未验证 提交 a279a4f8 编写于 作者: A Allen Guo 提交者: GitHub

[IPU] update ipu unittests p2 (#40069)

* update ipu UTs part2

* clean git

* rename ut

* rename ut 1

* sync api changes

* update uts for new api

* update uts for new api

* fix re-define
上级 13f2b1e3
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import unittest
import sys
sys.path.append("..")
import paddle
import paddle.fluid as fluid
paddle.enable_static()
@unittest.skipIf(not paddle.is_compiled_with_ipu(),
"core is not compiled with IPU")
class TestIpuPlace(unittest.TestCase):
def test_ipu_place(self):
num_devices = fluid.core.get_ipu_device_count()
self.assertGreater(num_devices, 0)
for i in range(num_devices):
place = paddle.IPUPlace()
p = fluid.core.Place()
p.set_place(place)
self.assertTrue(p.is_ipu_place())
def test_ipu_set_device(self):
num_devices = fluid.core.get_ipu_device_count()
self.assertGreater(num_devices, 0)
for i in range(num_devices):
paddle.set_device('ipu')
device = paddle.get_device()
self.assertTrue(device == "ipus:{{0-{}}}".format(num_devices - 1))
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import unittest
import sys
import paddle
import paddle.fluid as fluid
paddle.enable_static()
@unittest.skipIf(not paddle.is_compiled_with_ipu(),
"core is not compiled with IPU")
class TestIpuShard(unittest.TestCase):
def _test(self):
# build graph
a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
b = a + 2 # scale : scale * x + bias, ipu_index : no
with paddle.fluid.ipu_shard(ipu_index=1):
c = b + 1 # scale, ipu_index : 1
with paddle.fluid.ipu_shard(ipu_index=2):
d = c * 2 # scale, ipu_index : 2
with paddle.fluid.ipu_shard(ipu_index=3):
e = d + 3 # scale, ipu_index : 3
with paddle.fluid.ipu_shard(ipu_index=1):
e = e + 3 # scale, ipu_index : 1
with paddle.fluid.ipu_shard(ipu_index=2):
e = e + 3 # scale, ipu_index : 2
with paddle.fluid.ipu_shard(ipu_index=1):
f = paddle.tensor.pow(e, 2.0) # pow, ipu_index : 1
with paddle.fluid.ipu_shard(ipu_index=2):
g = f - 1 # scale, ipu_index : 2
h = g + 1 # scale, ipu_index : no
ipu_index_list = []
main_prog = paddle.static.default_main_program()
for op in main_prog.global_block().ops:
if op.desc.has_attr("ipu_index"):
ipu_index_list.append(op.desc.attr("ipu_index"))
return ipu_index_list
def test_ipu_shard(self):
ipu_index_list = self._test()
expected_ipu_index_list = [1, 2, 3, 1, 2, 1, 2]
self.assertTrue(
np.allclose(
ipu_index_list, expected_ipu_index_list, atol=0))
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
# #
# Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. # you may not use this file except in compliance with the License.
...@@ -16,9 +16,7 @@ from __future__ import print_function ...@@ -16,9 +16,7 @@ from __future__ import print_function
import numpy as np import numpy as np
import unittest import unittest
import sys
import paddle import paddle
import paddle.fluid as fluid
paddle.enable_static() paddle.enable_static()
...@@ -26,26 +24,69 @@ paddle.enable_static() ...@@ -26,26 +24,69 @@ paddle.enable_static()
@unittest.skipIf(not paddle.is_compiled_with_ipu(), @unittest.skipIf(not paddle.is_compiled_with_ipu(),
"core is not compiled with IPU") "core is not compiled with IPU")
class TestIpuShard(unittest.TestCase): class TestIpuShard(unittest.TestCase):
def _test(self):
# build graph
a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
b = a + 2 # scale : scale * x + bias, ipu_index : no
with paddle.static.ipu_shard_guard(index=1):
c = b + 1 # scale, ipu_index : 1
with paddle.static.ipu_shard_guard(index=2):
d = c * 2 # scale, ipu_index : 2
with paddle.static.ipu_shard_guard(index=3):
e = d + 3 # scale, ipu_index : 3
with paddle.static.ipu_shard_guard(index=1):
e = e + 3 # scale, ipu_index : 1
with paddle.static.ipu_shard_guard(index=2):
e = e + 3 # scale, ipu_index : 2
with paddle.static.ipu_shard_guard(index=1):
f = paddle.tensor.pow(e, 2.0) # pow, ipu_index : 1
with paddle.static.ipu_shard_guard(index=2):
g = f - 1 # scale, ipu_index : 2
h = g + 1 # scale, ipu_index : no
ipu_index_list = []
main_prog = paddle.static.default_main_program()
for op in main_prog.global_block().ops:
if op.desc.has_attr("ipu_index"):
ipu_index_list.append(op.desc.attr("ipu_index"))
return ipu_index_list
def test_ipu_shard(self):
ipu_index_list = self._test()
expected_ipu_index_list = [1, 2, 3, 1, 2, 1, 2]
self.assertTrue(
np.allclose(
ipu_index_list, expected_ipu_index_list, atol=0))
@unittest.skipIf(not paddle.is_compiled_with_ipu(),
"core is not compiled with IPU")
class TestIpuPipeline(unittest.TestCase):
def _test(self): def _test(self):
# build graph # build graph
a = paddle.static.data(name='data', shape=[None, 1], dtype='int32') a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
b = a + 2 # scale : scale * x + bias, ipu_stage : no b = a + 2 # scale : scale * x + bias, ipu_stage : no
with paddle.fluid.ipu_shard(ipu_stage=1): with paddle.static.ipu_shard_guard(stage=1):
c = b + 1 # scale, ipu_stage : 1 c = b + 1 # scale, ipu_stage : 1
with paddle.fluid.ipu_shard(ipu_stage=2): with paddle.static.ipu_shard_guard(stage=2):
d = c * 2 # scale, ipu_stage : 2 d = c * 2 # scale, ipu_stage : 2
with paddle.fluid.ipu_shard(ipu_stage=3): with paddle.static.ipu_shard_guard(stage=3):
e = d + 3 # scale, ipu_stage : 3 e = d + 3 # scale, ipu_stage : 3
with paddle.fluid.ipu_shard(ipu_stage=1): with paddle.static.ipu_shard_guard(stage=1):
e = e + 3 # scale, ipu_stage : 1 e = e + 3 # scale, ipu_stage : 1
with paddle.fluid.ipu_shard(ipu_stage=2): with paddle.static.ipu_shard_guard(stage=2):
e = e + 3 # scale, ipu_stage : 2 e = e + 3 # scale, ipu_stage : 2
with paddle.fluid.ipu_shard(ipu_stage=1): with paddle.static.ipu_shard_guard(stage=1):
f = paddle.tensor.pow(e, 2.0) # pow, ipu_stage : 1 f = paddle.tensor.pow(e, 2.0) # pow, ipu_stage : 1
with paddle.fluid.ipu_shard(ipu_stage=2): with paddle.static.ipu_shard_guard(stage=2):
g = f - 1 # scale, ipu_stage : 2 g = f - 1 # scale, ipu_stage : 2
h = g + 1 # scale, ipu_stage : no h = g + 1 # scale, ipu_stage : no
......
