Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
a8efed09
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a8efed09
编写于
9月 07, 2017
作者:
H
hedaoyuan
提交者:
GitHub
9月 07, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #3792 from hedaoyuan/convolution
Neon Depthwise Convolution Transpose Function
上级
1cf9800f
90bf4f60
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
798 addition
and
579 deletion
+798
-579
paddle/function/Im2Col.h
paddle/function/Im2Col.h
+0
-91
paddle/function/neon/NeonDepthwiseConv.cpp
paddle/function/neon/NeonDepthwiseConv.cpp
+31
-488
paddle/function/neon/NeonDepthwiseConv.h
paddle/function/neon/NeonDepthwiseConv.h
+631
-0
paddle/function/neon/NeonDepthwiseConvTranspose.cpp
paddle/function/neon/NeonDepthwiseConvTranspose.cpp
+136
-0
未找到文件。
paddle/function/Im2Col.h
浏览文件 @
a8efed09
...
@@ -94,95 +94,4 @@ public:
...
@@ -94,95 +94,4 @@ public:
int
paddingWidth
);
int
paddingWidth
);
};
};
template
<
class
T
>
struct
Padding
{
static
void
run
(
const
T
*
src
,
T
*
dest
,
int
channels
,
int
inputHeight
,
int
inputWidth
,
int
paddingHeight
,
int
paddingWidth
)
{
const
int
destWidth
=
inputWidth
+
2
*
paddingWidth
;
for
(
int
c
=
0
;
c
<
channels
;
c
++
)
{
if
(
paddingHeight
>
0
)
{
memset
(
dest
,
0
,
destWidth
*
paddingHeight
*
sizeof
(
T
));
dest
+=
destWidth
*
paddingHeight
;
}
for
(
int
i
=
0
;
i
<
inputHeight
;
i
++
)
{
// padding head
for
(
int
j
=
0
;
j
<
paddingWidth
;
j
++
)
{
*
dest
++
=
T
(
0
);
}
memcpy
(
dest
,
src
,
inputWidth
*
sizeof
(
T
));
dest
+=
inputWidth
;
src
+=
inputWidth
;
// padding tail
for
(
int
j
=
0
;
j
<
paddingWidth
;
j
++
)
{
*
dest
++
=
T
(
0
);
}
}
if
(
paddingHeight
>
0
)
{
memset
(
dest
,
0
,
destWidth
*
paddingHeight
*
sizeof
(
T
));
dest
+=
destWidth
*
paddingHeight
;
}
}
}
};
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
template
<
>
struct
Padding
<
float
>
{
static
void
run
(
const
float
*
src
,
float
*
dest
,
int
channels
,
int
inputHeight
,
int
inputWidth
,
int
paddingHeight
,
int
paddingWidth
)
{
const
int
destWidth
=
inputWidth
+
2
*
paddingWidth
;
for
(
int
c
=
0
;
c
<
channels
;
c
++
)
{
if
(
paddingHeight
>
0
)
{
memset
(
dest
,
0
,
destWidth
*
paddingHeight
*
sizeof
(
float
));
dest
+=
destWidth
*
paddingHeight
;
}
for
(
int
i
=
0
;
i
<
inputHeight
;
i
++
)
{
// padding head
for
(
int
j
=
0
;
j
<
paddingWidth
;
j
++
)
{
*
dest
++
=
float
(
0
);
}
int
step
=
inputWidth
>>
2
;
int
remain
=
inputWidth
&
3
;
for
(
int
s
=
0
;
s
<
step
;
s
++
)
{
float32x4_t
s0
=
vld1q_f32
(
src
);
vst1q_f32
(
dest
,
s0
);
src
+=
4
;
dest
+=
4
;
}
for
(
int
r
=
0
;
r
<
remain
;
r
++
)
{
*
dest
++
=
*
src
++
;
}
// padding tail
for
(
int
j
=
0
;
j
<
paddingWidth
;
j
++
)
{
*
dest
++
=
float
(
0
);
}
}
if
(
paddingHeight
>
0
)
{
memset
(
dest
,
0
,
destWidth
*
paddingHeight
*
sizeof
(
float
));
dest
+=
destWidth
*
paddingHeight
;
}
}
}
};
#endif
}
// namespace paddle
}
// namespace paddle
paddle/function/neon/NeonDepthwiseConv.cpp
浏览文件 @
a8efed09
...
@@ -12,468 +12,13 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
@@ -12,468 +12,13 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include "
neon_util
.h"
#include "
NeonDepthwiseConv
.h"
#include "paddle/function/ConvOp.h"
#include "paddle/function/ConvOp.h"
#include "paddle/function/Im2Col.h"
namespace
paddle
{
namespace
paddle
{
namespace
neon
{
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
template
<
int
filterSize
,
int
stride
>
struct
DepthwiseConvKernel
{};
inline
float32_t
conv3x3
(
float32x4_t
r0
,
float32x4_t
r1
,
float32x4_t
r2
,
float32x4_t
k0
,
float32x4_t
k1
,
float32x4_t
k2
)
{
float32x4_t
tmp
;
tmp
=
vmulq_f32
(
r0
,
k0
);
tmp
=
vmlaq_f32
(
tmp
,
r1
,
k1
);
tmp
=
vmlaq_f32
(
tmp
,
r2
,
k2
);
return
vaddvq_f32
(
tmp
);
}
inline
float32_t
conv4x4
(
float32x4_t
r0
,
float32x4_t
r1
,
float32x4_t
r2
,
float32x4_t
r3
,
float32x4_t
k0
,
float32x4_t
k1
,
float32x4_t
k2
,
float32x4_t
k3
)
{
float32x4_t
tmp
;
tmp
=
vmulq_f32
(
r0
,
k0
);
tmp
=
vmlaq_f32
(
tmp
,
r1
,
k1
);
tmp
=
vmlaq_f32
(
tmp
,
r2
,
k2
);
tmp
=
vmlaq_f32
(
tmp
,
r3
,
k3
);
return
vaddvq_f32
(
tmp
);
}
/**
* Each step calculates four elements of the output.
* First step:
* R0[0, 1, 2, 3...] * K[0][0]
* R0[1, 2, 3, 4...] * K[0][1]
* R0[2, 3, 4, 5...] * K[0][2]
* R1[0, 1, 2, 3...] * K[1][0]
* R1[1, 2, 3, 4...] * K[1][1]
* R1[2, 3, 4, 5...] * K[1][2]
* R2[0, 1, 2, 3...] * K[2][0]
* R2[1, 2, 3, 4...] * K[2][1]
* + R2[2, 3, 4, 5...] * K[2][2]
* ------------------------------
* Output[0, 1, 2, 3]
*/
template
<
>
struct
DepthwiseConvKernel
<
3
,
1
>
{
static
void
run
(
const
float
*
inputData
,
const
float
*
filterData
,
int
inputHeight
,
int
inputWidth
,
int
outputChannels
,
int
outputHeight
,
int
outputWidth
,
int
filterMultiplier
,
float
*
outputData
)
{
const
int
steps
=
outputWidth
>>
2
;
const
int
remain
=
outputWidth
&
3
;
for
(
int
c
=
0
;
c
<
outputChannels
;
c
++
,
filterData
+=
9
)
{
// Load the filters
float32x4_t
k
[
3
];
k
[
0
]
=
vld1q_f32
(
filterData
);
k
[
1
]
=
vld1q_f32
(
filterData
+
3
);
k
[
2
]
=
vld1q_f32
(
filterData
+
6
);
k
[
0
]
=
vsetq_lane_f32
(
0.
f
,
k
[
0
],
3
);
k
[
1
]
=
vsetq_lane_f32
(
0.
f
,
k
[
1
],
3
);
k
[
2
]
=
vsetq_lane_f32
(
0.
