Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
a5556d44
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a5556d44
编写于
9月 11, 2018
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine attentionlstm infershape
上级
e0436ad8
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
60 addition
and
28 deletion
+60
-28
paddle/fluid/operators/attention_lstm_op.cc
paddle/fluid/operators/attention_lstm_op.cc
+60
-28
未找到文件。
paddle/fluid/operators/attention_lstm_op.cc
浏览文件 @
a5556d44
...
@@ -14,6 +14,7 @@ limitations under the License. */
...
@@ -14,6 +14,7 @@ limitations under the License. */
#include "paddle/fluid/operators/attention_lstm_op.h"
#include "paddle/fluid/operators/attention_lstm_op.h"
#include <string>
#include <string>
#include "paddle/fluid/framework/shape_runtime_infer.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/cpu_vec.h"
#include "paddle/fluid/operators/math/cpu_vec.h"
#include "paddle/fluid/operators/math/fc_compute.h"
#include "paddle/fluid/operators/math/fc_compute.h"
...
@@ -23,29 +24,60 @@ namespace paddle {
...
@@ -23,29 +24,60 @@ namespace paddle {
namespace
operators
{
namespace
operators
{
void
AttentionLSTMOp
::
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
{
void
AttentionLSTMOp
::
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
auto
*
runtime_ctx
=
dynamic_cast
<
framework
::
RuntimeInferShapeContext
*>
(
ctx
);
"Input(X) of AttentionLSTM should not be null."
);
if
(
runtime_ctx
==
nullptr
)
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"C0"
),
LOG
(
FATAL
)
<<
"Should have runtime infer context"
;
"Input(C0) of AttentionLSTM should not be null."
);
}
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"LSTMWeight"
),
const
auto
&
ins
=
runtime_ctx
->
OpBase
().
Inputs
();
"Input(LSTMWeight) of AttentionLSTM should not be null."
);
const
auto
&
outs
=
runtime_ctx
->
OpBase
().
Outputs
();
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"LSTMBias"
),
const
auto
&
scope
=
runtime_ctx
->
InferScope
();
"Input(LSTMBias) of AttentionLSTM should not be null."
);
const
auto
ins_end
=
ins
.
end
();
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"AttentionWeight"
),
const
auto
outs_end
=
outs
.
end
();
"Input(AttentionWeight) of AttentionLSTM should not be null."
);
auto
fair_input
=
[
&
](
const
std
::
string
&
name
)
->
bool
{
auto
it
=
ins
.
find
(
name
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Hidden"
),
if
(
it
==
ins_end
)
{
"Output(Hidden) of AttentionLSTM should not be null."
);
return
false
;
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Cell"
),
}
"Output(Cell) of AttentionLSTM should not be null."
);
const
auto
&
in
=
it
->
second
;
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"AttentionedX"
),
if
(
in
.
size
()
!=
1
||
in
[
0
]
==
framework
::
kEmptyVarName
)
{
"Output(AttentionedX) of AttentionLSTM should not be null."
);
return
false
;
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"AttentionFCOut"
),
}
"Output(AttentionFCOut) of AttentionLSTM should not be null."
);
return
scope
.
FindVar
(
in
[
0
])
!=
nullptr
;
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"LSTMX"
),
};
"Output(LSTMX) of AttentionLSTM should not be null."
);
auto
fair_output
=
[
&
](
const
std
::
string
&
name
)
->
bool
{
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"LSTMOUT"
),
auto
it
=
outs
.
find
(
name
);
"Output(LSTMOUT) of AttentionLSTM should not be null."
);
if
(
it
==
outs_end
)
{
return
false
;
}
const
auto
&
out
=
it
->
second
;
if
(
out
.
size
()
!=
1
||
out
[
0
]
==
framework
::
kEmptyVarName
)
{
return
false
;
}
return
scope
.
FindVar
(
out
[
0
])
!=
nullptr
;
};
PADDLE_ENFORCE
(
fair_input
(
"X"
),
"Assert only one Input(X) of AttentionLSTM."
);
PADDLE_ENFORCE
(
fair_input
(
"C0"
),
"Assert only one Input(C0) of AttentionLSTM."
);
PADDLE_ENFORCE
(
fair_input
(
"LSTMWeight"
),
"Assert only one Input(LSTMWeight) of AttentionLSTM."
);
PADDLE_ENFORCE
(
fair_input
(
"LSTMBias"
),
"Assert only one Input(LSTMBias) of AttentionLSTM."
);
PADDLE_ENFORCE
(
fair_input
(
"AttentionWeight"
),
"Assert only one Input(AttentionWeight) of AttentionLSTM."
);
PADDLE_ENFORCE
(
fair_output
(
"Hidden"
),
"Assert only one Output(Hidden) of AttentionLSTM."
);
PADDLE_ENFORCE
(
fair_output
(
"Cell"
),
"Assert only one Output(Cell) of AttentionLSTM."
);
PADDLE_ENFORCE
(
fair_output
(
"AttentionedX"
),
"Assert only one Output(AttentionedX) of AttentionLSTM."
);
PADDLE_ENFORCE
(
fair_output
(
"AttentionFCOut"
),
"Assert only one Output(AttentionFCOut) of AttentionLSTM."