...@@ -12,44 +12,60 @@ ...@@ -12,44 +12,60 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from __future__ import print_function
import numpy as np
import unittest import unittest
import sys
import paddle import paddle
import paddle.fluid as fluid import paddle.static
import paddle.fluid.compiler as compiler
paddle.enable_static() paddle.enable_static()
SEED = 2021
@unittest.skipIf(not paddle.is_compiled_with_ipu(), @unittest.skipIf(not paddle.is_compiled_with_ipu(),
"core is not compiled with IPU") "core is not compiled with IPU")
class TestConvNet(unittest.TestCase): class TestIpuStrategy(unittest.TestCase):
def test_training(self): def test_set_options(self):
ipu_strategy = paddle.static.IpuStrategy() ipu_strategy = paddle.static.IpuStrategy()
all_option_names = ipu_strategy._ipu_strategy.get_all_option_names()
for option_name in all_option_names:
option = ipu_strategy._ipu_strategy.get_option(option_name)
option_type = option['type']
option_value = option['value']
if option_type in ['double']:
set_value = option_value + 0.5
elif option_type == 'uint64':
set_value = option_value + 1
elif option_type == 'bool':
set_value = not option_value
else:
continue
ipu_strategy.set_options({option_name: set_value})
new_value = ipu_strategy.get_option(option_name)
assert new_value == set_value, f"set {option_name} to {set_value} failed"
assert ipu_strategy.num_ipus == 1, "Default num_ipus must be 1" def test_set_string_options(self):
assert ipu_strategy.is_training == True, "Default is_training is True" ipu_strategy = paddle.static.IpuStrategy()
assert ipu_strategy.enable_pipelining == False, \ options = {
"Default enable_pipelining is False" 'cache_path': 'paddle_cache',
assert ipu_strategy.enable_manual_shard == False, \ 'log_dir': 'paddle_log',
"Default enable_manual_shard is False" 'partials_type_matmuls': 'half',
'partials_type_matmuls': 'float',
ipu_strategy.SetGraphConfig( }
num_ipus=2, is_training=False, enable_manual_shard=True) ipu_strategy.set_options(options)
ipu_strategy.SetPipeliningConfig(enable_pipelining=True) for k, v in options.items():
assert ipu_strategy.num_ipus == 2, "Set num_ipus Failed" assert v == ipu_strategy.get_option(k), f"set {k} to {v} failed "
assert ipu_strategy.is_training == False, "Set is_training Failed"
assert ipu_strategy.enable_pipelining == True, \
"Set enable_pipelining Failed"
assert ipu_strategy.enable_manual_shard == True, \ def test_set_other_options(self):
"Set enable_manual_shard Failed" ipu_strategy = paddle.static.IpuStrategy()
options = {}
options['dot_checks'] = ['0', '1', '2', '3']
options['engine_options'] = {
'debug.allowOutOfMemory': 'true',
'autoReport.directory': 'path',
'autoReport.all': 'true'
}
for k, v in options.items():
ipu_strategy.set_options({k: v})
assert v == ipu_strategy.get_option(k), f"set {k} to {v} failed "
if __name__ == "__main__": if __name__ == "__main__":
......
...@@ -16,14 +16,8 @@ import unittest ...@@ -16,14 +16,8 @@ import unittest
import numpy as np import numpy as np
import paddle import paddle
import paddle.fluid as fluid
import paddle.fluid.compiler as compiler
import paddle.optimizer
import paddle.static import paddle.static
from paddle.fluid.tests.unittests.ipu.op_test_ipu import (IPUOpTest, from paddle.fluid.tests.unittests.ipu.op_test_ipu import IPUOpTest, ExecutionMode
np_dtype_to_fluid_str)
paddle.enable_static()
@unittest.skipIf(not paddle.is_compiled_with_ipu(), @unittest.skipIf(not paddle.is_compiled_with_ipu(),
...@@ -32,44 +26,52 @@ class TestBase(IPUOpTest): ...@@ -32,44 +26,52 @@ class TestBase(IPUOpTest):
def setUp(self): def setUp(self):
self.set_atol() self.set_atol()
self.set_training() self.set_training()
self.set_feed() self.set_data_feed()
self.set_feed_attr() self.set_feed_attr()
self.set_attrs() self.set_op_attrs()
def set_feed(self): @property
self.feed = { def fp16_enabled(self):
"x": np.random.uniform(size=[1, 3, 10, 10]).astype('float32'), return True
}
def set_atol(self):
self.atol = 1e-6
self.rtol = 1e-5
self.atol_fp16 = 1e-2
self.rtol_fp16 = 1e-3
def set_data_feed(self):
x = np.random.uniform(size=[1, 3, 10, 10])
self.feed_fp32 = {"x": x.astype(np.float32)}
self.feed_fp16 = {"x": x.astype(np.float16)}
def set_feed_attr(self): def set_feed_attr(self):
self.feed_shape = [x.shape for x in self.feed.values()] self.feed_shape = [x.shape for x in self.feed_fp32.values()]
self.feed_list = list(self.feed.keys()) self.feed_list = list(self.feed_fp32.keys())
self.feed_dtype = [ self.feed_dtype = [x.dtype for x in self.feed_fp32.values()]
np_dtype_to_fluid_str(x.dtype) for x in self.feed.values()
]
def set_attrs(self): def set_op_attrs(self):
self.attrs = { self.attrs = {
"scale": True, "scale": True,
"shift": True, "shift": True,
"begin_norm_axis": 1, "begin_norm_axis": 1,
"epsilon": 1e-05, "epsilon": 1e-05,
} }
self.optimizer = None
def _test_base(self, run_ipu=True): def _test_base(self, exec_mode):
scope = fluid.core.Scope() scope = paddle.static.Scope()
main_prog = paddle.static.Program() main_prog = paddle.static.Program()
startup_prog = paddle.static.Program() startup_prog = paddle.static.Program()
SEED = self.SEED main_prog.random_seed = self.SEED
main_prog.random_seed = SEED startup_prog.random_seed = self.SEED
startup_prog.random_seed = SEED
with fluid.scope_guard(scope): with paddle.static.scope_guard(scope):