f
,
k
[
2
],
3
);
const
float
*
r0
=
inputData
+
(
c
/
filterMultiplier
)
*
(
inputHeight
*
inputWidth
);
const
float
*
r1
=
r0
+
inputWidth
;
const
float
*
r2
=
r0
+
inputWidth
*
2
;
float32x4_t
input
[
3
][
3
];
for
(
int
h
=
0
;
h
<
outputHeight
;
h
++
)
{
for
(
int
s
=
0
;
s
<
steps
;
s
++
)
{
// Load the inputs
float32x4_t
tmp
;
input
[
0
][
0
]
=
vld1q_f32
(
r0
);
tmp
=
vld1q_f32
(
r0
+
4
);
input
[
0
][
1
]
=
vextq_f32
(
input
[
0
][
0
],
tmp
,
1
);
input
[
0
][
2
]
=
vextq_f32
(
input
[
0
][
0
],
tmp
,
2
);
input
[
1
][
0
]
=
vld1q_f32
(
r1
);
tmp
=
vld1q_f32
(
r1
+
4
);
input
[
1
][
1
]
=
vextq_f32
(
input
[
1
][
0
],
tmp
,
1
);
input
[
1
][
2
]
=
vextq_f32
(
input
[
1
][
0
],
tmp
,
2
);
input
[
2
][
0
]
=
vld1q_f32
(
r2
);
tmp
=
vld1q_f32
(
r2
+
4
);
input
[
2
][
1
]
=
vextq_f32
(
input
[
2
][
0
],
tmp
,
1
);
input
[
2
][
2
]
=
vextq_f32
(
input
[
2
][
0
],
tmp
,
2
);
float32x4_t
tmp1
=
vdupq_n_f32
(
0.
f
);
float32x4_t
tmp2
=
vdupq_n_f32
(
0.
f
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
0
][
0
],
k
[
0
],
0
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
0
][
1
],
k
[
0
],
1
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
0
][
2
],
k
[
0
],
2
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
1
][
0
],
k
[
1
],
0
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
1
][
1
],
k
[
1
],
1
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
1
][
2
],
k
[
1
],
2
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
2
][
0
],
k
[
2
],
0
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
2
][
1
],
k
[
2
],
1
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
2
][
2
],
k
[
2
],
2
);
tmp1
=
vaddq_f32
(
tmp1
,
tmp2
);
vst1q_f32
(
outputData
,
tmp1
);
r0
+=
4
;
r1
+=
4
;
r2
+=
4
;
outputData
+=
4
;
}
for
(
int
r
=
0
;
r
<
remain
;
r
++
)
{
float32x4_t
i0
=
vld1q_f32
(
r0
);
float32x4_t
i1
=
vld1q_f32
(
r1
);
float32x4_t
i2
=
vld1q_f32
(
r2
);
*
outputData
=
conv3x3
(
i0
,
i1
,
i2
,
k
[
0
],
k
[
1
],
k
[
2
]);
r0
++
;
r1
++
;
r2
++
;
outputData
++
;
}
r0
+=
2
;
r1
+=
2
;
r2
+=
2
;
}
}
}
};
/**
* Each step calculates four elements of the output.
* First step:
* R0[0, 2, 4, 6...] * K[0][0]
* R0[1, 3, 5, 7...] * K[0][1]
* R0[2, 4, 6, 8...] * K[0][2]
* R1[0, 2, 4, 6...] * K[1][0]
* R1[1, 3, 5, 7...] * K[1][1]
* R1[2, 4, 6, 8...] * K[1][2]
* R2[0, 2, 4, 6...] * K[2][0]
* R2[1, 3, 5, 7...] * K[2][1]
* R2[2, 4, 6, 8...] * K[2][2]
* ------------------------------
* Output[0, 1, 2, 3]
*/
template
<
>
struct
DepthwiseConvKernel
<
3
,
2
>
{
static
void
run
(
const
float
*
inputData
,
const
float
*
filterData
,
int
inputHeight
,
int
inputWidth
,
int
outputChannels
,
int
outputHeight
,
int
outputWidth
,
int
filterMultiplier
,
float
*
outputData
)
{
const
int
steps
=
outputWidth
>>
2
;
const
int
remain
=
outputWidth
&
3
;
for
(
int
c
=
0
;
c
<
outputChannels
;
c
++
,
filterData
+=
9
)
{
// Load the filters
float32x4_t
k
[
3
];
k
[
0
]
=
vld1q_f32
(
filterData
);
k
[
1
]
=
vld1q_f32
(
filterData
+
3
);
k
[
2
]
=
vld1q_f32
(
filterData
+
6
);
k
[
0
]
=
vsetq_lane_f32
(
0.
f
,
k
[
0
],
3
);
k
[
1
]
=
vsetq_lane_f32
(
0.
f
,
k
[
1
],
3
);
k
[
2
]
=
vsetq_lane_f32
(
0.
f
,
k
[
2
],
3
);
const
float
*
start
=
inputData
+
(
c
/
filterMultiplier
)
*
(
inputHeight
*
inputWidth
);
float32x4_t
input
[
3
][
3
];
for
(
int
h
=
0
;
h
<
outputHeight
;
h
++
)
{
const
float
*
r0
=
start
+
2
*
h
*
inputWidth
;
const
float
*
r1
=
start
+
(
2
*
h
+
1
)
*
inputWidth
;
const
float
*
r2
=
start
+
(
2
*
h
+
2
)
*
inputWidth
;
for
(
int
s
=
0
;
s
<
steps
;
s
++
)
{
// Load the inputs
float32x4_t
data1
;
float32x4x2_t
data2
;
data2
=
vld2q_f32
(
r0
);
input
[
0
][
0
]
=
data2
.
val
[
0
];
input
[
0
][
1
]
=
data2
.
val
[
1
];
data1
=
vld1q_f32
(
r0
+
8
);
input
[
0
][
2
]
=
vextq_f32
(
data2
.
val
[
0
],
data1
,
1
);
data2
=
vld2q_f32
(
r1
);
input
[
1
][
0
]
=
data2
.
val
[
0
];
input
[
1
][
1
]
=
data2
.
val
[
1
];
data1
=
vld1q_f32
(
r1
+
8
);
input
[
1
][
2
]
=
vextq_f32
(
data2
.
val
[
0
],
data1
,
1
);
data2
=
vld2q_f32
(
r2
);
input
[
2
][
0
]
=
data2
.
val
[
0
];
input
[
2
][
1
]
=
data2
.
val
[
1
];
data1
=
vld1q_f32
(
r2
+
8
);
input
[
2
][
2
]
=
vextq_f32
(
data2
.
val
[
0
],
data1
,
1
);
float32x4_t
tmp1
=
vdupq_n_f32
(
0.
f
);
float32x4_t
tmp2
=
vdupq_n_f32
(
0.
f
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
0
][
0
],
k
[
0
],
0
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
0
][
1
],
k
[
0
],
1
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
0
][
2
],
k
[
0
],
2
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
1
][
0
],
k
[
1
],
0
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
1
][
1
],
k
[
1
],
1
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
1
][
2
],
k
[
1
],
2
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
2
][
0
],
k
[
2
],
0
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
2
][
1
],
k
[
2
],
1
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
2
][
2
],
k
[
2
],
2
);
tmp1
=
vaddq_f32
(
tmp1
,
tmp2
);
vst1q_f32
(
outputData
,
tmp1
);
r0
+=
8
;
r1
+=
8
;
r2
+=
8
;
outputData
+=
4
;
}
for
(
int
r
=
0
;
r
<
remain
;
r
++
)
{
float32x4_t
i0
=
vld1q_f32
(
r0
);
float32x4_t
i1
=
vld1q_f32
(
r1
);
float32x4_t
i2
=
vld1q_f32
(
r2
);
*
outputData
=
conv3x3
(
i0
,
i1
,
i2
,
k
[
0
],
k
[
1
],
k
[
2
]);
r0
+=
2
;
r1
+=
2
;
r2
+=
2
;
outputData
++
;
}
}
}
}
};
/**
* Each step calculates four elements of the output.
