr blocksize indicates the input block size.
space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]: to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
space_to_depth is used to This operation is useful for resizing the activations between convolutions space_to_depth is used to This operation is useful for resizing the activations between convolutions
(but keeping all data) (but keeping all data)
- Non-overlapping blocks of size block_size x block size are rearranged into depth at each location. - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
- The depth of the output tensor is block_size * block_size * input channel - The depth of the output tensor is block_size * block_size * input channel
- The Y, X coordinates within each block of the input become the high order component of the output channel index - The Y, X coordinates within each block of the input become the high order component of the output channel index
- channel should be divisible by square of blocksize - channel should be divisible by square of blocksize
- height, width should be divsible by blocksize - height, width should be divsible by blocksize
...@@ -8001,7 +8049,7 @@ def space_to_depth(x, blocksize, name=None): ...@@ -8001,7 +8049,7 @@ def space_to_depth(x, blocksize, name=None):
@templatedoc() @templatedoc()
def sequence_reverse(x, name=None): def sequence_reverse(x, name=None):
""" """
${comment} ${comment}
Args: Args:
...@@ -8068,21 +8116,21 @@ def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None): ...@@ -8068,21 +8116,21 @@ def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
def similarity_focus(input, axis, indexes, name=None): def similarity_focus(input, axis, indexes, name=None):
""" """
SimilarityFocus Operator SimilarityFocus Operator
Generate a similarity focus mask with the same shape of input using the following method: Generate a similarity focus mask with the same shape of input using the following method:
1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding 1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
to the axis according to the indexes. For example, if axis=1 and indexes=[a], to the axis according to the indexes. For example, if axis=1 and indexes=[a],
it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C). is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
2. For each index, find the largest numbers in the tensor T, so that the same 2. For each index, find the largest numbers in the tensor T, so that the same
row and same column has at most one number(what it means is that if the row and same column has at most one number(what it means is that if the
largest number has been found in the i-th row and the j-th column, then largest number has been found in the i-th row and the j-th column, then
the numbers in the i-th row or j-th column will be skipped. And then the the numbers in the i-th row or j-th column will be skipped. And then the
next largest number will be selected from the remaining numbers. Obviously next largest number will be selected from the remaining numbers. Obviously
there will be min(B, C) numbers), and mark the corresponding position of the there will be min(B, C) numbers), and mark the corresponding position of the
3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for 3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
each index. each index.
3. Broadcast the 3-D similarity focus mask to the same shape of input X. 3. Broadcast the 3-D similarity focus mask to the same shape of input X.
...@@ -8138,16 +8186,16 @@ def similarity_focus(input, axis, indexes, name=None): ...@@ -8138,16 +8186,16 @@ def similarity_focus(input, axis, indexes, name=None):
[1.0, 0.0]]]] [1.0, 0.0]]]]
Args: Args:
input(Variable): The input tensor variable(default float). It should input(Variable): The input tensor variable(default float). It should
be a 4-D tensor with shape [BatchSize, A, B, C]. be a 4-D tensor with shape [BatchSize, A, B, C].
axis(int): Indicating the dimension to be selected. It can only be axis(int): Indicating the dimension to be selected. It can only be
1, 2 or 3. 1, 2 or 3.
indexes(list): Indicating the indexes of the selected dimension. indexes(list): Indicating the indexes of the selected dimension.
Returns: Returns:
Variable: A tensor variable with the same shape and same type Variable: A tensor variable with the same shape and same type
as the input. as the input.