with paddle.static.program_guard(main_prog, startup_prog): with paddle.static.program_guard(main_prog, startup_prog):
x = paddle.static.data( x = paddle.static.data(
name=self.feed_list[0], name=self.feed_list[0],
shape=self.feed_shape[0], shape=self.feed_shape[0],
dtype=self.feed_dtype[0]) dtype='float32')
if self.is_training: if self.is_training:
ch = self.feed_shape[0][1] ch = self.feed_shape[0][1]
...@@ -80,33 +82,38 @@ class TestBase(IPUOpTest): ...@@ -80,33 +82,38 @@ class TestBase(IPUOpTest):
out = paddle.fluid.layers.nn.layer_norm( out = paddle.fluid.layers.nn.layer_norm(
conv1, param_attr=scale, bias_attr=bias, **self.attrs) conv1, param_attr=scale, bias_attr=bias, **self.attrs)
else: else:
# scale = True
# bias = True
scale = self.attrs['scale'] scale = self.attrs['scale']
bias = self.attrs['shift'] bias = self.attrs['shift']
out = paddle.fluid.layers.nn.layer_norm( out = paddle.fluid.layers.nn.layer_norm(
x, param_attr=scale, bias_attr=bias, **self.attrs) x, param_attr=scale, bias_attr=bias, **self.attrs)
if self.is_training:
loss = paddle.mean(out) loss = paddle.mean(out)
adam = paddle.optimizer.Adam(learning_rate=1e-2)
adam.minimize(loss)
fetch_list = [loss.name] fetch_list = [loss.name]
else:
fetch_list = [out.name]
if run_ipu: if self.is_training:
optimizer = None
if self.optimizer == 'sgd':
optimizer = paddle.optimizer.SGD(learning_rate=1e-2)
elif self.optimizer == 'adam':
optimizer = paddle.optimizer.Adam(learning_rate=1e-2)
elif self.optimizer == 'lamb':
optimizer = paddle.optimizer.Lamb(
learning_rate=1e-2, lamb_weight_decay=0.0)
if optimizer is not None:
optimizer.minimize(loss)
if exec_mode:
place = paddle.IPUPlace() place = paddle.IPUPlace()
else: else:
place = paddle.CPUPlace() place = paddle.CPUPlace()
exe = paddle.static.Executor(place) exe = paddle.static.Executor(place)
exe.run(startup_prog) exe.run(startup_prog)
if run_ipu: if exec_mode:
feed_list = self.feed_list feed_list = self.feed_list
ipu_strategy = paddle.static.IpuStrategy() ipu_strategy = paddle.static.IpuStrategy()
ipu_strategy.SetGraphConfig(is_training=self.is_training) ipu_strategy.set_graph_config(is_training=self.is_training)
program = compiler.IPUCompiledProgram( program = paddle.static.IpuCompiledProgram(
main_prog, main_prog,
ipu_strategy=ipu_strategy).compile(feed_list, fetch_list) ipu_strategy=ipu_strategy).compile(feed_list, fetch_list)
else: else:
...@@ -116,12 +123,14 @@ class TestBase(IPUOpTest): ...@@ -116,12 +123,14 @@ class TestBase(IPUOpTest):
result = [] result = []
for _ in range(self.epoch): for _ in range(self.epoch):
loss_res = exe.run(program, loss_res = exe.run(program,
feed=self.feed, feed=self.feed_fp32,
fetch_list=fetch_list) fetch_list=fetch_list)
result.append(loss_res[0]) result.append(loss_res[0])
return np.array(result) return np.array(result)
else: else:
result = exe.run(program, feed=self.feed, fetch_list=fetch_list) result = exe.run(program,
feed=self.feed_fp32,
fetch_list=fetch_list)
return result[0] return result[0]
def test_base(self): def test_base(self):
...@@ -137,7 +146,7 @@ class TestBase(IPUOpTest): ...@@ -137,7 +146,7 @@ class TestBase(IPUOpTest):
@unittest.skip('raise error') @unittest.skip('raise error')
class TestCase1(TestBase): class TestCase1(TestBase):
def set_attrs(self): def set_op_attrs(self):
self.attrs = { self.attrs = {
"scale": False, "scale": False,
"shift": True, "shift": True,
...@@ -148,7 +157,7 @@ class TestCase1(TestBase): ...@@ -148,7 +157,7 @@ class TestCase1(TestBase):
@unittest.skip('raise error') @unittest.skip('raise error')
class TestCase2(TestBase): class TestCase2(TestBase):
def set_attrs(self): def set_op_attrs(self):
self.attrs = { self.attrs = {
"scale": True, "scale": True,
"shift": False, "shift": False,
...@@ -158,18 +167,28 @@ class TestCase2(TestBase): ...@@ -158,18 +167,28 @@ class TestCase2(TestBase):
class TestCase3(TestBase): class TestCase3(TestBase):
def set_attrs(self): def set_op_attrs(self):
self.attrs = { self.attrs = {
"scale": True, "scale": True,
"shift": True, "shift": True,
"begin_norm_axis": 2, "begin_norm_axis": 2,
"epsilon": 1e-05, "epsilon": 1e-05,
} }
self.optimizer = None
class TestTrainCase1(TestBase): class TestTrainCase1(TestBase):
def set_op_attrs(self):
self.attrs = {
"scale": True,
"shift": True,
"begin_norm_axis": 1,
"epsilon": 1e-05
}
self.optimizer = 'sgd'
def set_atol(self): def set_atol(self):
self.atol = 1e-3 self.atol = 1e-6
def set_training(self): def set_training(self):
self.is_training = True self.is_training = True
...@@ -178,15 +197,34 @@ class TestTrainCase1(TestBase): ...@@ -178,15 +197,34 @@ class TestTrainCase1(TestBase):
class TestTrainCase2(TestBase): class TestTrainCase2(TestBase):
def set_atol(self): def set_atol(self):
self.atol = 1e-3 self.atol = 5e-4
def set_attrs(self): def set_op_attrs(self):
self.attrs = { self.attrs = {
"scale": True, "scale": True,
"shift": True, "shift": True,
"begin_norm_axis": 2, "begin_norm_axis": 2,
"epsilon": 1e-05, "epsilon": 1e-05
}
self.optimizer = 'adam'
def set_training(self):
self.is_training = True
self.epoch = 10
class TestTrainCase3(TestBase):
def set_atol(self):
self.atol = 5e-3
def set_op_attrs(self):
self.attrs = {
"scale": True,
"shift": True,
"begin_norm_axis": 2,
"epsilon": 1e-05
} }
self.optimizer = 'lamb'
def set_training(self): def set_training(self):
self.is_training = True self.is_training = True
......