*/
template
<
>
struct
DepthwiseConvKernel
<
4
,
1
>
{
static
void
run
(
const
float
*
inputData
,
const
float
*
filterData
,
int
inputHeight
,
int
inputWidth
,
int
outputChannels
,
int
outputHeight
,
int
outputWidth
,
int
filterMultiplier
,
float
*
outputData
)
{
const
int
steps
=
outputWidth
>>
2
;
const
int
remain
=
outputWidth
&
3
;
for
(
int
c
=
0
;
c
<
outputChannels
;
c
++
,
filterData
+=
16
)
{
// Load the filters
float32x4_t
k
[
4
];
k
[
0
]
=
vld1q_f32
(
filterData
);
k
[
1
]
=
vld1q_f32
(
filterData
+
4
);
k
[
2
]
=
vld1q_f32
(
filterData
+
8
);
k
[
3
]
=
vld1q_f32
(
filterData
+
12
);
const
float
*
r0
=
inputData
+
(
c
/
filterMultiplier
)
*
(
inputHeight
*
inputWidth
);
const
float
*
r1
=
r0
+
inputWidth
;
const
float
*
r2
=
r0
+
inputWidth
*
2
;
const
float
*
r3
=
r0
+
inputWidth
*
3
;
float32x4_t
input
[
4
][
4
];
for
(
int
h
=
0
;
h
<
outputHeight
;
h
++
)
{
for
(
int
s
=
0
;
s
<
steps
;
s
++
)
{
// Load the inputs
float32x4_t
tmp
;
input
[
0
][
0
]
=
vld1q_f32
(
r0
);
tmp
=
vld1q_f32
(
r0
+
4
);
input
[
0
][
1
]
=
vextq_f32
(
input
[
0
][
0
],
tmp
,
1
);
input
[
0
][
2
]
=
vextq_f32
(
input
[
0
][
0
],
tmp
,
2
);
input
[
0
][
3
]
=
vextq_f32
(
input
[
0
][
0
],
tmp
,
3
);
input
[
1
][
0
]
=
vld1q_f32
(
r1
);
tmp
=
vld1q_f32
(
r1
+
4
);
input
[
1
][
1
]
=
vextq_f32
(
input
[
1
][
0
],
tmp
,
1
);
input
[
1
][
2
]
=
vextq_f32
(
input
[
1
][
0
],
tmp
,
2
);
input
[
1
][
3
]
=
vextq_f32
(
input
[
1
][
0
],
tmp
,
3
);
input
[
2
][
0
]
=
vld1q_f32
(
r2
);
tmp
=
vld1q_f32
(
r2
+
4
);
input
[
2
][
1
]
=
vextq_f32
(
input
[
2
][
0
],
tmp
,
1
);
input
[
2
][
2
]
=
vextq_f32
(
input
[
2
][
0
],
tmp
,
2
);
input
[
2
][
3
]
=
vextq_f32
(
input
[
2
][
0
],
tmp
,
3
);
input
[
3
][
0
]
=
vld1q_f32
(
r3
);
tmp
=
vld1q_f32
(
r3
+
4
);
input
[
3
][
1
]
=
vextq_f32
(
input
[
3
][
0
],
tmp
,
1
);
input
[
3
][
2
]
=
vextq_f32
(
input
[
3
][
0
],
tmp
,
2
);
input
[
3
][
3
]
=
vextq_f32
(
input
[
3
][
0
],
tmp
,
3
);
float32x4_t
tmp1
=
vdupq_n_f32
(
0.
f
);
float32x4_t
tmp2
=
vdupq_n_f32
(
0.
f
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
0
][
0
],
k
[
0
],
0
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
0
][
1
],
k
[
0
],
1
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
0
][
2
],
k
[
0
],
2
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
0
][
3
],
k
[
0
],
3
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
1
][
0
],
k
[
1
],
0
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
1
][
1
],
k
[
1
],
1
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
1
][
2
],
k
[
1
],
2
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
1
][
3
],
k
[
1
],
3
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
2
][
0
],
k
[
2
],
0
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
2
][
1
],
k
[
2
],
1
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
2
][
2
],
k
[
2
],
2
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
2
][
3
],
k
[
2
],
3
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
3
][
0
],
k
[
3
],
0
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
3
][
1
],
k
[
3
],
1
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
3
][
2
],
k
[
3
],
2
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
3
][
3
],
k
[
3
],
3
);
tmp1
=
vaddq_f32
(
tmp1
,
tmp2
);
vst1q_f32
(
outputData
,
tmp1
);
r0
+=
4
;
r1
+=
4
;
r2
+=
4
;
r3
+=
4
;
outputData
+=
4
;
}
for
(
int
r
=
0
;
r
<
remain
;
r
++
)
{
float32x4_t
i0
=
vld1q_f32
(
r0
);
float32x4_t
i1
=
vld1q_f32
(
r1
);
float32x4_t
i2
=
vld1q_f32
(
r2
);
float32x4_t
i3
=
vld1q_f32
(
r3
);
*
outputData
=
conv4x4
(
i0
,
i1
,
i2
,
i3
,
k
[
0
],
k
[
1
],
k
[
2
],
k
[
3
]);
r0
++
;
r1
++
;
r2
++
;
r3
++
;
outputData
++
;
}
r0
+=
3
;
r1
+=
3
;
r2
+=
3
;
r3
+=
3
;
}
}
}
};
/**
* Each step calculates four elements of the output.
*/
template
<
>
struct
DepthwiseConvKernel
<
4
,
2
>
{
static
void
run
(
const
float
*
inputData
,
const
float
*
filterData
,
int
inputHeight
,
int
inputWidth
,
int
outputChannels
,
int
outputHeight
,
int
outputWidth
,
int
filterMultiplier
,
float
*
outputData
)
{
const
int
steps
=
outputWidth
>>
2
;
const
int
remain
=
outputWidth
&
3
;
for
(
int
c
=
0
;
c
<
outputChannels
;
c
++
,
filterData
+=
16
)
{
// Load the filters
float32x4_t
k
[
4
];
k
[
0
]
=
vld1q_f32
(
filterData
);
k
[
1
]
=
vld1q_f32
(
filterData
+
4
);
k
[
2
]
=
vld1q_f32
(
filterData
+
8
);
k
[
3
]
=
vld1q_f32
(
filterData
+
12
);
const
float
*
start
=
inputData
+
(
c
/
filterMultiplier
)
*
(
inputHeight
*
inputWidth
);
float32x4_t
input
[
4
][
4
];
for
(
int
h
=
0
;
h
<
outputHeight
;
h
++
)
{
const
float
*
r0
=
start
+
2
*
h
*
inputWidth
;
const
float
*
r1
=
start
+
(
2
*
h
+
1
)
*
inputWidth
;
const
float
*
r2
=
start
+
(
2
*
h
+
2
)
*
inputWidth
;
const
float
*
r3
=
start
+
(
2
*
h
+
3
)
*
inputWidth
;
for
(
int
s
=
0
;
s
<
steps
;
s
++
)
{
// Load the inputs
float32x4x2_t
data1
;
float32x4x2_t
data2
;
data1
=
vld2q_f32
(
r0
);
data2
=
vld2q_f32
(
r0
+
8
);
input
[
0
][
0
]
=
data1
.
val
[
0
];
input
[
0
][
1
]
=
data1
.
val
[
1
];
input
[
0
][
2
]
=
vextq_f32
(
data1
.
val
[
0
],
data2
.
val
[
0
],
1
);
input
[
0
][
3
]
=
vextq_f32
(
data1
.
val
[
1
],
data2
.
val
[
1
],
1
);
data1
=
vld2q_f32
(
r1
);
data2
=
vld2q_f32
(
r1
+
8
);
input
[
1
][
0
]
=
data1
.
val
[
0
];
input
[
1
][
1
]
=
data1
.
val
[
1
];
input
[
1
][
2
]
=
vextq_f32
(
data1
.
val
[
0
],
data2
.
val
[
0
],
1
);
input
[
1
][
3
]
=
vextq_f32
(
data1
.
val
[
1
],
data2
.
val
[
1
],
1
);
data1
=
vld2q_f32
(
r2
);
data2
=
vld2q_f32
(
r2
+
8
);
input
[
2
][
0
]
=
data1
.
val
[
0
];
input
[
2
][
1
]
=
data1
.
val
[
1
];
input
[
2
][
2
]
=
vextq_f32
(
data1
.
val
[
0
],
data2
.
val
[
0
],
1
);
input
[
2
][
3
]
=
vextq_f32
(
data1
.
val
[
1
],
data2
.
val
[
1
],
1
);
data1
=
vld2q_f32
(
r3
);
data2
=
vld2q_f32
(
r3
+
8
);
input
[
3
][
0
]
=
data1
.
val
[
0
];
input
[
3
][
1
]
=
data1
.
val
[
1
];
input
[
3
][
2
]
=
vextq_f32
(
data1
.
val
[
0
],
data2
.
val
[
0
],
1
);
input
[
3
][
3
]
=
vextq_f32
(
data1
.
val
[
1
],
data2
.
val
[
1
],
1
);
float32x4_t
tmp1
=
vdupq_n_f32
(
0.
f
);
float32x4_t
tmp2
=
vdupq_n_f32
(
0.