);
PADDLE_ENFORCE
(
fair_output
(
"LSTMX"
),
"Assert only one Output(LSTMX) of AttentionLSTM."
);
PADDLE_ENFORCE
(
fair_output
(
"LSTMOUT"
),
"Assert only one Output(LSTMOUT) of AttentionLSTM."
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
const
int
M
=
x_dims
[
1
];
const
int
M
=
x_dims
[
1
];
...
@@ -65,7 +97,7 @@ void AttentionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
...
@@ -65,7 +97,7 @@ void AttentionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
auto
c_dims
=
ctx
->
GetInputDim
(
"C0"
);
auto
c_dims
=
ctx
->
GetInputDim
(
"C0"
);
PADDLE_ENFORCE_EQ
(
c_dims
.
size
(),
2
,
"Input(C0)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
c_dims
.
size
(),
2
,
"Input(C0)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
c_dims
[
1
],
D
,
"C0 dims should be N x %d."
,
D
);
PADDLE_ENFORCE_EQ
(
c_dims
[
1
],
D
,
"C0 dims should be N x %d."
,
D
);
if
(
ctx
->
HasI
nput
(
"H0"
))
{
if
(
fair_i
nput
(
"H0"
))
{
auto
h_dims
=
ctx
->
GetInputDim
(
"H0"
);
auto
h_dims
=
ctx
->
GetInputDim
(
"H0"
);
PADDLE_ENFORCE
(
h_dims
==
c_dims
,
PADDLE_ENFORCE
(
h_dims
==
c_dims
,
"The dimension of Input(H0) and Input(C0) "
"The dimension of Input(H0) and Input(C0) "
...
@@ -79,7 +111,7 @@ void AttentionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
...
@@ -79,7 +111,7 @@ void AttentionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
"AttentionWeight shapes must be (%d + %d) * 1."
,
M
,
D
);
"AttentionWeight shapes must be (%d + %d) * 1."
,
M
,
D
);
PADDLE_ENFORCE_EQ
(
atten_w_dims
[
1
],
1
,
PADDLE_ENFORCE_EQ
(
atten_w_dims
[
1
],
1
,
"AttentionWeight shapes must be (%d + %d) * 1."
,
M
,
D
);
"AttentionWeight shapes must be (%d + %d) * 1."
,
M
,
D
);
if
(
ctx
->
HasI
nput
(
"AttentionBias"
))
{
if
(
fair_i
nput
(
"AttentionBias"
))
{
auto
atten_b_dims
=
ctx
->
GetInputDim
(
"AttentionBias"
);
auto
atten_b_dims
=
ctx
->
GetInputDim
(
"AttentionBias"
);
PADDLE_ENFORCE_EQ
(
atten_b_dims
.
size
(),
2
,
PADDLE_ENFORCE_EQ
(
atten_b_dims
.
size
(),
2
,
"Input(AttentionBias)'s rank must be 2."
);
"Input(AttentionBias)'s rank must be 2."
);
...
@@ -89,7 +121,7 @@ void AttentionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
...
@@ -89,7 +121,7 @@ void AttentionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
"AttentionBias shapes must be 1 * 1."
);
"AttentionBias shapes must be 1 * 1."
);
}
}
if
(
ctx
->
HasI
nput
(
"AttentionScalar"
))
{
if
(
fair_i
nput
(
"AttentionScalar"
))
{
auto
dims
=
ctx
->
GetInputDim
(
"AttentionScalar"
);
auto
dims
=
ctx
->
GetInputDim
(
"AttentionScalar"
);
PADDLE_ENFORCE_EQ
(
dims
.
size
(),
2
,
PADDLE_ENFORCE_EQ
(
dims
.
size
(),
2
,
"Input(AttentionScalar)'s rank must be 2."
);
"Input(AttentionScalar)'s rank must be 2."
);
...
@@ -97,10 +129,10 @@ void AttentionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
...
@@ -97,10 +129,10 @@ void AttentionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
PADDLE_ENFORCE_EQ
(
dims
[
1
],
1
,
"AttentionScalar shapes must be 1 * 1."
);
PADDLE_ENFORCE_EQ
(
dims
[
1
],
1
,
"AttentionScalar shapes must be 1 * 1."
);
}
}
if
(
ctx
->
HasI
nput
(
"AttentionScalarBias"
))
{
if
(
fair_i
nput
(
"AttentionScalarBias"
))
{
auto
dims
=
ctx
->
GetInputDim
(
"AttentionScalarBias"
);
auto
dims
=
ctx
->
GetInputDim
(
"AttentionScalarBias"
);
PADDLE_ENFORCE
(
PADDLE_ENFORCE
(
ctx
->
HasI
nput
(
"AttentionScalar"
),
fair_i
nput
(
"AttentionScalar"
),
"AttentionScalar should not be null when have AttentionScalarBias."
);
"AttentionScalar should not be null when have AttentionScalarBias."
);
PADDLE_ENFORCE_EQ
(
dims
.
size
(),
2
,
PADDLE_ENFORCE_EQ
(
dims
.
size
(),
2
,
"Input(AttentionScalarBias)'s rank must be 2."
);
"Input(AttentionScalarBias)'s rank must be 2."
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录