...@@ -16,15 +16,9 @@ import unittest ...@@ -16,15 +16,9 @@ import unittest
import numpy as np import numpy as np
import paddle import paddle
import paddle.fluid as fluid
import paddle.fluid.compiler as compiler
import paddle.optimizer
import paddle.static
from paddle.fluid.tests.unittests.ipu.op_test_ipu import (IPUOpTest,
np_dtype_to_fluid_str)
import paddle.nn.functional as F import paddle.nn.functional as F
import paddle.static
paddle.enable_static() from paddle.fluid.tests.unittests.ipu.op_test_ipu import IPUOpTest, ExecutionMode
@unittest.skipIf(not paddle.is_compiled_with_ipu(), @unittest.skipIf(not paddle.is_compiled_with_ipu(),
...@@ -33,72 +27,81 @@ class TestBase(IPUOpTest): ...@@ -33,72 +27,81 @@ class TestBase(IPUOpTest):
def setUp(self): def setUp(self):
self.set_atol() self.set_atol()
self.set_training() self.set_training()
self.set_feed() self.set_data_feed()
self.set_feed_attr() self.set_feed_attr()
self.set_attrs() self.set_op_attrs()
@property
def fp16_enabled(self):
return True
def set_feed(self): def set_data_feed(self):
self.feed = { data = np.random.uniform(size=[1, 3, 10, 10])
"x": np.random.uniform(size=[1, 3, 10, 10]).astype('float32') self.feed_fp32 = {'in_0': data.astype(np.float32)}
} self.feed_fp16 = {'in_0': data.astype(np.float16)}
self.feed_list = list(self.feed_fp32.keys())
def set_feed_attr(self): def set_feed_attr(self):
self.feed_shape = [x.shape for x in self.feed.values()] self.feed_shape = [x.shape for x in self.feed_fp32.values()]
self.feed_list = list(self.feed.keys()) self.feed_list = list(self.feed_fp32.keys())
self.feed_dtype = [ self.feed_dtype = [x.dtype for x in self.feed_fp32.values()]
np_dtype_to_fluid_str(x.dtype) for x in self.feed.values()
]
def set_attrs(self): def set_op_attrs(self):
self.attrs = {"axis": -1} self.attrs = {"axis": -1}
def _test_base(self, run_ipu=True): def _test_base(self, exec_mode):
scope = fluid.core.Scope() scope = paddle.static.Scope()
main_prog = paddle.static.Program() main_prog = paddle.static.Program()
startup_prog = paddle.static.Program() startup_prog = paddle.static.Program()
SEED = self.SEED main_prog.random_seed = self.SEED
main_prog.random_seed = SEED startup_prog.random_seed = self.SEED
startup_prog.random_seed = SEED
with fluid.scope_guard(scope): with paddle.static.scope_guard(scope):
with paddle.static.program_guard(main_prog, startup_prog): with paddle.static.program_guard(main_prog, startup_prog):
x = paddle.static.data( x = paddle.static.data(
name=self.feed_list[0], name=self.feed_list[0],
shape=self.feed_shape[0], shape=self.feed_shape[0],
dtype=self.feed_dtype[0]) dtype='float32')
out = F.log_softmax(x, **self.attrs) out = F.log_softmax(x, **self.attrs)
fetch_list = [out.name] fetch_list = [out.name]
if run_ipu: if exec_mode == ExecutionMode.CPU_FP32:
place = paddle.IPUPlace()
else:
place = paddle.CPUPlace() place = paddle.CPUPlace()
else:
place = paddle.IPUPlace()
exe = paddle.static.Executor(place) exe = paddle.static.Executor(place)
exe.run(startup_prog) exe.run(startup_prog)
if run_ipu: if exec_mode != ExecutionMode.CPU_FP32:
feed_list = self.feed_list feed_list = self.feed_list
ipu_strategy = paddle.static.IpuStrategy() ipu_strategy = paddle.static.IpuStrategy()
ipu_strategy.SetGraphConfig(is_training=self.is_training) ipu_strategy.set_graph_config(is_training=self.is_training)
program = compiler.IPUCompiledProgram( if exec_mode == ExecutionMode.IPU_POPART_FP16:
ipu_strategy.set_precision_config(enable_fp16=True)
program = paddle.static.IpuCompiledProgram(
main_prog, main_prog,
ipu_strategy=ipu_strategy).compile(feed_list, fetch_list) ipu_strategy=ipu_strategy).compile(feed_list, fetch_list)
else: else:
program = main_prog program = main_prog
result = exe.run(program, feed=self.feed, fetch_list=fetch_list) feed = self.feed_fp32
return result[0] if exec_mode > ExecutionMode.IPU_FP32:
feed = self.feed_fp16
def test_base(self): result = exe.run(program, feed=feed, fetch_list=fetch_list)
res0 = self._test_base(False) return result[0]
res1 = self._test_base(True)
self.assertTrue( def test(self):
np.allclose( output_dict = {}
res0.flatten(), res1.flatten(), atol=self.atol)) for mode in ExecutionMode:
if mode > ExecutionMode.IPU_FP32 and not self.fp16_enabled:
break
output_dict[mode] = self._test_base(mode).flatten()
self.assertTrue(res0.shape == res1.shape) self.check(output_dict)
class TestCase1(TestBase): class TestCase1(TestBase):
......