f
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
0
][
0
],
k
[
0
],
0
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
0
][
1
],
k
[
0
],
1
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
0
][
2
],
k
[
0
],
2
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
0
][
3
],
k
[
0
],
3
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
1
][
0
],
k
[
1
],
0
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
1
][
1
],
k
[
1
],
1
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
1
][
2
],
k
[
1
],
2
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
1
][
3
],
k
[
1
],
3
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
2
][
0
],
k
[
2
],
0
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
2
][
1
],
k
[
2
],
1
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
2
][
2
],
k
[
2
],
2
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
2
][
3
],
k
[
2
],
3
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
3
][
0
],
k
[
3
],
0
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
3
][
1
],
k
[
3
],
1
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
3
][
2
],
k
[
3
],
2
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
3
][
3
],
k
[
3
],
3
);
tmp1
=
vaddq_f32
(
tmp1
,
tmp2
);
vst1q_f32
(
outputData
,
tmp1
);
r0
+=
8
;
r1
+=
8
;
r2
+=
8
;
r3
+=
8
;
outputData
+=
4
;
}
for
(
int
r
=
0
;
r
<
remain
;
r
++
)
{
float32x4_t
i0
=
vld1q_f32
(
r0
);
float32x4_t
i1
=
vld1q_f32
(
r1
);
float32x4_t
i2
=
vld1q_f32
(
r2
);
float32x4_t
i3
=
vld1q_f32
(
r3
);
*
outputData
=
conv4x4
(
i0
,
i1
,
i2
,
i3
,
k
[
0
],
k
[
1
],
k
[
2
],
k
[
3
]);
r0
+=
2
;
r1
+=
2
;
r2
+=
2
;
r3
+=
2
;
outputData
++
;
}
}
}
}
};
template
<
DeviceType
Device
>
template
<
DeviceType
Device
>
class
NeonDepthwiseConvFunction
:
public
ConvFunctionBase
{
class
NeonDepthwiseConvFunction
:
public
ConvFunctionBase
{
public:
public:
...
@@ -497,16 +42,16 @@ public:
...
@@ -497,16 +42,16 @@ public:
const
TensorShape
&
filter
=
inputs
[
1
].
shape
();
const
TensorShape
&
filter
=
inputs
[
1
].
shape
();
const
TensorShape
&
output
=
outputs
[
0
].
shape
();
const
TensorShape
&
output
=
outputs
[
0
].
shape
();
size_
t
batchSize
=
input
[
0
];
in
t
batchSize
=
input
[
0
];
size_
t
inputChannels
=
input
[
1
];
in
t
inputChannels
=
input
[
1
];
size_
t
inputHeight
=
input
[
2
];
in
t
inputHeight
=
input
[
2
];
size_
t
inputWidth
=
input
[
3
];
in
t
inputWidth
=
input
[
3
];
size_
t
filterHeight
=
getFilterHeight
(
filter
);
in
t
filterHeight
=
getFilterHeight
(
filter
);
size_
t
filterWidth
=
getFilterWidth
(
filter
);
in
t
filterWidth
=
getFilterWidth
(
filter
);
size_
t
outputChannels
=
output
[
1
];
in
t
outputChannels
=
output
[
1
];
size_
t
outputHeight
=
output
[
2
];
in
t
outputHeight
=
output
[
2
];
size_
t
outputWidth
=
output
[
3
];
in
t
outputWidth
=
output
[
3
];
size_
t
filterMultiplier
=
outputChannels
/
groups_
;
in
t
filterMultiplier
=
outputChannels
/
groups_
;
CHECK_EQ
(
inputChannels
,
groups_
);
CHECK_EQ
(
inputChannels
,
groups_
);
// only support strideH() == strideW() and filterHeight == filterWidth.
// only support strideH() == strideW() and filterHeight == filterWidth.
...
@@ -519,22 +64,19 @@ public:
...
@@ -519,22 +64,19 @@ public:
// padding the input
// padding the input
float
*
inputPadding
=
inputData
;
float
*
inputPadding
=
inputData
;
int
padInputHeight
=
inputHeight
+
2
*
paddingH
();
int
padInputWidth
=
inputWidth
+
2
*
paddingW
();
if
(
paddingH
()
>
0
||
paddingW
()
>
0
)
{
if
(
paddingH
()
>
0
||
paddingW
()
>
0
)
{
int
newSize
=
batchSize
*
inputChannels
*
(
inputHeight
+
2
*
paddingH
())
*
int
newSize
=
batchSize
*
inputChannels
*
padInputHeight
*
padInputWidth
;
(
inputWidth
+
2
*
paddingW
());
resizeBuffer
<
Device
>
(
newSize
);
resizeBuffer
<
Device
>
(
newSize
);
inputPadding
=
reinterpret_cast
<
float
*>
(
memory_
->
getBuf
());
inputPadding
=
reinterpret_cast
<
float
*>
(
memory_
->
getBuf
());
Padding
<
float
>::
run
(
inputData
,
neon
::
Padding
<
float
>::
run
(
inputData
,
inputPadding
,
inputPadding
,
batchSize
*
inputChannels
,
batchSize
*
inputChannels
,
inputHeight
,
inputHeight
,
inputWidth
,
inputWidth
,
paddingH
(),
padInputHeight
,
paddingW
());
padInputWidth
);
// height and width of padding data
inputHeight
+=
2
*
paddingH
();
inputWidth
+=
2
*
paddingW
();
}
}
std
::
function
<
void
(
std
::
function
<
void
(
...
@@ -542,36 +84,37 @@ public:
...
@@ -542,36 +84,37 @@ public:
DepthWiseConv
;
DepthWiseConv
;
if
(
filterWidth
==
3
&&
strideW
()
==
1
)
{
if
(
filterWidth
==
3
&&
strideW
()
==
1
)
{
DepthWiseConv
=
DepthwiseConvKernel
<
3
,
1
>::
run
;
DepthWiseConv
=
neon
::
DepthwiseConvKernel
<
3
,
1
>::
run
;
}
else
if
(
filterWidth
==
3
&&
strideW
()
==
2
)
{
}
else
if
(
filterWidth
==
3
&&
strideW
()
==
2
)
{
DepthWiseConv
=
DepthwiseConvKernel
<
3
,
2
>::
run
;
DepthWiseConv
=
neon
::
DepthwiseConvKernel
<
3
,
2
>::
run
;
}
else
if
(
filterWidth
==
4
&&
strideW
()
==
1
)
{
}
else
if
(
filterWidth
==
4
&&
strideW
()
==
1
)
{
DepthWiseConv
=
DepthwiseConvKernel
<
4
,
1
>::
run
;
DepthWiseConv
=
neon
::
DepthwiseConvKernel
<
4
,
1
>::
run
;
}
else
if
(
filterWidth
==
4
&&
strideW
()
==
2
)
{
}
else
if
(
filterWidth
==
4
&&
strideW
()
==
2
)
{
DepthWiseConv
=
DepthwiseConvKernel
<
4
,
2
>::
run
;
DepthWiseConv
=
neon
::
DepthwiseConvKernel
<
4
,
2
>::
run
;
}
else
{
}
else
{
LOG
(
FATAL
)
<<
"Not supported"
;
LOG
(
FATAL
)
<<
"Not supported"
;
}
}
for
(
size_
t
i
=
0
;
i
<
batchSize
;
i
++
)
{
for
(
in
t
i
=
0
;
i
<
batchSize
;
i
++
)
{
DepthWiseConv
(
inputPadding
,
DepthWiseConv
(
inputPadding
,
filterData
,
filterData
,
i
nputHeight
,
padI
nputHeight
,
i
nputWidth
,
padI
nputWidth
,
outputChannels
,
outputChannels
,
outputHeight
,
outputHeight
,
outputWidth
,
outputWidth
,
filterMultiplier
,
filterMultiplier
,
outputData
);
outputData
);
inputPadding
+=
inputChannels
*
inputHeight
*
i
nputWidth
;
inputPadding
+=
inputChannels
*
padInputHeight
*
padI
nputWidth
;
outputData
+=
outputChannels
*
outputHeight
*
outputWidth
;
outputData
+=
outputChannels
*
outputHeight
*
outputWidth
;
}
}
}
}
};
};
#ifndef PADDLE_TYPE_DOUBLE
REGISTER_TYPED_FUNC
(
NeonDepthwiseConv
,
CPU
,
NeonDepthwiseConvFunction
);
REGISTER_TYPED_FUNC
(
NeonDepthwiseConv
,
CPU
,
NeonDepthwiseConvFunction
);
#endif
#endif
#endif
}
// namespace neon
}
// namespace paddle
}
// namespace paddle
paddle/function/neon/NeonDepthwiseConv.h
0 → 100644
浏览文件 @
a8efed09
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string.h>
#include "neon_util.h"
namespace
paddle
{
namespace
neon
{
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
template
<
int
filterSize
,
int
stride
>
struct
DepthwiseConvKernel
{};
inline
float32_t
conv3x3
(
float32x4_t
r0
,
float32x4_t
r1
,
float32x4_t
r2
,
float32x4_t
k0
,
float32x4_t
k1
,
float32x4_t
k2
)
{
float32x4_t
tmp
;
tmp
=
vmulq_f32
(
r0
,
k0
);
tmp
=
vmlaq_f32
(
tmp
,
r1
,
k1
);
tmp
=
vmlaq_f32
(
tmp
,
r2
,
k2
);
return
vaddvq_f32
(
tmp
);
}
inline
float32_t
conv4x4
(
float32x4_t
r0
,
float32x4_t
r1
,
float32x4_t
r2
,
float32x4_t
r3
,
float32x4_t
k0
,
float32x4_t
k1
,
float32x4_t
k2
,
float32x4_t
k3
)
{
float32x4_t
tmp
;
tmp
=
vmulq_f32
(
r0
,
k0
);
tmp
=
vmlaq_f32
(
tmp
,
r1
,
k1
);
tmp
=
vmlaq_f32
(
tmp
,
r2
,
k2
);
tmp
=
vmlaq_f32
(
tmp
,
r3
,
k3
);
return
vaddvq_f32
(
tmp
);
}
/**
* Each step calculates four elements of the output.
