diff --git a/paddle/fluid/operators/detection/collect_fpn_proposals_op.cc b/paddle/fluid/operators/detection/collect_fpn_proposals_op.cc index b3e3332fe3425301a3dede3a3d810697ad4debf3..44f602237da2e2c8fa26e39326f977d10235155d 100644 --- a/paddle/fluid/operators/detection/collect_fpn_proposals_op.cc +++ b/paddle/fluid/operators/detection/collect_fpn_proposals_op.cc @@ -10,6 +10,7 @@ See the License for the specific language governing permissions and limitations under the License.*/ #include "paddle/fluid/operators/detection/collect_fpn_proposals_op.h" +#include "paddle/fluid/framework/op_version_registry.h" namespace paddle { namespace operators { @@ -54,11 +55,14 @@ class CollectFpnProposalsOp : public framework::OperatorWithKernel { score_dim[1])); } context->SetOutputDim("FpnRois", {post_nms_topN, 4}); + if (context->HasOutput("RoisNum")) { + context->SetOutputDim("RoisNum", {-1}); + } if (!context->IsRuntime()) { // Runtime LoD infershape will be computed // in Kernel. context->ShareLoD("MultiLevelRois", "FpnRois"); } - if (context->IsRuntime()) { + if (context->IsRuntime() && !context->HasInputs("MultiLevelRoIsNum")) { std::vector roi_inputs = context->GetInputVarPtrs("MultiLevelRois"); std::vector score_inputs = @@ -99,7 +103,16 @@ class CollectFpnProposalsOpMaker : public framework::OpProtoAndCheckerMaker { "(LoDTensor) Multiple score LoDTensors from each level in shape" " (N, 1), N is the number of RoIs.") .AsDuplicable(); + AddInput( + "MultiLevelRoIsNum", + "(List of Tensor) The RoIs' number of each image on multiple levels." + "The number on each level has the shape of (N), N is the number of " + "images.") + .AsDuplicable() + .AsDispensable(); AddOutput("FpnRois", "(LoDTensor) All selected RoIs with highest scores"); + AddOutput("RoisNum", "(Tensor), Number of RoIs in each images.") + .AsDispensable(); AddAttr("post_nms_topN", "Select post_nms_topN RoIs from" " all images and all fpn layers"); @@ -123,3 +136,14 @@ REGISTER_OPERATOR( REGISTER_OP_CPU_KERNEL(collect_fpn_proposals, ops::CollectFpnProposalsOpKernel, ops::CollectFpnProposalsOpKernel); +REGISTER_OP_VERSION(collect_fpn_proposals) + .AddCheckpoint( + R"ROC( + Upgrade collect_fpn_proposals add a new input + [MultiLevelRoIsNum] and add a new output [RoisNum].)ROC", + paddle::framework::compatible::OpVersionDesc() + .NewInput("MultiLevelRoIsNum", + "The RoIs' number of each image on multiple levels." + "The number on each level has the shape of (N), " + "N is the number of images.") + .NewOutput("RoisNum", "The number of RoIs in each image.")); diff --git a/paddle/fluid/operators/detection/collect_fpn_proposals_op.cu b/paddle/fluid/operators/detection/collect_fpn_proposals_op.cu index 35222a85cd388f6fef3c61c440be7b36598d9e01..86207052bb2bef4f7bea34c2614fe7686f579de8 100644 --- a/paddle/fluid/operators/detection/collect_fpn_proposals_op.cu +++ b/paddle/fluid/operators/detection/collect_fpn_proposals_op.cu @@ -80,14 +80,27 @@ class GPUCollectFpnProposalsOpKernel : public framework::OpKernel { int lod_size; auto place = BOOST_GET_CONST(platform::CUDAPlace, dev_ctx.GetPlace()); + auto multi_rois_num = ctx.MultiInput("MultiLevelRoIsNum"); for (size_t i = 0; i < roi_ins.size(); ++i) { auto roi_in = roi_ins[i]; auto score_in = score_ins[i]; - auto roi_lod = roi_in->lod().back(); - lod_size = roi_lod.size() - 1; - for (size_t n = 0; n < lod_size; ++n) { - for (size_t j = roi_lod[n]; j < roi_lod[n + 1]; ++j) { - roi_batch_id_data[index++] = n; + if (multi_rois_num.size() > 0) { + framework::Tensor temp; + TensorCopySync(*multi_rois_num[i], platform::CPUPlace(), &temp); + const int* length_in = temp.data(); + lod_size = multi_rois_num[i]->numel(); + for (size_t n = 0; n < lod_size; ++n) { + for (size_t j = 0; j < length_in[n]; ++j) { + roi_batch_id_data[index++] = n; + } + } + } else { + auto length_in = roi_in->lod().back(); + lod_size = length_in.size() - 1; + for (size_t n = 0; n < lod_size; ++n) { + for (size_t j = length_in[n]; j < length_in[n + 1]; ++j) { + roi_batch_id_data[index++] = n; + } } } @@ -190,6 +203,13 @@ class GPUCollectFpnProposalsOpKernel : public framework::OpKernel { offset.emplace_back(offset.back() + length_lod_cpu[i]); } + if (ctx.HasOutput("RoisNum")) { + auto* rois_num = ctx.Output("RoisNum"); + int* rois_num_data = rois_num->mutable_data({lod_size}, place); + memory::Copy(place, rois_num_data, place, length_lod_data, + lod_size * sizeof(int), dev_ctx.stream()); + } + framework::LoD lod; lod.emplace_back(offset); fpn_rois->set_lod(lod); diff --git a/paddle/fluid/operators/detection/collect_fpn_proposals_op.h b/paddle/fluid/operators/detection/collect_fpn_proposals_op.h index badd88f0689ba9defcb3f26eb57fef89308aa877..950b8b78933bff6bf1692df61142258dfbc87a8c 100644 --- a/paddle/fluid/operators/detection/collect_fpn_proposals_op.h +++ b/paddle/fluid/operators/detection/collect_fpn_proposals_op.h @@ -17,6 +17,7 @@ limitations under the License.*/ #include #include #include +#include #include #include #include "paddle/fluid/framework/op_registry.h" @@ -65,6 +66,8 @@ class CollectFpnProposalsOpKernel : public framework::OpKernel { auto multi_layer_scores = context.MultiInput("MultiLevelScores"); + auto multi_rois_num = context.MultiInput("MultiLevelRoIsNum"); + int num_size = multi_rois_num.size(); auto* fpn_rois = context.Output("FpnRois"); @@ -88,11 +91,21 @@ class CollectFpnProposalsOpKernel : public framework::OpKernel { const int num_fpn_level = multi_layer_rois.size(); std::vector integral_of_all_rois(num_fpn_level + 1, 0); for (int i = 0; i < num_fpn_level; ++i) { - auto cur_rois_lod = multi_layer_rois[i]->lod().back(); - integral_of_all_rois[i + 1] = - integral_of_all_rois[i] + cur_rois_lod[cur_rois_lod.size() - 1]; + int all_rois = 0; + if (num_size == 0) { + auto cur_rois_lod = multi_layer_rois[i]->lod().back(); + all_rois = cur_rois_lod[cur_rois_lod.size() - 1]; + } else { + const int* cur_rois_num = multi_rois_num[i]->data(); + all_rois = std::accumulate( + cur_rois_num, cur_rois_num + multi_rois_num[i]->numel(), 0); + } + integral_of_all_rois[i + 1] = integral_of_all_rois[i] + all_rois; } + const int batch_size = (num_size == 0) + ? multi_layer_rois[0]->lod().back().size() - 1 + : multi_rois_num[0]->numel(); // concatenate all fpn rois scores into a list // create a vector to store all scores std::vector> scores_of_all_rois( @@ -100,11 +113,20 @@ class CollectFpnProposalsOpKernel : public framework::OpKernel { for (int i = 0; i < num_fpn_level; ++i) { const T* cur_level_scores = multi_layer_scores[i]->data(); int cur_level_num = integral_of_all_rois[i + 1] - integral_of_all_rois[i]; - auto cur_scores_lod = multi_layer_scores[i]->lod().back(); int cur_batch_id = 0; + int pre_num = 0; for (int j = 0; j < cur_level_num; ++j) { - if (static_cast(j) >= cur_scores_lod[cur_batch_id + 1]) { - cur_batch_id++; + if (num_size == 0) { + auto cur_scores_lod = multi_layer_scores[i]->lod().back(); + if (static_cast(j) >= cur_scores_lod[cur_batch_id + 1]) { + cur_batch_id++; + } + } else { + const int* rois_num_data = multi_rois_num[i]->data(); + if (j >= pre_num + rois_num_data[cur_batch_id]) { + pre_num += rois_num_data[cur_batch_id]; + cur_batch_id++; + } } int cur_index = j + integral_of_all_rois[i]; scores_of_all_rois[cur_index].score = cur_level_scores[j]; @@ -134,6 +156,9 @@ class CollectFpnProposalsOpKernel : public framework::OpKernel { T* fpn_rois_data = fpn_rois->data(); std::vector lod0(1, 0); int cur_batch_id = 0; + std::vector num_per_batch; + int pre_idx = 0; + int cur_num = 0; for (int i = 0; i < post_nms_topN; ++i) { int cur_fpn_level = scores_of_all_rois[i].level; int cur_level_index = scores_of_all_rois[i].index; @@ -144,6 +169,18 @@ class CollectFpnProposalsOpKernel : public framework::OpKernel { if (scores_of_all_rois[i].batch_id != cur_batch_id) { cur_batch_id = scores_of_all_rois[i].batch_id; lod0.emplace_back(i); + cur_num = i - pre_idx; + pre_idx = i; + num_per_batch.emplace_back(cur_num); + } + } + num_per_batch.emplace_back(post_nms_topN - pre_idx); + if (context.HasOutput("RoisNum")) { + auto* rois_num = context.Output("RoisNum"); + int* rois_num_data = + rois_num->mutable_data({batch_size}, context.GetPlace()); + for (int i = 0; i < batch_size; i++) { + rois_num_data[i] = num_per_batch[i]; } } lod0.emplace_back(post_nms_topN); diff --git a/paddle/fluid/operators/detection/distribute_fpn_proposals_op.cc b/paddle/fluid/operators/detection/distribute_fpn_proposals_op.cc index 160d43a917b3c74ff905e070714415d35c5c877c..614b37e703e721337057e04c5611386ff87a1e9e 100644 --- a/paddle/fluid/operators/detection/distribute_fpn_proposals_op.cc +++ b/paddle/fluid/operators/detection/distribute_fpn_proposals_op.cc @@ -13,6 +13,7 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/detection/distribute_fpn_proposals_op.h" +#include "paddle/fluid/framework/op_version_registry.h" namespace paddle { namespace operators { @@ -48,6 +49,14 @@ class DistributeFpnProposalsOp : public framework::OperatorWithKernel { } ctx->SetOutputsDim("MultiFpnRois", outs_dims); ctx->SetOutputDim("RestoreIndex", {-1, 1}); + + if (ctx->HasOutputs("MultiLevelRoIsNum")) { + std::vector outs_num_dims; + for (size_t i = 0; i < num_out_rois; ++i) { + outs_num_dims.push_back({-1}); + } + ctx->SetOutputsDim("MultiLevelRoIsNum", outs_num_dims); + } if (!ctx->IsRuntime()) { for (size_t i = 0; i < num_out_rois; ++i) { ctx->SetLoDLevel("MultiFpnRois", ctx->GetLoDLevel("FpnRois"), i); @@ -66,12 +75,22 @@ class DistributeFpnProposalsOp : public framework::OperatorWithKernel { class DistributeFpnProposalsOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { - AddInput("FpnRois", "(LoDTensor) The rois at all levels in shape (-1, 4)"); + AddInput("FpnRois", "(LoDTensor) The RoIs at all levels in shape (-1, 4)"); + AddInput("RoisNum", + "(Tensor) The number of RoIs in shape (B)," + "B is the number of images") + .AsDispensable(); AddOutput("MultiFpnRois", "(LoDTensor) Output with distribute operator") .AsDuplicable(); AddOutput("RestoreIndex", "(Tensor) An array of positive number which is " "used to restore the order of FpnRois"); + AddOutput("MultiLevelRoIsNum", + "(List of Tensor) The RoIs' number of each image on multiple " + "levels. The number on each level has the shape of (B)," + "B is the number of images.") + .AsDuplicable() + .AsDispensable(); AddAttr("min_level", "The lowest level of FPN layer where the" " proposals come from"); @@ -105,3 +124,14 @@ REGISTER_OPERATOR( REGISTER_OP_CPU_KERNEL(distribute_fpn_proposals, ops::DistributeFpnProposalsOpKernel, ops::DistributeFpnProposalsOpKernel); +REGISTER_OP_VERSION(distribute_fpn_proposals) + .AddCheckpoint( + R"ROC( + Upgrade distribute_fpn_proposals add a new input + [RoisNum] and add a new output [MultiLevelRoIsNum].)ROC", + paddle::framework::compatible::OpVersionDesc() + .NewInput("RoIsNum", "The number of RoIs in each image.") + .NewOutput("MultiLevelRoisNum", + "The RoIs' number of each image on multiple " + "levels. The number on each level has the shape of (B)," + "B is the number of images.")); diff --git a/paddle/fluid/operators/detection/distribute_fpn_proposals_op.cu b/paddle/fluid/operators/detection/distribute_fpn_proposals_op.cu index 1e3cd9f36c595f978f5b5e5f5c5cf5cad6dc9059..27c06a0f8fb207b5dc85c7875ea91428b16e606c 100644 --- a/paddle/fluid/operators/detection/distribute_fpn_proposals_op.cu +++ b/paddle/fluid/operators/detection/distribute_fpn_proposals_op.cu @@ -76,12 +76,20 @@ class GPUDistributeFpnProposalsOpKernel : public framework::OpKernel { int num_level = max_level - min_level + 1; // check that the fpn_rois is not empty - PADDLE_ENFORCE_EQ( - fpn_rois->lod().size(), 1UL, - platform::errors::InvalidArgument("DistributeFpnProposalsOp needs LoD" - "with one level")); + if (!ctx.HasInput("RoisNum")) { + PADDLE_ENFORCE_EQ( + fpn_rois->lod().size(), 1UL, + platform::errors::InvalidArgument("DistributeFpnProposalsOp needs LoD" + "with one level")); + } - auto fpn_rois_lod = fpn_rois->lod().back(); + std::vector fpn_rois_lod; + if (ctx.HasInput("RoisNum")) { + auto* rois_num = ctx.Input("RoisNum"); + fpn_rois_lod = GetLodFromRoisNum(rois_num); + } else { + fpn_rois_lod = fpn_rois->lod().back(); + } int lod_size = fpn_rois_lod.size() - 1; int roi_num = fpn_rois_lod[lod_size]; @@ -154,6 +162,8 @@ class GPUDistributeFpnProposalsOpKernel : public framework::OpKernel { restore_idx_data, roi_num); int start = 0; + auto multi_rois_num = ctx.MultiOutput("MultiLevelRoIsNum"); + for (int i = 0; i < num_level; ++i) { Tensor sub_lod = sub_lod_list.Slice(i, i + 1); int* sub_lod_data = sub_lod.data(); @@ -180,6 +190,11 @@ class GPUDistributeFpnProposalsOpKernel : public framework::OpKernel { multi_fpn_rois[i]->mutable_data({sub_rois_num, kBoxDim}, dev_ctx.GetPlace()); } + if (multi_rois_num.size() > 0) { + Tensor* rois_num_t = multi_rois_num[i]; + TensorCopySync(sub_lod, dev_ctx.GetPlace(), rois_num_t); + rois_num_t->Resize({lod_size}); + } framework::LoD lod; lod.emplace_back(offset); multi_fpn_rois[i]->set_lod(lod); diff --git a/paddle/fluid/operators/detection/distribute_fpn_proposals_op.h b/paddle/fluid/operators/detection/distribute_fpn_proposals_op.h index 0c84b385ccbc1dd26453bd957661c0310b7137e3..79498f01536d2fb2616921a2ef1ffa04f13fae64 100644 --- a/paddle/fluid/operators/detection/distribute_fpn_proposals_op.h +++ b/paddle/fluid/operators/detection/distribute_fpn_proposals_op.h @@ -28,6 +28,21 @@ namespace operators { const int kBoxDim = 4; +inline std::vector GetLodFromRoisNum(const Tensor* rois_num) { + std::vector rois_lod; + auto* rois_num_data = rois_num->data(); + Tensor cpu_tensor; + if (platform::is_gpu_place(rois_num->place())) { + TensorCopySync(*rois_num, platform::CPUPlace(), &cpu_tensor); + rois_num_data = cpu_tensor.data(); + } + rois_lod.push_back(static_cast(0)); + for (int i = 0; i < rois_num->numel(); ++i) { + rois_lod.push_back(rois_lod.back() + static_cast(rois_num_data[i])); + } + return rois_lod; +} + template static inline T BBoxArea(const T* box, bool normalized) { if (box[2] < box[0] || box[3] < box[1]) { @@ -65,13 +80,22 @@ class DistributeFpnProposalsOpKernel : public framework::OpKernel { const int num_level = max_level - min_level + 1; // check that the fpn_rois is not empty - PADDLE_ENFORCE_EQ( - fpn_rois->lod().size(), 1UL, - platform::errors::InvalidArgument("DistributeFpnProposalsOp needs LoD " - "with one level.")); + if (!context.HasInput("RoisNum")) { + PADDLE_ENFORCE_EQ(fpn_rois->lod().size(), 1UL, + platform::errors::InvalidArgument( + "DistributeFpnProposalsOp needs LoD " + "with one level.")); + } - auto fpn_rois_lod = fpn_rois->lod().back(); - int fpn_rois_num = fpn_rois_lod[fpn_rois_lod.size() - 1]; + std::vector fpn_rois_lod; + int fpn_rois_num; + if (context.HasInput("RoisNum")) { + auto* rois_num = context.Input("RoisNum"); + fpn_rois_lod = GetLodFromRoisNum(rois_num); + } else { + fpn_rois_lod = fpn_rois->lod().back(); + } + fpn_rois_num = fpn_rois_lod[fpn_rois_lod.size() - 1]; std::vector target_level; // std::vector target_level(fpn_rois_num, -1); // record the number of rois in each level @@ -136,6 +160,18 @@ class DistributeFpnProposalsOpKernel : public framework::OpKernel { for (int i = 0; i < fpn_rois_num; ++i) { restore_index_data[restore_index_inter[i]] = i; } + auto multi_rois_num = context.MultiOutput("MultiLevelRoIsNum"); + if (multi_rois_num.size() > 0) { + int batch_size = fpn_rois_lod.size() - 1; + for (int i = 0; i < num_level; ++i) { + int* rois_num_data = multi_rois_num[i]->mutable_data( + {batch_size}, context.GetPlace()); + for (int j = 0; j < batch_size; ++j) { + rois_num_data[j] = static_cast(multi_fpn_rois_lod0[i][j + 1] - + multi_fpn_rois_lod0[i][j]); + } + } + } // merge lod information into LoDTensor for (int i = 0; i < num_level; ++i) { framework::LoD lod; diff --git a/paddle/fluid/operators/detection/generate_proposals_op.cc b/paddle/fluid/operators/detection/generate_proposals_op.cc index 981a368e8564fbcd3d688bc67d2def8664bcfe8d..06e560f86d4e0a74f7ae04b155829618ce634697 100644 --- a/paddle/fluid/operators/detection/generate_proposals_op.cc +++ b/paddle/fluid/operators/detection/generate_proposals_op.cc @@ -17,6 +17,7 @@ limitations under the License. */ #include #include #include "paddle/fluid/framework/op_registry.h" +#include "paddle/fluid/framework/op_version_registry.h" #include "paddle/fluid/operators/gather.h" #include "paddle/fluid/operators/math/math_function.h" @@ -61,6 +62,10 @@ class GenerateProposalsOp : public framework::OperatorWithKernel { ctx->SetOutputDim("RpnRois", {-1, 4}); ctx->SetOutputDim("RpnRoiProbs", {-1, 1}); + if (!ctx->IsRuntime()) { + ctx->SetLoDLevel("RpnRois", std::max(ctx->GetLoDLevel("Scores"), 1)); + ctx->SetLoDLevel("RpnRoiProbs", std::max(ctx->GetLoDLevel("Scores"), 1)); + } } protected: @@ -347,7 +352,7 @@ class GenerateProposalsKernel : public framework::OpKernel { lod0.push_back(0); anchors.Resize({anchors.numel() / 4, 4}); variances.Resize({variances.numel() / 4, 4}); - std::vector tmp_lod; + std::vector tmp_num; int64_t num_proposals = 0; for (int64_t i = 0; i < num; ++i) { @@ -369,16 +374,16 @@ class GenerateProposalsKernel : public framework::OpKernel { AppendProposals(rpn_roi_probs, num_proposals, scores); num_proposals += proposals.dims()[0]; lod0.push_back(num_proposals); - tmp_lod.push_back(num_proposals); + tmp_num.push_back(proposals.dims()[0]); } - if (context.HasOutput("RpnRoisLod")) { - auto *rpn_rois_lod = context.Output("RpnRoisLod"); - rpn_rois_lod->mutable_data({num}, context.GetPlace()); - int64_t *lod_data = rpn_rois_lod->data(); + if (context.HasOutput("RpnRoisNum")) { + auto *rpn_rois_num = context.Output("RpnRoisNum"); + rpn_rois_num->mutable_data({num}, context.GetPlace()); + int *num_data = rpn_rois_num->data(); for (int i = 0; i < num; i++) { - lod_data[i] = tmp_lod[i]; + num_data[i] = tmp_num[i]; } - rpn_rois_lod->Resize({num}); + rpn_rois_num->Resize({num}); } rpn_rois->set_lod(lod); rpn_roi_probs->set_lod(lod); @@ -433,6 +438,16 @@ class GenerateProposalsKernel : public framework::OpKernel { Tensor keep; FilterBoxes(ctx, &proposals, min_size, im_info_slice, &keep); + // Handle the case when there is no keep index left + if (keep.numel() == 0) { + math::SetConstant set_zero; + bbox_sel.mutable_data({1, 4}, ctx.GetPlace()); + set_zero(ctx, &bbox_sel, static_cast(0)); + Tensor scores_filter; + scores_filter.mutable_data({1, 1}, ctx.GetPlace()); + set_zero(ctx, &scores_filter, static_cast(0)); + return std::make_pair(bbox_sel, scores_filter); + } Tensor scores_filter; bbox_sel.mutable_data({keep.numel(), 4}, ctx.GetPlace()); @@ -481,7 +496,8 @@ class GenerateProposalsOpMaker : public framework::OpProtoAndCheckerMaker { "(LoDTensor), Output proposals with shape (rois_num, 4)."); AddOutput("RpnRoiProbs", "(LoDTensor) Scores of proposals with shape (rois_num, 1)."); - AddOutput("RpnRoisLod", "(Tensor), rpn rois's lod info").AsDispensable(); + AddOutput("RpnRoisNum", "(Tensor), The number of Rpn RoIs in each image") + .AsDispensable(); AddAttr("pre_nms_topN", "Number of top scoring RPN proposals to keep before " "applying NMS."); @@ -515,3 +531,11 @@ REGISTER_OPERATOR( paddle::framework::EmptyGradOpMaker); REGISTER_OP_CPU_KERNEL(generate_proposals, ops::GenerateProposalsKernel, ops::GenerateProposalsKernel); +REGISTER_OP_VERSION(generate_proposals) + .AddCheckpoint( + R"ROC( + Upgrade generate_proposals add a new output [RpnRoisNum])ROC", + paddle::framework::compatible::OpVersionDesc().NewOutput( + "RpnRoisNum", + "The number of Rpn RoIs in each image. RpnRoisNum is " + "dispensable.")); diff --git a/paddle/fluid/operators/detection/generate_proposals_op.cu b/paddle/fluid/operators/detection/generate_proposals_op.cu index fa7670f6d680a95da1c1abd5befe1651ccb7265f..485136d8e2f7ab66f6b1c58deb09036ea5d4e1ec 100644 --- a/paddle/fluid/operators/detection/generate_proposals_op.cu +++ b/paddle/fluid/operators/detection/generate_proposals_op.cu @@ -330,6 +330,15 @@ static std::pair ProposalForOneImage( keep_index.Resize({keep_num}); Tensor scores_filter, proposals_filter; + // Handle the case when there is no keep index left + if (keep_num == 0) { + math::SetConstant set_zero; + proposals_filter.mutable_data({1, 4}, ctx.GetPlace()); + scores_filter.mutable_data({1, 1}, ctx.GetPlace()); + set_zero(ctx, &proposals_filter, static_cast(0)); + set_zero(ctx, &scores_filter, static_cast(0)); + return std::make_pair(proposals_filter, scores_filter); + } proposals_filter.mutable_data({keep_num, 4}, ctx.GetPlace()); scores_filter.mutable_data({keep_num, 1}, ctx.GetPlace()); GPUGather(ctx, proposals, keep_index, &proposals_filter); @@ -421,7 +430,7 @@ class CUDAGenerateProposalsKernel : public framework::OpKernel { int64_t num_proposals = 0; std::vector offset(1, 0); - std::vector tmp_lod; + std::vector tmp_num; for (int64_t i = 0; i < num; ++i) { Tensor im_info_slice = im_info->Slice(i, i + 1); @@ -448,15 +457,15 @@ class CUDAGenerateProposalsKernel : public framework::OpKernel { dev_ctx.Wait(); num_proposals += proposals.dims()[0]; offset.emplace_back(num_proposals); - tmp_lod.push_back(num_proposals); + tmp_num.push_back(proposals.dims()[0]); } - if (context.HasOutput("RpnRoisLod")) { - auto *rpn_rois_lod = context.Output("RpnRoisLod"); - rpn_rois_lod->mutable_data({num}, context.GetPlace()); - int64_t *lod_data = rpn_rois_lod->data(); - memory::Copy(place, lod_data, cpu_place, &tmp_lod[0], - sizeof(int64_t) * num, dev_ctx.stream()); - rpn_rois_lod->Resize({num}); + if (context.HasOutput("RpnRoisNum")) { + auto *rpn_rois_num = context.Output("RpnRoisNum"); + rpn_rois_num->mutable_data({num}, context.GetPlace()); + int *num_data = rpn_rois_num->data(); + memory::Copy(place, num_data, cpu_place, &tmp_num[0], sizeof(int) * num, + dev_ctx.stream()); + rpn_rois_num->Resize({num}); } framework::LoD lod; lod.emplace_back(offset); diff --git a/paddle/fluid/operators/roi_align_op.cc b/paddle/fluid/operators/roi_align_op.cc index 911dfea50e2e2cf8ec8f230bfc1e0bf4836463b6..0eeb7e0bb24f512aa6859e92de9f490e491543aa 100644 --- a/paddle/fluid/operators/roi_align_op.cc +++ b/paddle/fluid/operators/roi_align_op.cc @@ -11,6 +11,7 @@ limitations under the License. */ #include "paddle/fluid/operators/roi_align_op.h" #include +#include "paddle/fluid/framework/op_version_registry.h" namespace paddle { namespace operators { @@ -35,13 +36,13 @@ class ROIAlignOp : public framework::OperatorWithKernel { auto input_dims = ctx->GetInputDim("X"); auto rois_dims = ctx->GetInputDim("ROIs"); - if (ctx->HasInput("RoisLod")) { - auto rois_lod_dims = ctx->GetInputDim("RoisLod"); + if (ctx->HasInput("RoisNum")) { + auto rois_num_dims = ctx->GetInputDim("RoisNum"); PADDLE_ENFORCE_EQ( - rois_lod_dims.size(), 1, - platform::errors::InvalidArgument("The RoisLod dimension should be 1" - ", but got dimension = %d", - rois_lod_dims.size())); + rois_num_dims.size(), 1, + platform::errors::InvalidArgument("The size of RoisNum should be 1" + ", but received size = %d", + rois_num_dims.size())); } PADDLE_ENFORCE_EQ( input_dims.size(), 4, @@ -145,9 +146,9 @@ class ROIAlignOpMaker : public framework::OpProtoAndCheckerMaker { "given as [[x1, y1, x2, y2], ...]. " "(x1, y1) is the top left coordinates, and " "(x2, y2) is the bottom right coordinates."); - AddInput("RoisLod", + AddInput("RoisNum", "(Tensor), " - "The lod info of rois.") + "The number of RoIs in each image.") .AsDispensable(); AddOutput("Out", "(Tensor), " @@ -203,7 +204,7 @@ class ROIAlignGradMaker : public framework::SingleGradOpMaker { op->SetType("roi_align_grad"); op->SetInput("X", this->Input("X")); op->SetInput("ROIs", this->Input("ROIs")); - op->SetInput("RoisLod", this->Input("RoisLod")); + op->SetInput("RoisNum", this->Input("RoisNum")); op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out")); op->SetOutput(framework::GradVarName("X"), this->InputGrad("X")); op->SetAttrMap(this->Attrs()); @@ -231,3 +232,10 @@ REGISTER_OP_CPU_KERNEL( ops::CPUROIAlignGradOpKernel, ops::CPUROIAlignGradOpKernel, ops::CPUROIAlignGradOpKernel); +REGISTER_OP_VERSION(roi_align) + .AddCheckpoint( + R"ROC( + Upgrade roi_align add a new input [RoisNum])ROC", + paddle::framework::compatible::OpVersionDesc().NewInput( + "RoisNum", + "The number of RoIs in each image. RoisNum is dispensable.")); diff --git a/paddle/fluid/operators/roi_align_op.cu b/paddle/fluid/operators/roi_align_op.cu index f7ec13e5bccd63d2f6552ed52f8d709a57320ddd..3a4ce55f4fb77160e7fc645539c1868fe2864b19 100644 --- a/paddle/fluid/operators/roi_align_op.cu +++ b/paddle/fluid/operators/roi_align_op.cu @@ -257,24 +257,26 @@ class GPUROIAlignOpKernel : public framework::OpKernel { int* roi_batch_id_data = roi_batch_id_list.mutable_data(cplace); auto& dev_ctx = ctx.cuda_device_context(); auto gplace = BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace()); - if (ctx.HasInput("RoisLod")) { - auto* rois_lod = ctx.Input("RoisLod"); - int rois_batch_size = rois_lod->numel(); + if (ctx.HasInput("RoisNum")) { + auto* rois_num_t = ctx.Input("RoisNum"); + int rois_batch_size = rois_num_t->numel(); PADDLE_ENFORCE_EQ( - rois_batch_size - 1, batch_size, + rois_batch_size, batch_size, platform::errors::InvalidArgument( "The rois_batch_size and imgs " "batch_size must be the same. But received rois_batch_size = %d, " "batch_size = %d", rois_batch_size, batch_size)); - std::vector rois_lod_(rois_batch_size); - memory::Copy(cplace, rois_lod_.data(), gplace, rois_lod->data(), - sizeof(int64_t) * rois_batch_size, 0); - for (int n = 0; n < rois_batch_size - 1; ++n) { - for (size_t i = rois_lod_[n]; i < rois_lod_[n + 1]; ++i) { + std::vector rois_num_list(rois_batch_size); + memory::Copy(cplace, rois_num_list.data(), gplace, + rois_num_t->data(), sizeof(int) * rois_batch_size, 0); + int start = 0; + for (int n = 0; n < rois_batch_size; ++n) { + for (int i = start; i < start + rois_num_list[n]; ++i) { roi_batch_id_data[i] = n; } + start += rois_num_list[n]; } } else { auto lod = rois->lod(); @@ -348,16 +350,18 @@ class GPUROIAlignGradOpKernel : public framework::OpKernel { auto& dev_ctx = ctx.cuda_device_context(); auto gplace = BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace()); - if (ctx.HasInput("RoisLod")) { - auto* rois_lod = ctx.Input("RoisLod"); - int rois_batch_size = rois_lod->numel(); - std::vector rois_lod_(rois_batch_size); - memory::Copy(cplace, rois_lod_.data(), gplace, rois_lod->data(), - sizeof(int64_t) * rois_batch_size, 0); - for (int n = 0; n < rois_batch_size - 1; ++n) { - for (size_t i = rois_lod_[n]; i < rois_lod_[n + 1]; ++i) { + if (ctx.HasInput("RoisNum")) { + auto* rois_num_t = ctx.Input("RoisNum"); + int rois_batch_size = rois_num_t->numel(); + std::vector rois_num_list(rois_batch_size); + memory::Copy(cplace, rois_num_list.data(), gplace, + rois_num_t->data(), sizeof(int) * rois_batch_size, 0); + int start = 0; + for (int n = 0; n < rois_batch_size; ++n) { + for (size_t i = start; i < start + rois_num_list[n]; ++i) { roi_batch_id_data[i] = n; } + start += rois_num_list[n]; } } else { auto rois_lod = rois->lod().back(); diff --git a/paddle/fluid/operators/roi_align_op.h b/paddle/fluid/operators/roi_align_op.h index 366f865411461c91b4ec88203390b15fdba4414c..066125a92fbd9d1d49f0ba023366865620674e1f 100644 --- a/paddle/fluid/operators/roi_align_op.h +++ b/paddle/fluid/operators/roi_align_op.h @@ -165,21 +165,23 @@ class CPUROIAlignOpKernel : public framework::OpKernel { int* roi_batch_id_data = roi_batch_id_list.mutable_data(ctx.GetPlace()); int rois_batch_size; - if (ctx.HasInput("RoisLod")) { - auto* rois_lod_t = ctx.Input("RoisLod"); - rois_batch_size = rois_lod_t->numel(); + if (ctx.HasInput("RoisNum")) { + auto* rois_num_t = ctx.Input("RoisNum"); + rois_batch_size = rois_num_t->numel(); PADDLE_ENFORCE_EQ( - rois_batch_size - 1, batch_size, + rois_batch_size, batch_size, platform::errors::InvalidArgument( "The batch size of rois and the batch size of images " " must be the