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle
import paddle.static
from paddle.fluid.tests.unittests.ipu.op_test_ipu import IPUOpTest, ExecutionMode
@unittest.skipIf(not paddle.is_compiled_with_ipu(),
"core is not compiled with IPU")
class TestBase(IPUOpTest):
def setUp(self):
self.set_atol()
self.set_training()
self.set_data_feed()
self.set_feed_attr()
@property
def fp16_enabled(self):
return True
def set_data_feed(self):
data = np.random.uniform(size=[2, 20, 30528])
self.feed = {"in_0": data.astype('bool')}
def set_feed_attr(self):
self.feed_shape = [x.shape for x in self.feed.values()]
self.feed_list = list(self.feed.keys())
self.feed_dtype = [x.dtype for x in self.feed.values()]
def _test_base(self, exec_mode):
scope = paddle.static.Scope()
main_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
main_prog.random_seed = self.SEED
startup_prog.random_seed = self.SEED
with paddle.static.scope_guard(scope):
with paddle.static.program_guard(main_prog, startup_prog):
x = paddle.static.data(
name=self.feed_list[0],
shape=self.feed_shape[0],
dtype="bool")
out = paddle.fluid.layers.logical_not(x)
fetch_list = [out.name]
if exec_mode == ExecutionMode.CPU_FP32:
place = paddle.CPUPlace()
else:
place = paddle.IPUPlace()
exe = paddle.static.Executor(place)
exe.run(startup_prog)
if exec_mode != ExecutionMode.CPU_FP32:
feed_list = self.feed_list
ipu_strategy = paddle.static.IpuStrategy()
ipu_strategy.set_graph_config(is_training=self.is_training)
if exec_mode == ExecutionMode.IPU_POPART_FP16:
ipu_strategy.set_precision_config(enable_fp16=True)
program = paddle.static.IpuCompiledProgram(
main_prog,
ipu_strategy=ipu_strategy).compile(feed_list, fetch_list)
else:
program = main_prog
result = exe.run(program, feed=self.feed, fetch_list=fetch_list)
return result[0]
def test_base(self):
output_dict = {}
for mode in ExecutionMode:
if mode > ExecutionMode.IPU_FP32 and not self.fp16_enabled:
break
output_dict[mode] = self._test_base(mode).astype(np.int32)
self.check(output_dict, check_shape=True)
if __name__ == "__main__":
unittest.main()
...@@ -16,14 +16,8 @@ import unittest ...@@ -16,14 +16,8 @@ import unittest
import numpy as np import numpy as np
import paddle import paddle
import paddle.fluid as fluid
import paddle.fluid.compiler as compiler
import paddle.optimizer
import paddle.static import paddle.static
from paddle.fluid.tests.unittests.ipu.op_test_ipu import (IPUOpTest, from paddle.fluid.tests.unittests.ipu.op_test_ipu import IPUOpTest, ExecutionMode
np_dtype_to_fluid_str)
paddle.enable_static()
@unittest.skipIf(not paddle.is_compiled_with_ipu(), @unittest.skipIf(not paddle.is_compiled_with_ipu(),
...@@ -32,16 +26,25 @@ class TestBase(IPUOpTest): ...@@ -32,16 +26,25 @@ class TestBase(IPUOpTest):
def setUp(self): def setUp(self):
self.set_atol() self.set_atol()
self.set_training() self.set_training()
self.set_attrs() self.set_data_feed()
self.set_feed_attr()
self.set_op_attrs()
@property
def fp16_enabled(self):
return True
def set_data_feed(self):
data = np.array([[[1], [3]], [[2], [4]], [[4], [127]]])
self.feed_cpu = {"x": data.astype(np.int64)}
self.feed_ipu = {"x": data.astype(np.int32)}
def set_feed_attr(self): def set_feed_attr(self):
self.feed_shape = [x.shape for x in self.feed.values()] self.feed_shape = [x.shape for x in self.feed_cpu.values()]
self.feed_list = list(self.feed.keys()) self.feed_list = list(self.feed_cpu.keys())
self.feed_dtype = [ self.feed_dtype = [x.dtype for x in self.feed_cpu.values()]
np_dtype_to_fluid_str(x.dtype) for x in self.feed.values()
]
def set_attrs(self): def set_op_attrs(self):
self.attrs = { self.attrs = {
"size": [128, 16], "size": [128, 16],
"is_sparse": False, "is_sparse": False,
...@@ -50,33 +53,20 @@ class TestBase(IPUOpTest): ...@@ -50,33 +53,20 @@ class TestBase(IPUOpTest):
"dtype": 'float32' "dtype": 'float32'
} }
def _test_base(self, run_ipu=True): def _test_base(self, exec_mode):
scope = fluid.core.Scope() scope = paddle.static.Scope()
main_prog = paddle.static.Program() main_prog = paddle.static.Program()
startup_prog = paddle.static.Program() startup_prog = paddle.static.Program()
SEED = self.SEED main_prog.random_seed = self.SEED
main_prog.random_seed = SEED startup_prog.random_seed = self.SEED
startup_prog.random_seed = SEED
if run_ipu:
self.feed = {
"x": np.array(
[[[1], [3]], [[2], [4]], [[4], [127]]]).astype(np.int32)
}
else:
self.feed = {
"x": np.array(
[[[1], [3]], [[2], [4]], [[4], [127]]]).astype(np.int64)
}
self.set_feed_attr()
with fluid.scope_guard(scope): with paddle.static.scope_guard(scope):
with paddle.static.program_guard(main_prog, startup_prog): with paddle.static.program_guard(main_prog, startup_prog):
x = paddle.static.data( x = paddle.static.data(
name=self.feed_list[0], name=self.feed_list[0],
shape=self.feed_shape[0], shape=self.feed_shape[0],
dtype=self.feed_dtype[0]) dtype='int64')
out = paddle.fluid.layers.embedding(x, **self.attrs) out = paddle.fluid.layers.embedding(x, **self.attrs)
if self.is_training: if self.is_training:
...@@ -87,47 +77,61 @@ class TestBase(IPUOpTest): ...@@ -87,47 +77,61 @@ class TestBase(IPUOpTest):
else: else:
fetch_list = [out.name] fetch_list = [out.name]
if run_ipu: if exec_mode == ExecutionMode.CPU_FP32:
place = paddle.IPUPlace()
else:
place = paddle.CPUPlace() place = paddle.CPUPlace()
else:
place = paddle.IPUPlace()
exe = paddle.static.Executor(place) exe = paddle.static.Executor(place)
exe.run(startup_prog) exe.run(startup_prog)
if run_ipu: if exec_mode != ExecutionMode.CPU_FP32:
feed_list = self.feed_list feed_list = self.feed_list
ipu_strategy = paddle.static.IpuStrategy() ipu_strategy = paddle.static.IpuStrategy()