* First step:
* R0[0, 1, 2, 3...] * K[0][0]
* R0[1, 2, 3, 4...] * K[0][1]
* R0[2, 3, 4, 5...] * K[0][2]
* R1[0, 1, 2, 3...] * K[1][0]
* R1[1, 2, 3, 4...] * K[1][1]
* R1[2, 3, 4, 5...] * K[1][2]
* R2[0, 1, 2, 3...] * K[2][0]
* R2[1, 2, 3, 4...] * K[2][1]
* + R2[2, 3, 4, 5...] * K[2][2]
* ------------------------------
* Output[0, 1, 2, 3]
*/
template
<
>
struct
DepthwiseConvKernel
<
3
,
1
>
{
static
void
run
(
const
float
*
inputData
,
const
float
*
filterData
,
int
inputHeight
,
int
inputWidth
,
int
outputChannels
,
int
outputHeight
,
int
outputWidth
,
int
filterMultiplier
,
float
*
outputData
)
{
const
int
steps
=
outputWidth
>>
2
;
const
int
remain
=
outputWidth
&
3
;
for
(
int
c
=
0
;
c
<
outputChannels
;
c
++
,
filterData
+=
9
)
{
// Load the filters
float32x4_t
k
[
3
];
k
[
0
]
=
vld1q_f32
(
filterData
);
k
[
1
]
=
vld1q_f32
(
filterData
+
3
);
k
[
2
]
=
vld1q_f32
(
filterData
+
6
);
k
[
0
]
=
vsetq_lane_f32
(
0.
f
,
k
[
0
],
3
);
k
[
1
]
=
vsetq_lane_f32
(
0.
f
,
k
[
1
],
3
);
k
[
2
]
=
vsetq_lane_f32
(
0.
f
,
k
[
2
],
3
);
const
float
*
r0
=
inputData
+
(
c
/
filterMultiplier
)
*
(
inputHeight
*
inputWidth
);
const
float
*
r1
=
r0
+
inputWidth
;
const
float
*
r2
=
r0
+
inputWidth
*
2
;
float32x4_t
input
[
3
][
3
];
for
(
int
h
=
0
;
h
<
outputHeight
;
h
++
)
{
for
(
int
s
=
0
;
s
<
steps
;
s
++
)
{
// Load the inputs
float32x4_t
tmp
;
input
[
0
][
0
]
=
vld1q_f32
(
r0
);
tmp
=
vld1q_f32
(
r0
+
4
);
input
[
0
][
1
]
=
vextq_f32
(
input
[
0
][
0
],
tmp
,
1
);
input
[
0
][
2
]
=
vextq_f32
(
input
[
0
][
0
],
tmp
,
2
);
input
[
1
][
0
]
=
vld1q_f32
(
r1
);
tmp
=
vld1q_f32
(
r1
+
4
);
input
[
1
][
1
]
=
vextq_f32
(
input
[
1
][
0
],
tmp
,
1
);
input
[
1
][
2
]
=
vextq_f32
(
input
[
1
][
0
],
tmp
,
2
);
input
[
2
][
0
]
=
vld1q_f32
(
r2
);
tmp
=
vld1q_f32
(
r2
+
4
);
input
[
2
][
1
]
=
vextq_f32
(
input
[
2
][
0
],
tmp
,
1
);
input
[
2
][
2
]
=
vextq_f32
(
input
[
2
][
0
],
tmp
,
2
);
float32x4_t
tmp1
=
vdupq_n_f32
(
0.
f
);
float32x4_t
tmp2
=
vdupq_n_f32
(
0.
f
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
0
][
0
],
k
[
0
],
0
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
0
][
1
],
k
[
0
],
1
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
0
][
2
],
k
[
0
],
2
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
1
][
0
],
k
[
1
],
0
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
1
][
1
],
k
[
1
],
1
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
1
][
2
],
k
[
1
],
2
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
2
][
0
],
k
[
2
],
0
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
2
][
1
],
k
[
2
],
1
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
2
][
2
],
k
[
2
],
2
);
tmp1
=
vaddq_f32
(
tmp1
,
tmp2
);
vst1q_f32
(
outputData
,
tmp1
);
r0
+=
4
;
r1
+=
4
;
r2
+=
4
;
outputData
+=
4
;
}
for
(
int
r
=
0
;
r
<
remain
;
r
++
)
{
float32x4_t
i0
=
vld1q_f32
(
r0
);
float32x4_t
i1
=
vld1q_f32
(
r1
);
float32x4_t
i2
=
vld1q_f32
(
r2
);
*
outputData
=
conv3x3
(
i0
,
i1
,
i2
,
k
[
0
],
k
[
1
],
k
[
2
]);
r0
++
;
r1
++
;
r2
++
;
outputData
++
;
}
r0
+=
2
;
r1
+=
2
;
r2
+=
2
;
}
}
}
};
/**
* Each step calculates four elements of the output.
* First step:
* R0[0, 2, 4, 6...] * K[0][0]
* R0[1, 3, 5, 7...] * K[0][1]
* R0[2, 4, 6, 8...] * K[0][2]
* R1[0, 2, 4, 6...] * K[1][0]
* R1[1, 3, 5, 7...] * K[1][1]
* R1[2, 4, 6, 8...] * K[1][2]
* R2[0, 2, 4, 6...] * K[2][0]
* R2[1, 3, 5, 7...] * K[2][1]
* R2[2, 4, 6, 8...] * K[2][2]
* ------------------------------
* Output[0, 1, 2, 3]
*/
template
<
>
struct
DepthwiseConvKernel
<
3
,
2
>
{
static
void
run
(
const
float
*
inputData
,
const
float
*
filterData
,
int
inputHeight
,
int
inputWidth
,
int
outputChannels
,
int
outputHeight
,
int
outputWidth
,
int
filterMultiplier
,
float
*
outputData
)
{
const
int
steps
=
outputWidth
>>
2
;
const
int
remain
=
outputWidth
&
3
;
for
(
int
c
=
0
;
c
<
outputChannels
;
c
++
,
filterData
+=
9
)
{
// Load the filters
float32x4_t
k
[
3
];
k
[
0
]
=
vld1q_f32
(
filterData
);
k
[
1
]
=
vld1q_f32
(
filterData
+
3
);
k
[
2
]
=
vld1q_f32
(
filterData
+
6
);
k
[
0
]
=
vsetq_lane_f32
(
0.
f
,
k
[
0
],
3
);
k
[
1
]
=
vsetq_lane_f32
(
0.
f
,
k
[
1
],
3
);
k
[
2
]
=
vsetq_lane_f32
(
0.