same. But received the batch size of rois is %d, " "and the batch size of images is %d", rois_batch_size, batch_size)); - auto* rois_lod = rois_lod_t->data(); - for (int n = 0; n < rois_batch_size - 1; ++n) { - for (int i = rois_lod[n]; i < rois_lod[n + 1]; ++i) { + auto* rois_num_data = rois_num_t->data(); + int start = 0; + for (int n = 0; n < rois_batch_size; ++n) { + for (int i = start; i < start + rois_num_data[n]; ++i) { roi_batch_id_data[i] = n; } + start += rois_num_data[n]; } } else { auto lod = rois->lod(); @@ -303,14 +305,16 @@ class CPUROIAlignGradOpKernel : public framework::OpKernel { roi_batch_id_list.mutable_data(ctx.GetPlace()); int rois_batch_size; - if (ctx.HasInput("RoisLod")) { - auto* rois_lod_t = ctx.Input("RoisLod"); - rois_batch_size = rois_lod_t->numel(); - auto* rois_lod = rois_lod_t->data(); - for (int n = 0; n < rois_batch_size - 1; ++n) { - for (int i = rois_lod[n]; i < rois_lod[n + 1]; ++i) { + if (ctx.HasInput("RoisNum")) { + auto* rois_num_t = ctx.Input("RoisNum"); + rois_batch_size = rois_num_t->numel(); + auto* rois_num_data = rois_num_t->data(); + int start = 0; + for (int n = 0; n < rois_batch_size; ++n) { + for (int i = start; i < start + rois_num_data[n]; ++i) { roi_batch_id_data[i] = n; } + start += rois_num_data[n]; } } else { auto rois_lod = rois->lod().back(); diff --git a/paddle/fluid/operators/roi_pool_op.cc b/paddle/fluid/operators/roi_pool_op.cc index 8a34cb35f6bf8dde97d29c02749d8a52fdf5f090..be3187b7513144f583458f3d7902a102e531a981 100644 --- a/paddle/fluid/operators/roi_pool_op.cc +++ b/paddle/fluid/operators/roi_pool_op.cc @@ -14,6 +14,7 @@ limitations under the License. */ #include "paddle/fluid/operators/roi_pool_op.h" #include +#include "paddle/fluid/framework/op_version_registry.h" namespace paddle { namespace operators { @@ -34,12 +35,13 @@ class ROIPoolOp : public framework::OperatorWithKernel { auto input_dims = ctx->GetInputDim("X"); auto rois_dims = ctx->GetInputDim("ROIs"); - if (ctx->HasInput("RoisLod")) { - auto rois_lod_dims = ctx->GetInputDim("RoisLod"); - PADDLE_ENFORCE_EQ(rois_lod_dims.size(), 1, + if (ctx->HasInput("RoisNum")) { + auto rois_num_dims = ctx->GetInputDim("RoisNum"); + PADDLE_ENFORCE_EQ(rois_num_dims.size(), 1, platform::errors::InvalidArgument( - "The lod information tensor of ROIs should " - "be one-dimensional")); + "The second dimension of RoisNum should " + "be 1, but received dimension is %d", + rois_num_dims.size())); } PADDLE_ENFORCE_EQ(input_dims.size(), 4, platform::errors::InvalidArgument( @@ -140,7 +142,8 @@ class ROIPoolOpMaker : public framework::OpProtoAndCheckerMaker { "Where batch_id is the id of the data, " "(x1, y1) is the top left coordinates, and " "(x2, y2) is the bottom right coordinates."); - AddInput("RoisLod", "(Tensor), The lod info of rois.").AsDispensable(); + AddInput("RoisNum", "(Tensor), The number of RoIs in each image.") + .AsDispensable(); AddOutput("Out", "(Tensor), " "The output of ROIPoolOp is a 4-D tensor with shape " @@ -197,7 +200,7 @@ class ROIPoolGradMaker : public framework::SingleGradOpMaker { op->SetType("roi_pool_grad"); op->SetInput("X", this->Input("X")); op->SetInput("ROIs", this->Input("ROIs")); - op->SetInput("RoisLod", this->Input("RoisLod")); + op->SetInput("RoisNum", this->Input("RoisNum")); op->SetInput("Argmax", this->Output("Argmax")); op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out")); op->SetOutput(framework::GradVarName("X"), this->InputGrad("X")); @@ -223,3 +226,10 @@ REGISTER_OP_CPU_KERNEL( ops::CPUROIPoolGradOpKernel, ops::CPUROIPoolGradOpKernel, ops::CPUROIPoolGradOpKernel); +REGISTER_OP_VERSION(roi_pool) + .AddCheckpoint( + R"ROC( + Upgrade roi_pool add a new input [RoisNum])ROC", + paddle::framework::compatible::OpVersionDesc().NewInput( + "RoisNum", + "The number of RoIs in each image. RoisNum is dispensable.")); diff --git a/paddle/fluid/operators/roi_pool_op.cu b/paddle/fluid/operators/roi_pool_op.cu index 1e8a8e3037d84f980d963d359ce791b1ddba47d3..98d9ef6b6e11440d38abbedbfd93f6d3544d77bc 100644 --- a/paddle/fluid/operators/roi_pool_op.cu +++ b/paddle/fluid/operators/roi_pool_op.cu @@ -157,19 +157,21 @@ class GPUROIPoolOpKernel : public framework::OpKernel { int* roi_batch_id_data = roi_batch_id_list.mutable_data(cplace); auto& dev_ctx = ctx.cuda_device_context(); auto gplace = BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace()); - if (ctx.HasInput("RoisLod")) { - auto* rois_lod = ctx.Input("RoisLod"); - int rois_batch_size = rois_lod->numel(); + if (ctx.HasInput("RoisNum")) { + auto* rois_num_t = ctx.Input("RoisNum"); + int rois_batch_size = rois_num_t->numel(); PADDLE_ENFORCE_EQ( - rois_batch_size - 1, batch_size, + rois_batch_size, batch_size, "The rois_batch_size and imgs batch_size must be the same."); - std::vector rois_lod_(rois_batch_size); - memory::Copy(cplace, rois_lod_.data(), gplace, rois_lod->data(), - sizeof(int64_t) * rois_batch_size, 0); - for (int n = 0; n < rois_batch_size - 1; ++n) { - for (size_t i = rois_lod_[n]; i < rois_lod_[n + 1]; ++i) { + std::vector rois_num_list(rois_batch_size); + memory::Copy(cplace, rois_num_list.data(), gplace, + rois_num_t->data(), sizeof(int) * rois_batch_size, 0); + int start = 0; + for (int n = 0; n < rois_batch_size; ++n) { + for (int i = start; i < start + rois_num_list[n]; ++i) { roi_batch_id_data[i] = n; } + start += rois_num_list[n]; } } else { auto rois_lod = rois->lod().back(); @@ -206,7 +208,7 @@ class GPUROIPoolGradOpKernel : public framework::OpKernel { void Compute(const framework::ExecutionContext& ctx) const override { auto* in = ctx.Input("X"); auto* rois = ctx.Input("ROIs"); - auto* rois_lod = ctx.Input("RoisLod"); + auto* rois_lod = ctx.Input("RoisNum"); auto* argmax = ctx.Input("Argmax"); auto* out_grad = ctx.Input(framework::GradVarName("Out")); @@ -229,17 +231,18 @@ class GPUROIPoolGradOpKernel : public framework::OpKernel { auto& dev_ctx = ctx.cuda_device_context(); auto gplace = BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace()); - if (ctx.HasInput("RoisLod")) { - auto* rois_lod = ctx.Input("RoisLod"); - int rois_batch_size = rois_lod->numel(); - std::vector rois_lod_(rois_batch_size); - memory::Copy(cplace, rois_lod_.data(), gplace, - rois_lod->data(), - sizeof(int64_t) * rois_batch_size, 0); - for (int n = 0; n < rois_batch_size - 1; ++n) { - for (size_t i = rois_lod_[n]; i < rois_lod_[n + 1]; ++i) { + if (ctx.HasInput("RoisNum")) { + auto* rois_num_t = ctx.Input("RoisNum"); + int rois_batch_size = rois_num_t->numel(); + std::vector rois_num_list(rois_batch_size); + memory::Copy(cplace, rois_num_list.data(), gplace, + rois_num_t->data(), sizeof(int) * rois_batch_size, 0); + int start = 0; + for (int n = 0; n < rois_batch_size; ++n) { + for (int i = start; i < start + rois_num_list[n]; ++i) { roi_batch_id_data[i] = n; } + start += rois_num_list[n]; } } else { auto rois_lod = rois->lod().back(); diff --git a/paddle/fluid/operators/roi_pool_op.h b/paddle/fluid/operators/roi_pool_op.h index 145b170dedf0613328223526b0a40a3c064f3028..40de6d0cf6abbcc4a1505cb6eb121ca70813c780 100644 --- a/paddle/fluid/operators/roi_pool_op.h +++ b/paddle/fluid/operators/roi_pool_op.h @@ -58,18 +58,20 @@ class CPUROIPoolOpKernel : public framework::OpKernel { roi_batch_id_list.mutable_data(ctx.GetPlace()); int rois_batch_size; - if (ctx.HasInput("RoisLod")) { - auto* rois_lod_t = ctx.Input("RoisLod"); - rois_batch_size = rois_lod_t->numel(); + if (ctx.HasInput("RoisNum")) { + auto* rois_num_t = ctx.Input("RoisNum"); + rois_batch_size = rois_num_t->numel(); PADDLE_ENFORCE_EQ( - rois_batch_size - 1, batch_size, + rois_batch_size, batch_size, platform::errors::InvalidArgument("The rois_batch_size and imgs " "batch_size must be the same.")); - auto* rois_lod = rois_lod_t->data(); - for (int n = 0; n < rois_batch_size - 1; ++n) { - for (int i = rois_lod[n]; i < rois_lod[n + 1]; ++i) { + auto* rois_num_data = rois_num_t->data(); + int start = 0; + for (int n = 0; n < rois_batch_size; ++n) { + for (int i = start; i < start + rois_num_data[n]; ++i) { roi_batch_id_data[i] = n; } + start += rois_num_data[n]; } } else { auto rois_lod = rois->lod().back(); @@ -185,14 +187,16 @@ class CPUROIPoolGradOpKernel : public framework::OpKernel { roi_batch_id_list.mutable_data(ctx.GetPlace()); int rois_batch_size; - if (ctx.HasInput("RoisLod")) { - auto* rois_lod_t = ctx.Input("RoisLod"); - rois_batch_size = rois_lod_t->numel(); - auto* rois_lod = rois_lod_t->data(); - for (int n = 0; n < rois_batch_size - 1; ++n) { - for (int i = rois_lod[n]; i < rois_lod[n + 1]; ++i) { + if (ctx.HasInput("RoisNum")) { + auto* rois_num_t = ctx.Input("RoisNum"); + rois_batch_size = rois_num_t->numel(); + auto* rois_num_data = rois_num_t->data(); + int start = 0; + for (int n = 0; n < rois_batch_size; ++n) { + for (int i = start; i < start + rois_num_data[n]; ++i) { roi_batch_id_data[i] = n; } + start += rois_num_data[n]; } } else { auto rois_lod = rois->lod().back(); diff --git a/paddle/fluid/pybind/op_function_generator.cc b/paddle/fluid/pybind/op_function_generator.cc index 256faf04ea6de5835f22113537caac49ca1dbab4..178ecaff7e8d2e575cd64927fe4e39c773b2cb99 100644 --- a/paddle/fluid/pybind/op_function_generator.cc +++ b/paddle/fluid/pybind/op_function_generator.cc @@ -43,6 +43,11 @@ std::map> op_ins_map = { {"nll_loss", {"X", "Label", "Weight"}}, {"bilinear_tensor_product", {"X", "Y", "Weight", "Bias"}}, {"gather", {"X", "Index", "Axis"}}, + {"roi_pool", {"X", "ROIs", "RoisNum"}}, + {"roi_align", {"X", "ROIs", "RoisNum"}}, + {"collect_fpn_proposals", + {"MultiLevelRois", "MultiLevelScores", "MultiLevelRoIsNum"}}, + {"distribute_fpn_proposals", {"FpnRois", "RoisNum"}}, }; // NOTE(zhiqiu): Like op_ins_map. @@ -63,6 +68,10 @@ std::map> op_outs_map = { {"Y", "MeanOut", "VarianceOut", "SavedMean", "SavedVariance", "ReserveSpace"}}, {"unique", {"Out", "Index", "Indices", "Counts"}}, + {"generate_proposals", {"RpnRois", "RpnRoiProbs", "RpnRoisNum"}}, + {"collect_fpn_proposals", {"FpnRois", "RoisNum"}}, + {"distribute_fpn_proposals", + {"MultiFpnRois", "RestoreIndex", "MultiLevelRoIsNum"}}, }; // NOTE(zhiqiu): Commonly, the outputs in auto-generated OP function are diff --git a/python/paddle/fluid/layers/detection.py b/python/paddle/fluid/layers/detection.py index ea6abe2d335e6669b27ba278c0faaca62ca0fdbb..bf87d1fc5a947e48845a3783fd71922641e28819 100644 --- a/python/paddle/fluid/layers/detection.py +++ b/python/paddle/fluid/layers/detection.py @@ -20,7 +20,8 @@ from __future__ import print_function from .layer_function_generator import generate_layer_fn from .layer_function_generator import autodoc, templatedoc from ..layer_helper import LayerHelper -from ..framework import Variable +from ..framework import Variable, in_dygraph_mode +from .. import core from .loss import softmax_with_cross_entropy from . import tensor from . import nn @@ -2893,8 +2894,8 @@ def generate_proposals(scores, nms_thresh=0.5, min_size=0.1, eta=1.0, - name=None, - return_rois_num=False): + return_rois_num=False, + name=None): """ :alias_main: paddle.nn.functional.generate_proposals :alias: paddle.nn.functional.generate_proposals,paddle.nn.functional.vision.generate_proposals @@ -2949,6 +2950,10 @@ def generate_proposals(scores, num of each image in one batch. The N is the image's num. For example, the tensor has values [4,5] that represents the first image has 4 Rois, the second image has 5 Rois. It only used in rcnn model. 'False' by default. + name(str, optional): For detailed information, please refer + to :ref:`api_guide_Name`. Usually name is no need to set and + None by default. + Returns: tuple: A tuple with format ``(rpn_rois, rpn_roi_probs)``. @@ -2969,6 +2974,14 @@ def generate_proposals(scores, im_info, anchors, variances) """ + if in_dygraph_mode(): + assert return_rois_num, "return_rois_num should be True in dygraph mode." + attrs = ('pre_nms_topN', pre_nms_top_n, 'post_nms_topN', post_nms_top_n, + 'nms_thresh', nms_thresh, 'min_size', min_size, 'eta', eta) + rpn_rois, rpn_roi_probs, rpn_rois_num = core.ops.generate_proposals( + scores, bbox_deltas, im_info, anchors, variances, *attrs) + return rpn_rois, rpn_roi_probs, rpn_rois_num + helper = LayerHelper('generate_proposals', **locals()) check_variable_and_dtype(scores, 'scores', ['float32'], @@ -2986,7 +2999,14 @@ def generate_proposals(scores, dtype=bbox_deltas.dtype) rpn_roi_probs = helper.create_variable_for_type_inference( dtype=scores.dtype) - rpn_rois_lod = helper.create_variable_for_type_inference(dtype='int32') + outputs = { + 'RpnRois': rpn_rois, + 'RpnRoiProbs': rpn_roi_probs, + } + if return_rois_num: + rpn_rois_num = helper.create_variable_for_type_inference(dtype='int32') + rpn_rois_num.stop_gradient = True + outputs['RpnRoisNum'] = rpn_rois_num helper.append_op( type="generate_proposals", @@ -3004,17 +3024,12 @@ def generate_proposals(scores, 'min_size': min_size, 'eta': eta }, - outputs={ - 'RpnRois': rpn_rois, - 'RpnRoiProbs': rpn_roi_probs, - 'RpnRoisLod': rpn_rois_lod - }) + outputs=outputs) rpn_rois.stop_gradient = True rpn_roi_probs.stop_gradient = True - rpn_rois_lod.stop_gradient = True if return_rois_num: - return rpn_rois, rpn_roi_probs, rpn_rois_lod + return rpn_rois, rpn_roi_probs, rpn_rois_num else: return rpn_rois, rpn_roi_probs @@ -3656,6 +3671,7 @@ def distribute_fpn_proposals(fpn_rois, max_level, refer_level, refer_scale, + rois_num=None, name=None): """ :alias_main: paddle.nn.functional.distribute_fpn_proposals @@ -3687,6 +3703,11 @@ def distribute_fpn_proposals(fpn_rois, come from. refer_level(int32): The referring level of FPN layer with specified scale. refer_scale(int32): The referring scale of FPN layer with specified level. + rois_num(Tensor): 1-D Tensor contains the number of RoIs in each image. + The shape is [B] and data type is int32. B is the number of images. + If it is not None then return a list of 1-D Tensor. Each element + is the output RoIs' number of each image on the corresponding level + and the shape is [B]. None by default. name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default. @@ -3702,6 +3723,10 @@ def distribute_fpn_proposals(fpn_rois, the number of total rois. The data type is int32. It is used to restore the order of fpn_rois. + rois_num_per_level(List): A list of 1-D Tensor and each Tensor is + the RoIs' number in each image on the corresponding level. The shape + is [B] and data type of int32. B is the number of images + Examples: .. code-block:: python @@ -3716,26 +3741,52 @@ def distribute_fpn_proposals(fpn_rois, refer_level=4, refer_scale=224) """ + num_lvl = max_level - min_level + 1 + + if in_dygraph_mode(): + assert rois_num is not None, "rois_num should not be None in dygraph mode." + attrs = ('min_level', min_level, 'max_level', max_level, 'refer_level', + refer_level, 'refer_scale', refer_scale) + multi_rois, restore_ind, rois_num_per_level = core.ops.distribute_fpn_proposals( + fpn_rois, rois_num, num_lvl, num_lvl, *attrs) + return multi_rois, restore_ind, rois_num_per_level + check_variable_and_dtype(fpn_rois, 'fpn_rois', ['float32', 'float64'], 'distribute_fpn_proposals') helper = LayerHelper('distribute_fpn_proposals', **locals()) dtype = helper.input_dtype('fpn_rois') - num_lvl = max_level - min_level + 1 multi_rois = [ helper.create_variable_for_type_inference(dtype) for i in range(num_lvl) ] + restore_ind = helper.create_variable_for_type_inference(dtype='int32') + + inputs = {'FpnRois': fpn_rois} + outputs = { + 'MultiFpnRois': multi_rois, + 'RestoreIndex': restore_ind, + } + + if rois_num is not None: + inputs['RoisNum'] = rois_num + rois_num_per_level = [ + helper.create_variable_for_type_inference(dtype='int32') + for i in range(num_lvl) + ] + outputs['MultiLevelRoIsNum'] = rois_num_per_level + helper.append_op( type='distribute_fpn_proposals', - inputs={'FpnRois': fpn_rois}, - outputs={'MultiFpnRois': multi_rois, - 'RestoreIndex': restore_ind}, + inputs=inputs, + outputs=outputs, attrs={ 'min_level': min_level, 'max_level': max_level, 'refer_level': refer_level, 'refer_scale': refer_scale }) + if rois_num is not None: + return multi_rois, restore_ind, rois_num_per_level return multi_rois, restore_ind @@ -3820,6 +3871,7 @@ def collect_fpn_proposals(multi_rois, min_level, max_level, post_nms_top_n, + rois_num_per_level=None, name=None): """ :alias_main: paddle.nn.functional.collect_fpn_proposals @@ -3846,6 +3898,12 @@ def collect_fpn_proposals(multi_rois, min_level(int): The lowest level of FPN layer to collect max_level(int): The highest level of FPN layer to collect post_nms_top_n(int): The number of selected RoIs + rois_num_per_level(list, optional): The List of RoIs' numbers. + Each element is 1-D Tensor which contains the RoIs' number of each + image on each level and the shape is [B] and data type is + int32, B is the number of images. If it is not None then return + a 1-D Tensor contains the output RoIs' number of each image and + the shape is [B]. Default: None name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default. @@ -3856,6 +3914,9 @@ def collect_fpn_proposals(multi_rois, fpn_rois(Variable): 2-D LoDTensor with shape [N, 4] and data type is float32 or float64. Selected RoIs. + rois_num(Tensor): 1-D Tensor contains the RoIs's number of each + image. The shape is [B] and data type is int32. B is the number of + images. Examples: .. code-block:: python @@ -3879,21 +3940,38 @@ def collect_fpn_proposals(multi_rois, """ check_type(multi_rois, 'multi_rois', list, 'collect_fpn_proposals') check_type(multi_scores, 'multi_scores', list, 'collect_fpn_proposals') + num_lvl = max_level - min_level + 1 + input_rois = multi_rois[:num_lvl] + input_scores = multi_scores[:num_lvl] + + if in_dygraph_mode(): + assert rois_num_per_level is not None, "rois_num_per_level should not be None in dygraph mode." + attrs = ('post_nms_topN', post_nms_top_n) + output_rois, rois_num = core.ops.collect_fpn_proposals( + input_rois, input_scores, rois_num_per_level, *attrs) + helper = LayerHelper('collect_fpn_proposals', **locals()) dtype = helper.input_dtype('multi_rois') check_dtype(dtype, 'multi_rois', ['float32', 'float64'], 'collect_fpn_proposals') - num_lvl = max_level - min_level + 1 - input_rois = multi_rois[:num_lvl] - input_scores = multi_scores[:num_lvl] output_rois = helper.create_variable_for_type_inference(dtype) output_rois.stop_gradient = True + + inputs = { + 'MultiLevelRois': input_rois, + 'MultiLevelScores': input_scores, + } + outputs = {'FpnRois': output_rois} + if rois_num_per_level is not None: + inputs['MultiLevelRoIsNum'] = rois_num_per_level + rois_num = helper.create_variable_for_type_inference(dtype='int32') + rois_num.stop_gradient = True + outputs['RoisNum'] = rois_num helper.append_op( type='collect_fpn_proposals', - inputs={ - 'MultiLevelRois': input_rois, - 'MultiLevelScores': input_scores - }, - outputs={'FpnRois': output_rois}, + inputs=inputs, + outputs=outputs, attrs={'post_nms_topN': post_nms_top_n}) + if rois_num_per_level is not None: + return output_rois, rois_num return output_rois diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index 868deb66280dded4bd67e8bb0343fd404552f70a..5a14b9fdc7b6d963f77eefc29476bc332f3938df 100755 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -6862,7 +6862,8 @@ def roi_pool(input, pooled_height=1, pooled_width=1, spatial_scale=1.0, - rois_lod=None): + rois_num=None, + name=None): """ :alias_main: paddle.nn.functional.roi_pool :alias: paddle.nn.functional.roi_pool,paddle.nn.functional.vision.roi_pool @@ -6882,10 +6883,14 @@ def roi_pool(input, Args: input (Variable): Input feature, 4D-Tensor with the shape of [N,C,H,W], where N is the batch size, C is the input channel, H is Height, W is weight. The data type is float32 or float64. rois (Variable): ROIs (Regions of Interest) to pool over. 2D-LoDTensor with the shape of [num_rois,4], the lod level is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is the top left coordinates, and (x2, y2) is the bottom right coordinates. - rois_lod (Variable): The lod info of rois. Default: None pooled_height (int, optional): The pooled output height, data type is int32. Default: 1 pooled_width (int, optional): The pooled output height, data type is int32. Default: 1 spatial_scale (float, optional): Multiplicative spatial scale factor to translate ROI coords from their input scale to the scale used when pooling. Default: 1.0 + rois_num (Tensor): The number of RoIs in each image. Default: None + name(str, optional): For detailed information, please refer + to :ref:`api_guide_Name`. Usually name is no need to set and + None by default. + Returns: Variable: The pooled feature, 4D-Tensor with the shape of [num_rois, C, pooled_height, pooled_width]. @@ -6905,11 +6910,11 @@ def roi_pool(input, input_data = np.array([i for i in range(1,17)]).reshape(1,1,4,4).astype(DATATYPE) roi_data =fluid.create_lod_tensor(np.array([[1., 1., 2., 2.], [1.5, 1.5, 3., 3.]]).astype(DATATYPE),[[2]], place) - rois_lod_data = np.array([0, 2]) + rois_num_data = np.array([2]).astype('int32') x = fluid.data(name='input', shape=[None,1,4,4], dtype=DATATYPE) rois = fluid.data(name='roi', shape=[None,4], dtype=DATATYPE) - rois_lod = fluid.data(name='rois_lod', shape=[None], dtype='int64') + rois_num = fluid.data(name='rois_num', shape=[None], dtype='int32') pool_out = fluid.layers.roi_pool( input=x, @@ -6917,24 +6922,36 @@ def roi_pool(input, pooled_height=1, pooled_width=1, spatial_scale=1.0, - rois_lod=rois_lod) + rois_num=rois_num) exe = fluid.Executor(place) - out, = exe.run(feed={'input':input_data ,'roi':roi_data, 'rois_lod': rois_lod_data}, fetch_list=[pool_out.name]) + out, = exe.run(feed={'input':input_data ,'roi':roi_data, 'rois_num': rois_num_data}, fetch_list=[pool_out.name]) print(out) #array([[[[11.]]], [[[16.]]]], dtype=float32) print(np.array(out).shape) # (2, 1, 1, 1) """ + if in_dygraph_mode(): + assert rois_num is not None, "rois_num should not be None in dygraph mode." + pool_out, argmaxes = core.ops.roi_pool( + input, rois, rois_num, "pooled_height", pooled_height, + "pooled_width", pooled_width, "spatial_scale", spatial_scale) + return pool_out, argmaxes + check_variable_and_dtype(input, 'input', ['float32'], 'roi_pool') check_variable_and_dtype(rois, 'rois', ['float32'], 'roi_pool') helper = LayerHelper('roi_pool', **locals()) dtype = helper.input_dtype() pool_out = helper.create_variable_for_type_inference(dtype) argmaxes = helper.create_variable_for_type_inference(dtype='int32') + + inputs = { + "X": input, + "ROIs": rois, + } + if rois_num is not None: + inputs['RoisNum'] = rois_num helper.append_op( type="roi_pool", - inputs={"X": input, - "ROIs": rois, - "RoisLod": rois_lod}, + inputs=inputs, outputs={"Out": pool_out, "Argmax": argmaxes}, attrs={ @@ -6952,8 +6969,8 @@ def roi_align(input, pooled_width=1, spatial_scale=1.0, sampling_ratio=-1, - name=None, - rois_lod=None): + rois_num=None, + name=None): """ :alias_main: paddle.nn.functional.roi_align :alias: paddle.nn.functional.roi_align,paddle.nn.functional.vision.roi_align @@ -6968,11 +6985,11 @@ def roi_align(input, data type is float32 or float64. Given as [[x1, y1, x2, y2], ...], (x1, y1) is the top left coordinates, and (x2, y2) is the bottom right coordinates. - rois_lod (Variable): The lod info of rois. Default: None pooled_height (int32, optional): ${pooled_height_comment} Default: 1 pooled_width (int32, optional): ${pooled_width_comment} Default: 1 spatial_scale (float32, optional): ${spatial_scale_comment} Default: 1.0 sampling_ratio(int32, optional): ${sampling_ratio_comment} Default: -1 + rois_num (Tensor): The number of RoIs in each image. Default: None name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default. @@ -6991,26 +7008,38 @@ def roi_align(input, name='data', shape=[None, 256, 32, 32], dtype='float32') rois = fluid.data( name='rois', shape=[None, 4], dtype='float32') - rois_lod = fluid.data(name='rois_lod', shape=[None], dtype='int64') + rois_num = fluid.data(name='rois_num', shape=[None], dtype='int32') align_out = fluid.layers.roi_align(input=x, rois=rois, pooled_height=7, pooled_width=7, spatial_scale=0.5, sampling_ratio=-1, - rois_lod=rois_lod) + rois_num=rois_num) """ + if in_dygraph_mode(): + assert rois_num is not None, "rois_num should not be None in dygraph mode." + align_out = core.ops.roi_align( + input, rois, rois_num, "pooled_height", pooled_height, + "pooled_width", pooled_width, "spatial_scale", spatial_scale, + "sampling_ratio", sampling_ratio) + return align_out + check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'roi_align') check_variable_and_dtype(rois, 'rois', ['float32', 'float64'], 'roi_align') helper = LayerHelper('roi_align', **locals()) dtype = helper.input_dtype() align_out = helper.create_variable_for_type_inference(dtype) + inputs = { + "X": input, + "ROIs": rois, + } + if rois_num is not None: + inputs['RoisNum'] = rois_num helper.append_op( type="roi_align", - inputs={"X": input, - "ROIs": rois, - "RoisLod": rois_lod}, + inputs=inputs, outputs={"Out": align_out}, attrs={ "pooled_height": pooled_height, diff --git a/python/paddle/fluid/tests/test_detection.py b/python/paddle/fluid/tests/test_detection.py index a1526934f4aa1415c529e79bfa8dea6c0754bea9..425c4e3c7e38cff2f892eff28428082b57b3727d 100644 --- a/python/paddle/fluid/tests/test_detection.py +++ b/python/paddle/fluid/tests/test_detection.py @@ -19,6 +19,57 @@ import paddle.fluid.layers as layers from paddle.fluid.layers import detection from paddle.fluid.framework import Program, program_guard import unittest +import contextlib +import numpy as np +from unittests.test_imperative_base import new_program_scope +from paddle.fluid.dygraph import base +from paddle.fluid import core + + +class LayerTest(unittest.TestCase): + @classmethod + def setUpClass(cls): + cls.seed = 111 + + @classmethod + def tearDownClass(cls): + pass + + def _get_place(self, force_to_use_cpu=False): + # this option for ops that only have cpu kernel + if force_to_use_cpu: + return core.CPUPlace() + else: + if core.is_compiled_with_cuda(): + return core.CUDAPlace(0) + return core.CPUPlace() + + @contextlib.contextmanager + def static_graph(self): + with new_program_scope(): + fluid.default_startup_program().random_seed = self.seed + fluid.default_main_program().random_seed = self.seed + yield + + def get_static_graph_result(self, + feed, + fetch_list, + with_lod=False, + force_to_use_cpu=False): + exe = fluid.Executor(self._get_place(force_to_use_cpu)) + exe.run(fluid.default_startup_program()) + return exe.run(fluid.default_main_program(), + feed=feed, + fetch_list=fetch_list, + return_numpy=(not with_lod)) + + @contextlib.contextmanager + def dynamic_graph(self, force_to_use_cpu=False): + with fluid.dygraph.guard( + self._get_place(force_to_use_cpu=force_to_use_cpu)): + fluid.default_startup_program().random_seed = self.seed + fluid.default_main_program().random_seed = self.seed + yield class TestDetection(unittest.TestCase): @@ -481,45 +532,67 @@ class TestRpnTargetAssign(unittest.TestCase): print(str(program)) -class TestGenerateProposals(unittest.TestCase): +class TestGenerateProposals(LayerTest): def test_generate_proposals(self): - program = Program() - with program_guard(program): - data_shape = [20, 64, 64] - images = fluid.layers.data( - name='images', shape=data_shape, dtype='float32') - im_info = fluid.layers.data( - name='im_info', shape=[3], dtype='float32') - anchors, variances = fluid.layers.anchor_generator( - name='anchor_generator', - input=images, - anchor_sizes=[32, 64], - aspect_ratios=[1.0], - variance=[0.1, 0.1, 0.2, 0.2], - stride=[16.0, 16.0], - offset=0.5) - num_anchors = anchors.shape[2] - scores = fluid.layers.data( - name='scores', shape=[num_anchors, 8, 8], dtype='float32') - bbox_deltas = fluid.layers.data( - name='bbox_deltas', - shape=[num_anchors * 4, 8, 8], - dtype='float32') - rpn_rois, rpn_roi_probs = fluid.layers.generate_proposals( - name='generate_proposals', - scores=scores, - bbox_deltas=bbox_deltas, - im_info=im_info, - anchors=anchors, - variances=variances, - pre_nms_top_n=6000, - post_nms_top_n=1000, - nms_thresh=0.5, - min_size=0.1, - eta=1.0) - self.assertIsNotNone(rpn_rois) - self.assertIsNotNone(rpn_roi_probs) - print(rpn_rois.shape) + scores_np = np.random.rand(2, 3, 4, 4).astype('float32') + bbox_deltas_np = np.random.rand(2, 12, 4, 4).astype('float32') + im_info_np = np.array([[8, 8, 0.5], [6, 6, 0.5]]).astype('float32') + anchors_np = np.reshape(np.arange(4 * 4 * 3 * 4), + [4, 4, 3, 4]).astype('float32') + variances_np = np.ones((4, 4, 3, 4)).astype('float32') + + with self.static_graph(): + scores = fluid.data( + name='scores', shape=[2, 3, 4, 4], dtype='float32') + bbox_deltas = fluid.data( + name='bbox_deltas', shape=[2, 12, 4, 4], dtype='float32') + im_info = fluid.data(name='im_info', shape=[2, 3], dtype='float32') + anchors = fluid.data( + name='anchors', shape=[4, 4, 3, 4], dtype='float32') + variances = fluid.data( + name='var', shape=[4, 4, 3, 4], dtype='float32') + rois, roi_probs, rois_num = fluid.layers.generate_proposals( + scores, + bbox_deltas, + im_info, + anchors, + variances, + pre_nms_top_n=10, + post_nms_top_n=5, + return_rois_num=True) + rois_stat, roi_probs_stat, rois_num_stat = self.get_static_graph_result( + feed={ + 'scores': scores_np, + 'bbox_deltas': bbox_deltas_np, + 'im_info': im_info_np, + 'anchors': anchors_np, + 'var': variances_np + }, + fetch_list=[rois, roi_probs, rois_num], + with_lod=True) + + with self.dynamic_graph(): + scores_dy = base.to_variable(scores_np) + bbox_deltas_dy = base.to_variable(bbox_deltas_np) + im_info_dy = base.to_variable(im_info_np) + anchors_dy = base.to_variable(anchors_np) + variances_dy = base.to_variable(variances_np) + rois, roi_probs, rois_num = fluid.layers.generate_proposals( + scores_dy, + bbox_deltas_dy, + im_info_dy, + anchors_dy, + variances_dy, + pre_nms_top_n=10, + post_nms_top_n=5, + return_rois_num=True) + rois_dy = rois.numpy() + roi_probs_dy = roi_probs.numpy() + rois_num_dy = rois_num.numpy() + + self.assertTrue(np.array_equal(np.array(rois_stat), rois_dy)) + self.assertTrue(np.array_equal(np.array(roi_probs_stat), roi_probs_dy)) + self.assertTrue(np.array_equal(np.array(rois_num_stat), rois_num_dy)) class TestYoloDetection(unittest.TestCase): @@ -648,30 +721,81 @@ class TestMulticlassNMS2(unittest.TestCase): self.assertIsNotNone(index) -class TestCollectFpnPropsals(unittest.TestCase): +class TestCollectFpnPropsals(LayerTest): def test_collect_fpn_proposals(self): - program = Program() - with program_guard(program): + multi_bboxes_np = [] + multi_scores_np = [] + rois_num_per_level_np = [] + for i in range(4): + bboxes_np = np.random.rand(5, 4).astype('float32') + scores_np = np.random.rand(5, 1).astype('float32') + rois_num = np.array([2, 3]).astype('int32') + multi_bboxes_np.append(bboxes_np) + multi_scores_np.append(scores_np) + rois_num_per_level_np.append(rois_num) + + with self.static_graph(): multi_bboxes = [] multi_scores = [] + rois_num_per_level = [] for i in range(4): - bboxes = layers.data( + bboxes = fluid.data( name='rois' + str(i), - shape=[10, 4], + shape=[5, 4], dtype='float32', - lod_level=1, - append_batch_size=False) - scores = layers.data( + lod_level=1) + scores = fluid.data( name='scores' + str(i), - shape=[10, 1], + shape=[5, 1], dtype='float32', - lod_level=1, - append_batch_size=False) + lod_level=1) + rois_num = fluid.data( + name='rois_num' + str(i), shape=[None], dtype='int32') + multi_bboxes.append(bboxes) multi_scores.append(scores) - fpn_rois = layers.collect_fpn_proposals(multi_bboxes, multi_scores, - 2, 5, 10) - self.assertIsNotNone(fpn_rois) + rois_num_per_level.append(rois_num) + + fpn_rois, rois_num = layers.collect_fpn_proposals( + multi_bboxes, + multi_scores, + 2, + 5, + 10, + rois_num_per_level=rois_num_per_level) + feed = {} + for i in range(4): + feed['rois' + str(i)] = multi_bboxes_np[i] + feed['scores' + str(i)] = multi_scores_np[i] + feed['rois_num' + str(i)] = rois_num_per_level_np[i] + fpn_rois_stat, rois_num_stat = self.get_static_graph_result( + feed=feed, fetch_list=[fpn_rois, rois_num], with_lod=True) + fpn_rois_stat = np.array(fpn_rois_stat) + rois_num_stat = np.array(rois_num_stat) + + with self.dynamic_graph(): + multi_bboxes_dy = [] + multi_scores_dy = [] + rois_num_per_level_dy = [] + for i in range(4): + bboxes_dy = base.to_variable(multi_bboxes_np[i]) + scores_dy = base.to_variable(multi_scores_np[i]) + rois_num_dy = base.to_variable(rois_num_per_level_np[i]) + multi_bboxes_dy.append(bboxes_dy) + multi_scores_dy.append(scores_dy) + rois_num_per_level_dy.append(rois_num_dy) + fpn_rois_dy, rois_num_dy = fluid.layers.collect_fpn_proposals( + multi_bboxes_dy, + multi_scores_dy, + 2, + 5, + 10, + rois_num_per_level=rois_num_per_level_dy) + fpn_rois_dy = fpn_rois_dy.numpy() + rois_num_dy = rois_num_dy.numpy() + + self.assertTrue(np.array_equal(fpn_rois_stat, fpn_rois_dy)) + self.assertTrue(np.array_equal(rois_num_stat, rois_num_dy)) def test_collect_fpn_proposals_error(self): def generate_input(bbox_type, score_type, name): @@ -717,20 +841,51 @@ class TestCollectFpnPropsals(unittest.TestCase): post_nms_top_n=2000) -class TestDistributeFpnProposals(unittest.TestCase): +class TestDistributeFpnProposals(LayerTest): def test_distribute_fpn_proposals(self): - program = Program() - with program_guard(program): - fpn_rois = fluid.layers.data( - name='data', shape=[4], dtype='float32', lod_level=1) - multi_rois, restore_ind = layers.distribute_fpn_proposals( - fpn_rois=fpn_rois, + rois_np = np.random.rand(10, 4).astype('float32') + rois_num_np = np.array([4, 6]).astype('int32') + with self.static_graph(): + rois = fluid.data(name='rois', shape=[10, 4], dtype='float32') + rois_num = fluid.data(name='rois_num', shape=[None], dtype='int32') + multi_rois, restore_ind, rois_num_per_level = layers.distribute_fpn_proposals( + fpn_rois=rois, min_level=2, max_level=5, refer_level=4, - refer_scale=224) - self.assertIsNotNone(multi_rois) - self.assertIsNotNone(restore_ind) + refer_scale=224, + rois_num=rois_num) + fetch_list = multi_rois + [restore_ind] + rois_num_per_level + output_stat = self.get_static_graph_result( + feed={'rois': rois_np, + 'rois_num': rois_num_np}, + fetch_list=fetch_list, + with_lod=True) + output_stat_np = [] + for output in output_stat: + output_np = np.array(output) + if len(output_np) > 0: + output_stat_np.append(output_np) + + with self.dynamic_graph(): + rois_dy = base.to_variable(rois_np) + rois_num_dy = base.to_variable(rois_num_np) + multi_rois_dy, restore_ind_dy, rois_num_per_level_dy = layers.distribute_fpn_proposals( + fpn_rois=rois_dy, + min_level=2, + max_level=5, + refer_level=4, + refer_scale=224, + rois_num=rois_num_dy) + output_dy = multi_rois_dy + [restore_ind_dy] + rois_num_per_level_dy + output_dy_np = [] + for output in output_dy: + output_np = output.numpy() + if len(output_np) > 0: + output_dy_np.append(output_np) + + for res_stat, res_dy in zip(output_stat_np, output_dy_np): + self.assertTrue(np.array_equal(res_stat, res_dy)) def test_distribute_fpn_proposals_error(self): program = Program() diff --git a/python/paddle/fluid/tests/unittests/test_collect_fpn_proposals_op.py b/python/paddle/fluid/tests/unittests/test_collect_fpn_proposals_op.py index 034bb7f8dc7e00a321b6c6a5a4776fa4f7398ab5..a2f56c428012c615dcf55b6832a54ca473771d08 100644 --- a/python/paddle/fluid/tests/unittests/test_collect_fpn_proposals_op.py +++ b/python/paddle/fluid/tests/unittests/test_collect_fpn_proposals_op.py @@ -33,10 +33,14 @@ class TestCollectFPNProposalstOp(OpTest): for i in range(self.num_level)] self.inputs = { 'MultiLevelRois': inputs_x, - "MultiLevelScores": self.scores_input + "MultiLevelScores": self.scores_input, + 'MultiLevelRoIsNum': [] } self.attrs = {'post_nms_topN': self.post_nms_top_n, } - self.outputs = {'FpnRois': (self.rois, [self.lod])} + self.outputs = { + 'FpnRois': (self.rois, [self.lod]), + 'RoisNum': np.array(self.lod).astype('int32') + } def init_test_case(self): self.post_nms_top_n = 20 @@ -96,5 +100,32 @@ class TestCollectFPNProposalstOp(OpTest): self.check_output(check_dygraph=False) +class TestCollectFPNProposalstOpWithRoisNum(TestCollectFPNProposalstOp): + def set_data(self): + self.init_test_case() + self.make_rois() + self.scores_input = [('y%d' % i, + (self.scores[i].reshape(-1, 1), self.rois_lod[i])) + for i in range(self.num_level)] + self.rois, self.lod = self.calc_rois_collect() + inputs_x = [('x%d' % i, (self.roi_inputs[i][:, 1:], self.rois_lod[i])) + for i in range(self.num_level)] + rois_num_per_level = [ + ('rois%d' % i, np.array(self.rois_lod[i][0]).astype('int32')) + for i in range(self.num_level) + ] + + self.inputs = { + 'MultiLevelRois': inputs_x, + "MultiLevelScores": self.scores_input, + 'MultiLevelRoIsNum': rois_num_per_level + } + self.attrs = {'post_nms_topN': self.post_nms_top_n, } + self.outputs = { + 'FpnRois': (self.rois, [self.lod]), + 'RoisNum': np.array(self.lod).astype('int32') + } + + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_distribute_fpn_proposals_op.py b/python/paddle/fluid/tests/unittests/test_distribute_fpn_proposals_op.py index 55b21f1a722f822f1bfcb7bbbda645109092b8a3..ec0125b28ed1b870025adbfd2bd4ba78244bcc11 