ipu_strategy.SetGraphConfig(is_training=self.is_training) ipu_strategy.set_graph_config(is_training=self.is_training)
program = compiler.IPUCompiledProgram( if exec_mode == ExecutionMode.IPU_POPART_FP16:
ipu_strategy.set_precision_config(enable_fp16=True)
program = paddle.static.IpuCompiledProgram(
main_prog, main_prog,
ipu_strategy=ipu_strategy).compile(feed_list, fetch_list) ipu_strategy=ipu_strategy).compile(feed_list, fetch_list)
else: else:
program = main_prog program = main_prog
feed = self.feed_cpu
if exec_mode > ExecutionMode.CPU_FP32:
feed = self.feed_ipu
if self.is_training: if self.is_training:
result = [] result = []
for _ in range(self.epoch): for _ in range(self.epoch):
loss_res = exe.run(program, loss_res = exe.run(program,
feed=self.feed, feed=feed,
fetch_list=fetch_list) fetch_list=fetch_list)
result.append(loss_res[0]) result.append(loss_res[0])
return np.array(result) return np.array(result)
else: else:
result = exe.run(program, feed=self.feed, fetch_list=fetch_list) result = exe.run(program, feed=feed, fetch_list=fetch_list)
return result[0] return result[0]
def test_base(self): def test(self):
res0 = self._test_base(False) output_dict = {}
res1 = self._test_base(True) for mode in ExecutionMode:
if mode > ExecutionMode.IPU_FP32 and (not self.fp16_enabled or
self.is_training):
break
self.assertTrue( output_dict[mode] = self._test_base(mode).flatten()
np.allclose(
res0.flatten(), res1.flatten(), atol=self.atol))
self.assertTrue(res0.shape == res1.shape) self.check(output_dict)
class TestTrainCase1(TestBase): class TestTrainCase1(TestBase):
def set_atol(self):
self.atol = 1e-7
self.rtol = 1e-6
self.atol_fp16 = 1e-3
self.rtol_fp16 = 1e-3
def set_training(self): def set_training(self):
self.is_training = True self.is_training = True
self.epoch = 10 self.epoch = 10
......
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle
import paddle.static
from paddle.fluid.tests.unittests.ipu.op_test_ipu import IPUOpTest, ExecutionMode
@unittest.skipIf(not paddle.is_compiled_with_ipu(),
"core is not compiled with IPU")
class TestBase(IPUOpTest):
def setUp(self):
self.set_atol()
self.set_training()
self.set_data_feed()
self.set_feed_attr()
self.set_op_attrs()
@property
def fp16_enabled(self):
return True
def set_data_feed(self):
x = np.array([[[1], [3]], [[2], [4]], [[4], [127]]])
self.feed_cpu = {"x": x.astype(np.int64)}
self.feed_ipu = {"x": x.astype(np.int32)}
def set_feed_attr(self):
self.feed_shape = [x.shape for x in self.feed_cpu.values()]
self.feed_list = list(self.feed_cpu.keys())
self.feed_dtype = [x.dtype for x in self.feed_cpu.values()]
def set_op_attrs(self):
self.attrs = {
"num_embeddings": 128,
"embedding_dim": 16,
"sparse": False,
"padding_idx": -1,
"weight_attr": None
}
def _test_base(self, exec_mode):
scope = paddle.static.Scope()
main_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
main_prog.random_seed = self.SEED
startup_prog.random_seed = self.SEED
with paddle.static.scope_guard(scope):
with paddle.static.program_guard(main_prog, startup_prog):
x = paddle.static.data(
name=self.feed_list[0],
shape=self.feed_shape[0],
dtype='int64')
embedding = paddle.nn.Embedding(**self.attrs)
out = embedding(x)
if self.is_training:
loss = paddle.mean(out)
adam = paddle.optimizer.Adam(learning_rate=1e-2)
adam.minimize(loss)
fetch_list = [loss.name]
else:
fetch_list = [out.name]
if exec_mode == ExecutionMode.CPU_FP32:
place = paddle.CPUPlace()
else:
place = paddle.IPUPlace()
exe = paddle.static.Executor(place)
exe.run(startup_prog)
if exec_mode != ExecutionMode.CPU_FP32:
feed_list = self.feed_list
ipu_strategy = paddle.static.IpuStrategy()
ipu_strategy.set_graph_config(is_training=self.is_training)
if exec_mode == ExecutionMode.IPU_POPART_FP16:
ipu_strategy.set_precision_config(enable_fp16=True)
program = paddle.static.IpuCompiledProgram(
main_prog,
ipu_strategy=ipu_strategy).compile(feed_list, fetch_list)
else:
program = main_prog
feed = self.feed_cpu
if exec_mode > ExecutionMode.CPU_FP32:
feed = self.feed_ipu
if self.is_training:
result = []
for _ in range(self.epoch):
loss_res = exe.run(program,
feed=feed,
fetch_list=fetch_list)
result.append(loss_res[0])
return np.array(result)
else:
result = exe.run(program, feed=feed, fetch_list=fetch_list)
return result[0]
def test(self):
output_dict = {}
for mode in ExecutionMode:
if mode > ExecutionMode.IPU_FP32 and (not self.fp16_enabled or
self.is_training):
break
output_dict[mode] = self._test_base(mode).flatten()
self.check(output_dict)
class TestTrainCase1(TestBase):
def set_atol(self):
self.atol = 1e-7
self.rtol = 1e-6
self.atol_fp16 = 1e-3
self.rtol_fp16 = 1e-3
def set_training(self):
self.is_training = True
self.epoch = 10
if __name__ == "__main__":
unittest.main()
...@@ -19,7 +19,7 @@ import unittest ...@@ -19,7 +19,7 @@ import unittest
import sys import sys
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
import paddle.fluid.compiler as compiler import paddle.static
from paddle.optimizer.lr import LRScheduler from paddle.optimizer.lr import LRScheduler
paddle.enable_static() paddle.enable_static()
...@@ -71,8 +71,8 @@ class TestConvNet(unittest.TestCase): ...@@ -71,8 +71,8 @@ class TestConvNet(unittest.TestCase):
feed_list = [image.name] feed_list = [image.name]
fetch_list = [loss.name] fetch_list = [loss.name]
ipu_strategy = paddle.static.IpuStrategy() ipu_strategy = paddle.static.IpuStrategy()
ipu_strategy.SetGraphConfig(is_training=True) ipu_strategy.set_graph_config(is_training=True)
program = compiler.IPUCompiledProgram( program = paddle.static.IpuCompiledProgram(
main_prog, ipu_strategy=ipu_strategy).compile(feed_list, main_prog, ipu_strategy=ipu_strategy).compile(feed_list,
fetch_list) fetch_list)
else: else:
......