f
,
k
[
2
],
3
);
const
float
*
start
=
inputData
+
(
c
/
filterMultiplier
)
*
(
inputHeight
*
inputWidth
);
float32x4_t
input
[
3
][
3
];
for
(
int
h
=
0
;
h
<
outputHeight
;
h
++
)
{
const
float
*
r0
=
start
+
2
*
h
*
inputWidth
;
const
float
*
r1
=
start
+
(
2
*
h
+
1
)
*
inputWidth
;
const
float
*
r2
=
start
+
(
2
*
h
+
2
)
*
inputWidth
;
for
(
int
s
=
0
;
s
<
steps
;
s
++
)
{
// Load the inputs
float32x4_t
data1
;
float32x4x2_t
data2
;
data2
=
vld2q_f32
(
r0
);
input
[
0
][
0
]
=
data2
.
val
[
0
];
input
[
0
][
1
]
=
data2
.
val
[
1
];
data1
=
vld1q_f32
(
r0
+
8
);
input
[
0
][
2
]
=
vextq_f32
(
data2
.
val
[
0
],
data1
,
1
);
data2
=
vld2q_f32
(
r1
);
input
[
1
][
0
]
=
data2
.
val
[
0
];
input
[
1
][
1
]
=
data2
.
val
[
1
];
data1
=
vld1q_f32
(
r1
+
8
);
input
[
1
][
2
]
=
vextq_f32
(
data2
.
val
[
0
],
data1
,
1
);
data2
=
vld2q_f32
(
r2
);
input
[
2
][
0
]
=
data2
.
val
[
0
];
input
[
2
][
1
]
=
data2
.
val
[
1
];
data1
=
vld1q_f32
(
r2
+
8
);
input
[
2
][
2
]
=
vextq_f32
(
data2
.
val
[
0
],
data1
,
1
);
float32x4_t
tmp1
=
vdupq_n_f32
(
0.
f
);
float32x4_t
tmp2
=
vdupq_n_f32
(
0.
f
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
0
][
0
],
k
[
0
],
0
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
0
][
1
],
k
[
0
],
1
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
0
][
2
],
k
[
0
],
2
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
1
][
0
],
k
[
1
],
0
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
1
][
1
],
k
[
1
],
1
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
1
][
2
],
k
[
1
],
2
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
2
][
0
],
k
[
2
],
0
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
2
][
1
],
k
[
2
],
1
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
2
][
2
],
k
[
2
],
2
);
tmp1
=
vaddq_f32
(
tmp1
,
tmp2
);
vst1q_f32
(
outputData
,
tmp1
);
r0
+=
8
;
r1
+=
8
;
r2
+=
8
;
outputData
+=
4
;
}
for
(
int
r
=
0
;
r
<
remain
;
r
++
)
{
float32x4_t
i0
=
vld1q_f32
(
r0
);
float32x4_t
i1
=
vld1q_f32
(
r1
);
float32x4_t
i2
=
vld1q_f32
(
r2
);
*
outputData
=
conv3x3
(
i0
,
i1
,
i2
,
k
[
0
],
k
[
1
],
k
[
2
]);
r0
+=
2
;
r1
+=
2
;
r2
+=
2
;
outputData
++
;
}
}
}
}
};
/**
* Each step calculates four elements of the output.
*/
template
<
>
struct
DepthwiseConvKernel
<
4
,
1
>
{
static
void
run
(
const
float
*
inputData
,
const
float
*
filterData
,
int
inputHeight
,
int
inputWidth
,
int
outputChannels
,
int
outputHeight
,
int
outputWidth
,
int
filterMultiplier
,
float
*
outputData
)
{
const
int
steps
=
outputWidth
>>
2
;
const
int
remain
=
outputWidth
&
3
;
for
(
int
c
=
0
;
c
<
outputChannels
;
c
++
,
filterData
+=
16
)
{
// Load the filters
float32x4_t
k
[
4
];
k
[
0
]
=
vld1q_f32
(
filterData
);
k
[
1
]
=
vld1q_f32
(
filterData
+
4
);
k
[
2
]
=
vld1q_f32
(
filterData
+
8
);
k
[
3
]
=
vld1q_f32
(
filterData
+
12
);
const
float
*
r0
=
inputData
+
(
c
/
filterMultiplier
)
*
(
inputHeight
*
inputWidth
);
const
float
*
r1
=
r0
+
inputWidth
;
const
float
*
r2
=
r0
+
inputWidth
*
2
;
const
float
*
r3
=
r0
+
inputWidth
*
3
;
float32x4_t
input
[
4
][
4
];
for
(
int
h
=
0
;
h
<
outputHeight
;
h
++
)
{
for
(
int
s
=
0
;
s
<
steps
;
s
++
)
{
// Load the inputs
float32x4_t
tmp
;
input
[
0
][
0
]
=
vld1q_f32
(
r0
);
tmp
=
vld1q_f32
(
r0
+
4
);
input
[
0
][
1
]
=
vextq_f32
(
input
[
0
][
0
],
tmp
,
1
);
input
[
0
][
2
]
=
vextq_f32
(
input
[
0
][
0
],
tmp
,
2
);
input
[
0
][
3
]
=
vextq_f32
(
input
[
0
][
0
],
tmp
,
3
);
input
[
1
][
0
]
=
vld1q_f32
(
r1
);
tmp
=
vld1q_f32
(
r1
+
4
);
input
[
1
][
1
]
=
vextq_f32
(
input
[
1
][
0
],
tmp
,
1
);
input
[
1
][
2
]
=
vextq_f32
(
input
[
1
][
0
],
tmp
,
2
);
input
[
1
][
3
]
=
vextq_f32
(
input
[
1
][
0
],
tmp
,
3
);
input
[
2
][
0
]
=
vld1q_f32
(
r2
);
tmp
=
vld1q_f32
(
r2
+
4
);
input
[
2
][
1
]
=
vextq_f32
(
input
[
2
][
0
],
tmp
,
1
);
input
[
2
][
2
]
=
vextq_f32
(
input
[
2
][
0
],
tmp
,
2
);
input
[
2
][
3
]
=
vextq_f32
(
input
[
2
][
0
],
tmp
,
3
);
input
[
3
][
0
]
=
vld1q_f32
(
r3
);
tmp
=
vld1q_f32
(
r3
+
4
);
input
[
3
][
1
]
=
vextq_f32
(
input
[
3
][
0
],
tmp
,
1
);
input
[
3
][
2
]
=
vextq_f32
(
input
[
3
][
0
],
tmp
,
2
);
input
[
3
][
3
]
=
vextq_f32
(
input
[
3
][
0
],
tmp
,
3
);
float32x4_t
tmp1
=
vdupq_n_f32
(
0.
f
);
float32x4_t
tmp2
=
vdupq_n_f32
(
0.
f
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
0
][
0
],
k
[
0
],
0
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
0
][
1
],
k
[
0
],
1
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
0
][
2
],
k
[
0
],
2
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
0
][
3
],
k
[
0
],
3
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
1
][
0
],
k
[
1
],
0
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
1
][
1
],
k
[
1
],
1
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
1
][
2
],
k
[
1
],
2
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
1
][
3
],
k
[
1
],
3
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
2
][
0
],
k
[
2
],
0
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
2
][
1
],
k
[
2
],
1
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
2
][
2
],
k
[
2
],
2
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
2
][
3
],
k
[
2
],
3
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
3
][
0
],
k
[
3
],
0
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
3
][
1
],
k
[
3
],
1
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
3
][
2
],
k
[
3
],
2
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
3
][
3
],
k
[
3
],
3
);
tmp1
=
vaddq_f32
(
tmp1
,
tmp2
);
vst1q_f32
(
outputData
,
tmp1
);
r0
+=
4
;
r1
+=
4
;
r2
+=
4
;
r3
+=
4
;
outputData
+=
4
;
}
for
(
int
r
=
0
;
r
<
remain
;
r
++
)
{
float32x4_t
i0
=
vld1q_f32
(
r0
);
float32x4_t
i1
=
vld1q_f32
(
r1
);
float32x4_t
i2
=
vld1q_f32
(
r2
);
float32x4_t
i3
=
vld1q_f32
(
r3
);
*
outputData
=
conv4x4
(
i0
,
i1
,
i2
,
i3
,
k
[
0
],
k
[
1
],
k
[
2
],
k
[
3
]);
r0
++
;
r1
++
;
r2
++
;
r3
++
;
outputData
++
;
}
r0
+=
3
;
r1
+=
3
;
r2
+=
3
;
r3
+=
3
;
}
}
}
};
/**
* Each step calculates four elements of the output.