100644 --- a/python/paddle/fluid/tests/unittests/test_distribute_fpn_proposals_op.py +++ b/python/paddle/fluid/tests/unittests/test_distribute_fpn_proposals_op.py @@ -35,9 +35,10 @@ class TestDistributeFPNProposalsOp(OpTest): } output = [('out%d' % i, self.rois_fpn[i]) for i in range(len(self.rois_fpn))] + self.outputs = { 'MultiFpnRois': output, - 'RestoreIndex': self.rois_idx_restore.reshape(-1, 1) + 'RestoreIndex': self.rois_idx_restore.reshape(-1, 1), } def init_test_case(self): @@ -117,5 +118,34 @@ class TestDistributeFPNProposalsOp(OpTest): self.check_output() +class TestDistributeFPNProposalsOpWithRoisNum(TestDistributeFPNProposalsOp): + def set_data(self): + self.init_test_case() + self.make_rois() + self.rois_fpn, self.rois_idx_restore = self.calc_rois_distribute() + self.inputs = { + 'FpnRois': (self.rois[:, 1:5], self.rois_lod), + 'RoisNum': np.array(self.rois_lod[0]).astype('int32') + } + self.attrs = { + 'max_level': self.roi_max_level, + 'min_level': self.roi_min_level, + 'refer_scale': self.canonical_scale, + 'refer_level': self.canonical_level + } + output = [('out%d' % i, self.rois_fpn[i]) + for i in range(len(self.rois_fpn))] + rois_num_per_level = [ + ('rois_num%d' % i, np.array(self.rois_fpn[i][1][0]).astype('int32')) + for i in range(len(self.rois_fpn)) + ] + + self.outputs = { + 'MultiFpnRois': output, + 'RestoreIndex': self.rois_idx_restore.reshape(-1, 1), + 'MultiLevelRoIsNum': rois_num_per_level + } + + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_generate_proposals_op.py b/python/paddle/fluid/tests/unittests/test_generate_proposals_op.py index ce561cd317c48228c4877a2b65b67fe049a0d84a..26fc01ca04506758599ac5d6fe6842984a8d7a9c 100644 --- a/python/paddle/fluid/tests/unittests/test_generate_proposals_op.py +++ b/python/paddle/fluid/tests/unittests/test_generate_proposals_op.py @@ -34,18 +34,18 @@ def generate_proposals_in_python(scores, bbox_deltas, im_info, anchors, rpn_rois = [] rpn_roi_probs = [] - lod = [] + rois_num = [] num_images = scores.shape[0] for img_idx in range(num_images): img_i_boxes, img_i_probs = proposal_for_one_image( im_info[img_idx, :], all_anchors, variances, bbox_deltas[img_idx, :, :, :], scores[img_idx, :, :, :], pre_nms_topN, post_nms_topN, nms_thresh, min_size, eta) - lod.append(img_i_probs.shape[0]) + rois_num.append(img_i_probs.shape[0]) rpn_rois.append(img_i_boxes) rpn_roi_probs.append(img_i_probs) - return rpn_rois, rpn_roi_probs, lod + return rpn_rois, rpn_roi_probs, rois_num def proposal_for_one_image(im_info, all_anchors, variances, bbox_deltas, scores, @@ -87,6 +87,10 @@ def proposal_for_one_image(im_info, all_anchors, variances, bbox_deltas, scores, proposals = clip_tiled_boxes(proposals, im_info[:2]) # remove predicted boxes with height or width < min_size keep = filter_boxes(proposals, min_size, im_info) + if len(keep) == 0: + proposals = np.zeros((1, 4)).astype('float32') + scores = np.zeros((1, 1)).astype('float32') + return proposals, scores proposals = proposals[keep, :] scores = scores[keep, :] @@ -280,8 +284,8 @@ class TestGenerateProposalsOp(OpTest): } self.outputs = { - 'RpnRois': (self.rpn_rois[0], [self.lod]), - 'RpnRoiProbs': (self.rpn_roi_probs[0], [self.lod]), + 'RpnRois': (self.rpn_rois[0], [self.rois_num]), + 'RpnRoiProbs': (self.rpn_roi_probs[0], [self.rois_num]), } def test_check_output(self): @@ -320,7 +324,7 @@ class TestGenerateProposalsOp(OpTest): (batch_size, num_anchors * 4, layer_h, layer_w)).astype('float32') def init_test_output(self): - self.rpn_rois, self.rpn_roi_probs, self.lod = generate_proposals_in_python( + self.rpn_rois, self.rpn_roi_probs, self.rois_num = generate_proposals_in_python( self.scores, self.bbox_deltas, self.im_info, self.anchors, self.variances, self.pre_nms_topN, self.post_nms_topN, self.nms_thresh, self.min_size, self.eta) @@ -349,12 +353,21 @@ class TestGenerateProposalsOutLodOp(TestGenerateProposalsOp): } self.outputs = { - 'RpnRois': (self.rpn_rois[0], [self.lod]), - 'RpnRoiProbs': (self.rpn_roi_probs[0], [self.lod]), - 'RpnRoisLod': (np.asarray( - self.lod, dtype=np.int32)) + 'RpnRois': (self.rpn_rois[0], [self.rois_num]), + 'RpnRoiProbs': (self.rpn_roi_probs[0], [self.rois_num]), + 'RpnRoisNum': (np.asarray( + self.rois_num, dtype=np.int32)) } +class TestGenerateProposalsOpNoBoxLeft(TestGenerateProposalsOp): + def init_test_params(self): + self.pre_nms_topN = 12000 # train 12000, test 2000 + self.post_nms_topN = 5000 # train 6000, test 1000 + self.nms_thresh = 0.7 + self.min_size = 1000.0 + self.eta = 1. + + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_layers.py b/python/paddle/fluid/tests/unittests/test_layers.py index b76887f0965ca64b2b40bf9c0ce6e82b44fdad2f..89e9f7aad8581228411b1983580ced5566e65765 100644 --- a/python/paddle/fluid/tests/unittests/test_layers.py +++ b/python/paddle/fluid/tests/unittests/test_layers.py @@ -3318,15 +3318,29 @@ class TestBook(LayerTest): return (out) def test_roi_pool(self): - # TODO(minqiyang): dygraph do not support lod now + x_np = np.random.rand(2, 3, 8, 8).astype('float32') + rois_np = np.random.rand(3, 4).astype('float32') + rois_num_np = np.array([1, 2]).astype('int32') + with self.static_graph(): - x = layers.data(name="x", shape=[256, 30, 30], dtype="float32") - rois = layers.data( - name="rois", shape=[4], dtype="float32", lod_level=1) - rois_lod = layers.data( - name="rois_lod", shape=[None, ], dtype="int", lod_level=1) - output = layers.roi_pool(x, rois, 7, 7, 0.6, rois_lod) - return (output) + x = layers.data(name="x", shape=[3, 8, 8], dtype="float32") + rois = layers.data(name="rois", shape=[4], dtype="float32") + rois_num = fluid.data(name="rois_num", shape=[None], dtype="int32") + output = layers.roi_pool(x, rois, 4, 4, 0.5, rois_num=rois_num) + static_res = self.get_static_graph_result( + feed={'x': x_np, + 'rois': rois_np, + 'rois_num': rois_num_np}, + fetch_list=[output])[0] + + with self.dynamic_graph(): + x_dy = base.to_variable(x_np) + rois_dy = base.to_variable(rois_np) + rois_num_dy = base.to_variable(rois_num_np) + dy_res = layers.roi_pool( + x_dy, rois_dy, 4, 4, 0.5, rois_num=rois_num_dy) + dy_res_value = dy_res[0].numpy() + self.assertTrue(np.array_equal(static_res, dy_res_value)) def test_sequence_enumerate(self): # TODO(minqiyang): dygraph do not support lod now @@ -3335,16 +3349,29 @@ class TestBook(LayerTest): out = layers.sequence_enumerate(input=x, win_size=2, pad_value=0) def test_roi_align(self): - # TODO(minqiyang): dygraph do not support lod now + x_np = np.random.rand(2, 3, 8, 8).astype('float32') + rois_np = np.random.rand(3, 4).astype('float32') + rois_num_np = np.array([1, 2]).astype('int32') + with self.static_graph(): - x = layers.data(name="x", shape=[256, 30, 30], dtype="float32") - rois = layers.data( - name="rois", shape=[4], dtype="float32", lod_level=1) - rois_lod = layers.data( - name="rois_lod", shape=[None, ], dtype="int", lod_level=1) - output = layers.roi_align(x, rois, 14, 14, 0.5, 2, 'roi_align', - rois_lod) - return (output) + x = layers.data(name="x", shape=[3, 8, 8], dtype="float32") + rois = layers.data(name="rois", shape=[4], dtype="float32") + rois_num = fluid.data(name="rois_num", shape=[None], dtype="int32") + output = layers.roi_align(x, rois, 4, 4, 0.5, 2, rois_num=rois_num) + static_res = self.get_static_graph_result( + feed={'x': x_np, + 'rois': rois_np, + 'rois_num': rois_num_np}, + fetch_list=[output])[0] + + with self.dynamic_graph(): + x_dy = base.to_variable(x_np) + rois_dy = base.to_variable(rois_np) + rois_num_dy = base.to_variable(rois_num_np) + dy_res = layers.roi_align( + x_dy, rois_dy, 4, 4, 0.5, 2, rois_num=rois_num_dy) + dy_res_value = dy_res.numpy() + self.assertTrue(np.array_equal(static_res, dy_res_value)) def test_roi_perspective_transform(self): # TODO(minqiyang): dygraph do not support lod now diff --git a/python/paddle/fluid/tests/unittests/test_roi_align_op.py b/python/paddle/fluid/tests/unittests/test_roi_align_op.py index b01863880866e247f2aee4b94ae3121c9d891f92..fb8a090b80700d9b884a72f7f430723754523a13 100644 --- a/python/paddle/fluid/tests/unittests/test_roi_align_op.py +++ b/python/paddle/fluid/tests/unittests/test_roi_align_op.py @@ -181,16 +181,11 @@ class TestROIAlignInLodOp(TestROIAlignOp): self.calc_roi_align() seq_len = self.rois_lod[0] - cur_len = 0 - lod = [cur_len] - for l in seq_len: - cur_len += l - lod.append(cur_len) self.inputs = { 'X': self.x, 'ROIs': (self.rois[:, 1:5], self.rois_lod), - 'RoisLod': np.asarray(lod).astype('int64') + 'RoisNum': np.asarray(seq_len).astype('int32') } self.attrs = { diff --git a/python/paddle/fluid/tests/unittests/test_roi_pool_op.py b/python/paddle/fluid/tests/unittests/test_roi_pool_op.py index 1200b0e3470f650dce4365ee46458c8184281292..c6622cf8d9ce8ae655a6b2e5c130ed9990fd2a5b 100644 --- a/python/paddle/fluid/tests/unittests/test_roi_pool_op.py +++ b/python/paddle/fluid/tests/unittests/test_roi_pool_op.py @@ -174,16 +174,11 @@ class TestROIPoolInLodOp(TestROIPoolOp): self.calc_roi_pool() seq_len = self.rois_lod[0] - cur_len = 0 - lod = [cur_len] - for l in seq_len: - cur_len += l - lod.append(cur_len) self.inputs = { 'X': self.x, 'ROIs': (self.rois[:, 1:5], self.rois_lod), - 'RoisLod': np.asarray(lod).astype('int64') + 'RoisNum': np.asarray(seq_len).astype('int32') } self.attrs = {