...@@ -16,14 +16,8 @@ import unittest ...@@ -16,14 +16,8 @@ import unittest
import numpy as np import numpy as np
import paddle import paddle
import paddle.fluid as fluid
import paddle.fluid.compiler as compiler
import paddle.optimizer
import paddle.static import paddle.static
from paddle.fluid.tests.unittests.ipu.op_test_ipu import (IPUOpTest, from paddle.fluid.tests.unittests.ipu.op_test_ipu import IPUOpTest, ExecutionMode
np_dtype_to_fluid_str)
paddle.enable_static()
@unittest.skipIf(not paddle.is_compiled_with_ipu(), @unittest.skipIf(not paddle.is_compiled_with_ipu(),
...@@ -32,85 +26,93 @@ class TestBase(IPUOpTest): ...@@ -32,85 +26,93 @@ class TestBase(IPUOpTest):
def setUp(self): def setUp(self):
self.set_atol() self.set_atol()
self.set_training() self.set_training()
self.set_feed() self.set_data_feed()
self.set_feed_attr() self.set_feed_attr()
self.set_attrs() self.set_op_attrs()
def set_feed(self): @property
self.feed = { def fp16_enabled(self):
"x": np.random.uniform(size=[2, 3]).astype('float32'), return True
"y": np.random.uniform(size=[3, 2]).astype('float32'),
} def set_data_feed(self):
x = np.random.uniform(size=[20, 30])
y = np.random.uniform(size=[30, 20])
self.feed_fp32 = {"x": x.astype(np.float32), "y": y.astype(np.float32)}
self.feed_fp16 = {"x": x.astype(np.float16), "y": y.astype(np.float16)}
def set_feed_attr(self): def set_feed_attr(self):
self.feed_shape = [x.shape for x in self.feed.values()] self.feed_shape = [x.shape for x in self.feed_fp32.values()]
self.feed_list = list(self.feed.keys()) self.feed_list = list(self.feed_fp32.keys())
self.feed_dtype = [ self.feed_dtype = [x.dtype for x in self.feed_fp32.values()]
np_dtype_to_fluid_str(x.dtype) for x in self.feed.values()
]
def set_attrs(self): def set_op_attrs(self):
self.attrs = { self.attrs = {
"transpose_x": False, "transpose_x": False,
"transpose_y": False, "transpose_y": False,
"alpha": 1.0, "alpha": 1.0,
} }
def _test_base(self, run_ipu=True): def _test_base(self, exec_mode):
scope = fluid.core.Scope() scope = paddle.static.Scope()
main_prog = paddle.static.Program() main_prog = paddle.static.Program()
startup_prog = paddle.static.Program() startup_prog = paddle.static.Program()
SEED = self.SEED main_prog.random_seed = self.SEED
main_prog.random_seed = SEED startup_prog.random_seed = self.SEED
startup_prog.random_seed = SEED
with fluid.scope_guard(scope): with paddle.static.scope_guard(scope):
with paddle.static.program_guard(main_prog, startup_prog): with paddle.static.program_guard(main_prog, startup_prog):
x = paddle.static.data( x = paddle.static.data(
name=self.feed_list[0], name=self.feed_list[0],
shape=self.feed_shape[0], shape=self.feed_shape[0],
dtype=self.feed_dtype[0]) dtype='float32')
y = paddle.static.data( y = paddle.static.data(
name=self.feed_list[1], name=self.feed_list[1],
shape=self.feed_shape[1], shape=self.feed_shape[1],
dtype=self.feed_dtype[1]) dtype='float32')
out = paddle.fluid.layers.matmul(x, y, **self.attrs) out = paddle.fluid.layers.matmul(x, y, **self.attrs)
fetch_list = [out.name] fetch_list = [out.name]
if run_ipu: if exec_mode == ExecutionMode.CPU_FP32:
place = paddle.IPUPlace()
else:
place = paddle.CPUPlace() place = paddle.CPUPlace()
else:
place = paddle.IPUPlace()
exe = paddle.static.Executor(place) exe = paddle.static.Executor(place)
exe.run(startup_prog) exe.run(startup_prog)
if run_ipu: if exec_mode != ExecutionMode.CPU_FP32:
feed_list = self.feed_list feed_list = self.feed_list
ipu_strategy = paddle.static.IpuStrategy() ipu_strategy = paddle.static.IpuStrategy()
ipu_strategy.SetGraphConfig(is_training=self.is_training) ipu_strategy.set_graph_config(is_training=self.is_training)
program = compiler.IPUCompiledProgram( if exec_mode == ExecutionMode.IPU_POPART_FP16:
ipu_strategy.set_precision_config(enable_fp16=True)
program = paddle.static.IpuCompiledProgram(
main_prog, main_prog,
ipu_strategy=ipu_strategy).compile(feed_list, fetch_list) ipu_strategy=ipu_strategy).compile(feed_list, fetch_list)
else: else:
program = main_prog program = main_prog
result = exe.run(program, feed=self.feed, fetch_list=fetch_list) feed = self.feed_fp32
if exec_mode > ExecutionMode.IPU_FP32:
feed = self.feed_fp16
result = exe.run(program, feed=feed, fetch_list=fetch_list)
return result[0] return result[0]
def test_base(self): def test_base(self):