*/
template
<
>
struct
DepthwiseConvKernel
<
4
,
2
>
{
static
void
run
(
const
float
*
inputData
,
const
float
*
filterData
,
int
inputHeight
,
int
inputWidth
,
int
outputChannels
,
int
outputHeight
,
int
outputWidth
,
int
filterMultiplier
,
float
*
outputData
)
{
const
int
steps
=
outputWidth
>>
2
;
const
int
remain
=
outputWidth
&
3
;
for
(
int
c
=
0
;
c
<
outputChannels
;
c
++
,
filterData
+=
16
)
{
// Load the filters
float32x4_t
k
[
4
];
k
[
0
]
=
vld1q_f32
(
filterData
);
k
[
1
]
=
vld1q_f32
(
filterData
+
4
);
k
[
2
]
=
vld1q_f32
(
filterData
+
8
);
k
[
3
]
=
vld1q_f32
(
filterData
+
12
);
const
float
*
start
=
inputData
+
(
c
/
filterMultiplier
)
*
(
inputHeight
*
inputWidth
);
float32x4_t
input
[
4
][
4
];
for
(
int
h
=
0
;
h
<
outputHeight
;
h
++
)
{
const
float
*
r0
=
start
+
2
*
h
*
inputWidth
;
const
float
*
r1
=
start
+
(
2
*
h
+
1
)
*
inputWidth
;
const
float
*
r2
=
start
+
(
2
*
h
+
2
)
*
inputWidth
;
const
float
*
r3
=
start
+
(
2
*
h
+
3
)
*
inputWidth
;
for
(
int
s
=
0
;
s
<
steps
;
s
++
)
{
// Load the inputs
float32x4x2_t
data1
;
float32x4x2_t
data2
;
data1
=
vld2q_f32
(
r0
);
data2
=
vld2q_f32
(
r0
+
8
);
input
[
0
][
0
]
=
data1
.
val
[
0
];
input
[
0
][
1
]
=
data1
.
val
[
1
];
input
[
0
][
2
]
=
vextq_f32
(
data1
.
val
[
0
],
data2
.
val
[
0
],
1
);
input
[
0
][
3
]
=
vextq_f32
(
data1
.
val
[
1
],
data2
.
val
[
1
],
1
);
data1
=
vld2q_f32
(
r1
);
data2
=
vld2q_f32
(
r1
+
8
);
input
[
1
][
0
]
=
data1
.
val
[
0
];
input
[
1
][
1
]
=
data1
.
val
[
1
];
input
[
1
][
2
]
=
vextq_f32
(
data1
.
val
[
0
],
data2
.
val
[
0
],
1
);
input
[
1
][
3
]
=
vextq_f32
(
data1
.
val
[
1
],
data2
.
val
[
1
],
1
);
data1
=
vld2q_f32
(
r2
);
data2
=
vld2q_f32
(
r2
+
8
);
input
[
2
][
0
]
=
data1
.
val
[
0
];
input
[
2
][
1
]
=
data1
.
val
[
1
];
input
[
2
][
2
]
=
vextq_f32
(
data1
.
val
[
0
],
data2
.
val
[
0
],
1
);
input
[
2
][
3
]
=
vextq_f32
(
data1
.
val
[
1
],
data2
.
val
[
1
],
1
);
data1
=
vld2q_f32
(
r3
);
data2
=
vld2q_f32
(
r3
+
8
);
input
[
3
][
0
]
=
data1
.
val
[
0
];
input
[
3
][
1
]
=
data1
.
val
[
1
];
input
[
3
][
2
]
=
vextq_f32
(
data1
.
val
[
0
],
data2
.
val
[
0
],
1
);
input
[
3
][
3
]
=
vextq_f32
(
data1
.
val
[
1
],
data2
.
val
[
1
],
1
);
float32x4_t
tmp1
=
vdupq_n_f32
(
0.
f
);
float32x4_t
tmp2
=
vdupq_n_f32
(
0.
f
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
0
][
0
],
k
[
0
],
0
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
0
][
1
],
k
[
0
],
1
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
0
][
2
],
k
[
0
],
2
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
0
][
3
],
k
[
0
],
3
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
1
][
0
],
k
[
1
],
0
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
1
][
1
],
k
[
1
],
1
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
1
][
2
],
k
[
1
],
2
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
1
][
3
],
k
[
1
],
3
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
2
][
0
],
k
[
2
],
0
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
2
][
1
],
k
[
2
],
1
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
2
][
2
],
k
[
2
],
2
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
2
][
3
],
k
[
2
],
3
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
3
][
0
],
k
[
3
],
0
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
3
][
1
],
k
[
3
],
1
);
tmp1
=
vmlaq_laneq_f32
(
tmp1
,
input
[
3
][
2
],
k
[
3
],
2
);
tmp2
=
vmlaq_laneq_f32
(
tmp2
,
input
[
3
][
3
],
k
[
3
],
3
);
tmp1
=
vaddq_f32
(
tmp1
,
tmp2
);
vst1q_f32
(
outputData
,
tmp1
);
r0
+=
8
;
r1
+=
8
;
r2
+=
8
;
r3
+=
8
;
outputData
+=
4
;
}
for
(
int
r
=
0
;
r
<
remain
;
r
++
)
{
float32x4_t
i0
=
vld1q_f32
(
r0
);
float32x4_t
i1
=
vld1q_f32
(
r1
);
float32x4_t
i2
=
vld1q_f32
(
r2
);
float32x4_t
i3
=
vld1q_f32
(
r3
);
*
outputData
=
conv4x4
(
i0
,
i1
,
i2
,
i3
,
k
[
0
],
k
[
1
],
k
[
2
],
k
[
3
]);
r0
+=
2
;
r1
+=
2
;
r2
+=
2
;
r3
+=
2
;
outputData
++
;
}
}
}
}
};
template
<
class
T
>
struct
Padding
{
static
void
run
(
const
T
*
input
,
T
*
inputPadding
,
int
channels
,
int
inputHeight
,
int
inputWidth
,
int
padInputHeight
,
int
padInputWidth
)
{
const
int
paddingHeight
=
(
padInputHeight
-
inputHeight
)
/
2
;
const
int
paddingWidth
=
(
padInputWidth
-
inputWidth
)
/
2
;
for
(
int
c
=
0
;
c
<
channels
;
c
++
)
{
if
(
paddingHeight
>
0
)
{
memset
(
inputPadding
,
0
,
padInputWidth
*
paddingHeight
*
sizeof
(
T
));
inputPadding
+=
padInputWidth
*
paddingHeight
;
}
for
(
int
i
=
0
;
i
<
inputHeight
;
i
++
)
{
// padding head
for
(
int
j
=
0
;
j
<
paddingWidth
;
j
++
)
{
*
inputPadding
++
=
T
(
0
);
}
memcpy
(
inputPadding
,
input
,
inputWidth
*
sizeof
(
T
));
inputPadding
+=
inputWidth
;
input
+=
inputWidth
;
// padding tail
for
(
int
j
=
0
;
j
<
paddingWidth
;
j
++
)
{
*
inputPadding
++
=
T
(
0
);
}
}
if
(
paddingHeight
>
0
)
{
memset
(
inputPadding
,
0
,
padInputWidth
*
paddingHeight
*
sizeof
(
T
));
inputPadding
+=
padInputWidth
*
paddingHeight
;
}
}
}
};
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
template
<
>
struct
Padding
<
float
>
{
static
void
run
(
const
float
*
input
,
float
*
inputPadding
,
int
channels
,
int
inputHeight
,
int
inputWidth
,
int
padInputHeight
,
int
padInputWidth
)
{
const
int
paddingHeight
=
(
padInputHeight
-
inputHeight
)
/
2
;
const
int
paddingWidth
=
(
padInputWidth
-
inputWidth
)
/
2
;
for
(
int
c
=
0
;
c
<
channels
;
c
++
)
{
if
(
paddingHeight
>
0
)
{
memset
(
inputPadding
,
0
,
padInputWidth
*
paddingHeight
*
sizeof
(
float
));
inputPadding
+=
padInputWidth
*
paddingHeight
;
}
for
(
int
i
=
0
;
i
<
inputHeight
;
i
++
)
{
// padding head
for
(
int
j
=
0
;
j
<
paddingWidth
;
j
++
)
{
*
inputPadding
++
=
float
(
0
);
}
int
step
=
inputWidth
>>
2
;
int
remain
=
inputWidth
&
3
;
for
(
int
s
=
0
;
s
<
step
;
s
++
)
{
float32x4_t
s0
=
vld1q_f32
(
input
);
vst1q_f32
(
inputPadding
,
s0
);
input
+=
4
;
inputPadding
+=
4
;
}
for
(
int
r
=
0
;
r
<
remain
;
r
++
)
{
*
inputPadding
++
=
*
input
++
;
}
// padding tail
for
(
int
j
=
0
;
j
<
paddingWidth
;
j
++
)
{
*
inputPadding
++
=
float
(
0
);
}
}
if
(
paddingHeight
>
0
)
{
memset
(
inputPadding
,
0
,
padInputWidth
*
paddingHeight
*
sizeof
(
float
));
inputPadding
+=
padInputWidth
*
paddingHeight
;
}
}
}
};
// for stride is 2
struct
StridePadding
{
static
void
run
(
const
float
*
input
,
float
*
inputPadding
,
int
channels
,
int
inputHeight
,
int
inputWidth
,
int
padInputHeight
,
int
padInputWidth
)
{
const
int
paddingHeight
=
(
padInputHeight
-
(
inputHeight
*
2
-
1
))
/
2
;
const
int
paddingWidth
=
(
padInputWidth
-
(
inputWidth
*
2
-
1
))
/
2
;
for
(
int
c
=
0
;
c
<
channels
;
c
++
)
{
if
(
paddingHeight
>
0
)
{
memset
(
inputPadding
,
0
,
padInputWidth
*
paddingHeight
*
sizeof
(
float
));
inputPadding
+=
padInputWidth
*
paddingHeight
;
}
for
(
int
i
=
0
;
i
<
inputHeight
;
i
++
)
{
// padding head
for
(
int
j
=
0
;
j
<
paddingWidth
;
j
++
)
{
*
inputPadding
++
=
float
(
0
);
}
int
step
=
inputWidth
>>
2
;
int
remain
=
inputWidth
&
3
;
float32x4_t
s1
=
vdupq_n_f32
(
0.