Examples: Examples:
.. code-block:: python .. code-block:: python
data = fluid.layers.data( data = fluid.layers.data(
...@@ -8250,12 +8298,12 @@ def hash(input, hash_size, num_hash=1, name=None): ...@@ -8250,12 +8298,12 @@ def hash(input, hash_size, num_hash=1, name=None):
@templatedoc() @templatedoc()
def grid_sampler(x, grid, name=None): def grid_sampler(x, grid, name=None):
""" """
This operation samples input X by using bilinear interpolation based on This operation samples input X by using bilinear interpolation based on
flow field grid, which is usually gennerated by affine_grid. The grid of flow field grid, which is usually gennerated by affine_grid. The grid of
shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
with shape [N, H, W] each, where grid_x is indexing the 4th dimension with shape [N, H, W] each, where grid_x is indexing the 4th dimension
(in width dimension) of input data x and grid_y is indexng the 3rd (in width dimension) of input data x and grid_y is indexng the 3rd
dimention (in height dimension), finally results is the bilinear dimention (in height dimension), finally results is the bilinear
interpolation value of 4 nearest corner points. interpolation value of 4 nearest corner points.
Step 1: Step 1:
...@@ -8265,7 +8313,7 @@ def grid_sampler(x, grid, name=None): ...@@ -8265,7 +8313,7 @@ def grid_sampler(x, grid, name=None):
grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1) grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
Step 2: Step 2:
Indices input data X with grid (x, y) in each [H, W] area, and bilinear Indices input data X with grid (x, y) in each [H, W] area, and bilinear
interpolate point value by 4 nearest points. interpolate point value by 4 nearest points.
wn ------- y_n ------- en wn ------- y_n ------- en
...@@ -8302,7 +8350,7 @@ def grid_sampler(x, grid, name=None): ...@@ -8302,7 +8350,7 @@ def grid_sampler(x, grid, name=None):
name (str, default None): The name of this layer. name (str, default None): The name of this layer.
Returns: Returns:
out(Variable): Output of shape [N, C, H, W] data samples input X out(Variable): Output of shape [N, C, H, W] data samples input X
using bilnear interpolation based on input grid. using bilnear interpolation based on input grid.
Exmples: Exmples:
......
...@@ -23,6 +23,10 @@ if(NOT WITH_DISTRIBUTE) ...@@ -23,6 +23,10 @@ if(NOT WITH_DISTRIBUTE)
LIST(REMOVE_ITEM TEST_OPS test_dist_text_classification) LIST(REMOVE_ITEM TEST_OPS test_dist_text_classification)
endif(NOT WITH_DISTRIBUTE) endif(NOT WITH_DISTRIBUTE)
if (${CUDNN_MAJOR_VERSION} VERSION_LESS 7)
LIST(REMOVE_ITEM TEST_OPS test_conv2d_fusion_op)
endif()
list(REMOVE_ITEM TEST_OPS test_seq_concat_op) # FIXME(helin): https://github.com/PaddlePaddle/Paddle/issues/8290 list(REMOVE_ITEM TEST_OPS test_seq_concat_op) # FIXME(helin): https://github.com/PaddlePaddle/Paddle/issues/8290
list(REMOVE_ITEM TEST_OPS test_modified_huber_loss_op) # FIXME(qijun) https://github.com/PaddlePaddle/Paddle/issues/5184 list(REMOVE_ITEM TEST_OPS test_modified_huber_loss_op) # FIXME(qijun) https://github.com/PaddlePaddle/Paddle/issues/5184
list(REMOVE_ITEM TEST_OPS test_lstm_unit_op) # # FIXME(qijun) https://github.com/PaddlePaddle/Paddle/issues/5185 list(REMOVE_ITEM TEST_OPS test_lstm_unit_op) # # FIXME(qijun) https://github.com/PaddlePaddle/Paddle/issues/5185
......
requests==2.9.2 requests==2.9.2
numpy>=1.12,<=1.14 #TODO:change to ">=1.12" when numpy fix bug in 1.15 and higher version numpy>=1.12
protobuf==3.1 protobuf==3.1
recordio>=0.1.0 recordio>=0.1.0
matplotlib==2.2.3 # TODO: let python3 paddlepaddle package use latest matplotlib matplotlib==2.2.3 # TODO: let python3 paddlepaddle package use latest matplotlib
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册