f
);
for
(
int
s
=
0
;
s
<
step
;
s
++
)
{
float32x4_t
s0
=
vld1q_f32
(
input
);
float32x4x2_t
v
=
{
s0
,
s1
};
vst2q_f32
(
inputPadding
,
v
);
input
+=
4
;
inputPadding
+=
8
;
}
for
(
int
r
=
0
;
r
<
remain
;
r
++
)
{
*
inputPadding
++
=
*
input
++
;
*
inputPadding
++
=
float
(
0
);
}
inputPadding
--
;
// padding tail
for
(
int
j
=
0
;
j
<
paddingWidth
;
j
++
)
{
*
inputPadding
++
=
float
(
0
);
}
if
(
i
!=
inputHeight
-
1
)
{
memset
(
inputPadding
,
0
,
padInputWidth
*
sizeof
(
float
));
inputPadding
+=
padInputWidth
;
}
}
if
(
paddingHeight
>
0
)
{
memset
(
inputPadding
,
0
,
padInputWidth
*
paddingHeight
*
sizeof
(
float
));
inputPadding
+=
padInputWidth
*
paddingHeight
;
}
}
}
};
#endif
#endif
}
// namespace neon
}
// namespace paddle
paddle/function/neon/NeonDepthwiseConvTranspose.cpp
0 → 100644
浏览文件 @
a8efed09
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "NeonDepthwiseConv.h"
#include "paddle/function/ConvOp.h"
namespace
paddle
{
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
template
<
DeviceType
Device
>
class
NeonDepthwiseConvTransposeFunction
:
public
ConvFunctionBase
{
public:
void
init
(
const
FuncConfig
&
config
)
override
{
ConvFunctionBase
::
init
(
config
);
}
void
check
(
const
BufferArgs
&
inputs
,
const
BufferArgs
&
outputs
)
override
{
const
TensorShape
&
input
=
inputs
[
0
].
shape
();
const
TensorShape
&
filter
=
inputs
[
1
].
shape
();
const
TensorShape
&
output
=
outputs
[
0
].
shape
();
checkShape
(
input
,
filter
,
output
);
}
void
calc
(
const
BufferArgs
&
inputs
,
const
BufferArgs
&
outputs
)
override
{
CHECK_EQ
(
numInputs_
,
inputs
.
size
());
CHECK_EQ
(
numOutputs_
,
outputs
.
size
());
check
(
inputs
,
outputs
);
const
TensorShape
&
input
=
inputs
[
0
].
shape
();
const
TensorShape
&
filter
=
inputs
[
1
].
shape
();
const
TensorShape
&
output
=
outputs
[
0
].
shape
();
int
batchSize
=
input
[
0
];
int
inputChannels
=
input
[
1
];
int
inputHeight
=
input
[
2
];
int
inputWidth
=
input
[
3
];
int
filterHeight
=
getFilterHeight
(
filter
);
int
filterWidth
=
getFilterWidth
(
filter
);
int
outputChannels
=
output
[
1
];
int
outputHeight
=
output
[
2
];
int
outputWidth
=
output
[
3
];
int
filterMultiplier
=
outputChannels
/
groups_
;
CHECK_EQ
(
inputChannels
,
groups_
);
// only support strideH() == strideW() and filterHeight == filterWidth.
CHECK_EQ
(
strideH
(),
strideW
());
CHECK_EQ
(
paddingH
(),
paddingW
());
CHECK_EQ
(
filterHeight
,
filterWidth
);
float
*
inputData
=
inputs
[
0
].
data
<
float
>
();
float
*
filterData
=
inputs
[
1
].
data
<
float
>
();
float
*
outputData
=
outputs
[
0
].
data
<
float
>
();
// padding the input, input -> inputPadding
float
*
inputPadding
=
inputData
;
int
padInputHeight
=
(
inputHeight
-
1
)
*
strideH
()
+
2
*
filterHeight
-
1
-
2
*
paddingH
();
int
padInputWidth
=
(
inputWidth
-
1
)
*
strideW
()
+
2
*
filterWidth
-
1
-
2
*
paddingW
();
if
(
padInputHeight
>
inputHeight
||
padInputWidth
>
inputWidth
)
{
int
newSize
=
batchSize
*
inputChannels
*
padInputHeight
*
padInputWidth
;
resizeBuffer
<
Device
>
(
newSize
);
inputPadding
=
reinterpret_cast
<
float
*>
(
memory_
->
getBuf
());
if
(
strideH
()
==
1
)
{
neon
::
Padding
<
float
>::
run
(
inputData
,
inputPadding
,
batchSize
*
inputChannels
,
inputHeight
,
inputWidth
,
padInputHeight
,
padInputWidth
);
}
else
if
(
strideH
()
==
2
)
{
neon
::
StridePadding
::
run
(
inputData
,
inputPadding
,
batchSize
*
inputChannels
,
inputHeight
,
inputWidth
,
padInputHeight
,
padInputWidth
);
}
else
{
LOG
(
FATAL
)
<<
"Not supported"
;
}
}
std
::
function
<
void
(
const
float
*
,
const
float
*
,
int
,
int
,
int
,
int
,
int
,
int
,
float
*
)
>
DepthWiseConv
;
if
(
filterWidth
==
3
)
{
DepthWiseConv
=
neon
::
DepthwiseConvKernel
<
3
,
1
>::
run
;
}
else
if
(
filterWidth
==
4
)
{
DepthWiseConv
=
neon
::
DepthwiseConvKernel
<
4
,
1
>::
run
;
}
else
{
LOG
(
FATAL
)
<<
"Not supported"
;
}
for
(
int
i
=
0
;
i
<
batchSize
;
i
++
)
{
DepthWiseConv
(
inputPadding
,
filterData
,
padInputHeight
,
padInputWidth
,
outputChannels
,
outputHeight
,
outputWidth
,
filterMultiplier
,
outputData
);
inputPadding
+=
inputChannels
*
padInputHeight
*
padInputWidth
;
outputData
+=
outputChannels
*
outputHeight
*
outputWidth
;
}
}
};
#ifndef PADDLE_TYPE_DOUBLE
REGISTER_TYPED_FUNC
(
NeonDepthwiseConvTranspose
,
CPU
,
NeonDepthwiseConvTransposeFunction
);
#endif
#endif
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录