res0 = self._test_base(False) output_dict = {}
res1 = self._test_base(True) for mode in ExecutionMode:
if mode > ExecutionMode.IPU_FP32 and not self.fp16_enabled:
self.assertTrue( break
np.allclose( output_dict[mode] = self._test_base(mode).flatten()
res0.flatten(), res1.flatten(), atol=self.atol))
self.assertTrue(res0.shape == res1.shape) self.check(output_dict)
class TestCase1(TestBase): class TestCase1(TestBase):
def set_attrs(self): def set_op_attrs(self):
self.attrs = { self.attrs = {
"transpose_x": True, "transpose_x": True,
"transpose_y": True, "transpose_y": True,
...@@ -119,55 +121,64 @@ class TestCase1(TestBase): ...@@ -119,55 +121,64 @@ class TestCase1(TestBase):
class TestCase2(TestBase): class TestCase2(TestBase):
def set_attrs(self): def set_op_attrs(self):
self.attrs = { self.attrs = {
"transpose_x": True, "transpose_x": True,
"transpose_y": True, "transpose_y": True,
"alpha": 3.14, "alpha": 3.14,
} }
def set_atol(self):
self.atol = 1e-10
self.rtol = 1e-6
self.atol_fp16 = 1e-2
self.rtol_fp16 = 1e-3
class TestCase3(TestBase): class TestCase3(TestBase):
def set_feed(self): def set_data_feed(self):
self.feed = { x = np.random.uniform(size=[5, 4, 3, 2])
"x": np.random.uniform(size=[5, 4, 2, 3]).astype('float32'), y = np.random.uniform(size=[5, 4, 2, 3])
"y": np.random.uniform(size=[5, 4, 3, 2]).astype('float32'),
} self.feed_fp32 = {"x": x.astype(np.float32), "y": y.astype(np.float32)}
self.feed_fp16 = {"x": x.astype(np.float16), "y": y.astype(np.float16)}
class TestCase4(TestBase): class TestCase4(TestBase):
def set_feed(self): def set_data_feed(self):
self.feed = { x = np.random.uniform(size=[4, 3, 2])
"x": np.random.uniform(size=[4, 2, 3]).astype('float32'), y = np.random.uniform(size=[4, 2, 3])
"y": np.random.uniform(size=[4, 3, 2]).astype('float32'),
} self.feed_fp32 = {"x": x.astype(np.float32), "y": y.astype(np.float32)}
self.feed_fp16 = {"x": x.astype(np.float16), "y": y.astype(np.float16)}
class TestCase5(TestBase): class TestCase5(TestBase):
def set_feed(self): def set_data_feed(self):
self.feed = { x = np.random.uniform(size=[4, 2, 3])
"x": np.random.uniform(size=[4, 2, 3]).astype('float32'), y = np.random.uniform(size=[3, 2])
"y": np.random.uniform(size=[3, 2]).astype('float32'),
} self.feed_fp32 = {"x": x.astype(np.float32), "y": y.astype(np.float32)}
self.feed_fp16 = {"x": x.astype(np.float16), "y": y.astype(np.float16)}
class TestCase6(TestBase): class TestCase6(TestBase):
def set_feed(self): def set_data_feed(self):
self.feed = { x = np.random.uniform(size=[3])
"x": np.random.uniform(size=[3]).astype('float32'),
"y": np.random.uniform(size=[3]).astype('float32'), self.feed_fp32 = {"x": x.astype(np.float32), "y": x.astype(np.float32)}
} self.feed_fp16 = {"x": x.astype(np.float16), "y": x.astype(np.float16)}
@unittest.skip("not supported") @unittest.skip("not supported")
class TestCase6_2(TestCase6): class TestCase6_2(TestCase6):
def set_feed(self): def set_data_feed(self):
self.feed = { x = np.random.uniform(size=[3])
"x": np.random.uniform(size=[3]).astype('float32'),
"y": np.random.uniform(size=[3]).astype('float32'), self.feed_fp32 = {"x": x.astype(np.float32), "y": x.astype(np.float32)}
} self.feed_fp16 = {"x": x.astype(np.float16), "y": x.astype(np.float16)}
def set_attrs(self): def set_op_attrs(self):
self.attrs = { self.attrs = {
"transpose_x": True, "transpose_x": True,
"transpose_y": True, "transpose_y": True,
...@@ -176,27 +187,36 @@ class TestCase6_2(TestCase6): ...@@ -176,27 +187,36 @@ class TestCase6_2(TestCase6):
class TestCase7(TestBase): class TestCase7(TestBase):
def set_feed(self): def set_data_feed(self):
self.feed = { x = np.random.uniform(size=[1, 12, 128, 64])
"x": np.random.uniform(size=[3, 1]).astype('float32'), y = np.random.uniform(size=[1, 12, 128, 64])
"y": np.random.uniform(size=[1, 2]).astype('float32'),
} self.feed_fp32 = {"x": x.astype(np.float32), "y": y.astype(np.float32)}
self.feed_fp16 = {"x": x.astype(np.float16), "y": y.astype(np.float16)}
def set_op_attrs(self):
self.attrs = {"transpose_x": False, "transpose_y": True, "alpha": 0.125}
class TestCase8(TestBase):
def set_data_feed(self):
x = np.random.uniform(size=[3, 1])
y = np.random.uniform(size=[1, 2])
self.feed_fp32 = {"x": x.astype(np.float32), "y": y.astype(np.float32)}
self.feed_fp16 = {"x": x.astype(np.float16), "y": y.astype(np.float16)}
@unittest.skip("not supported") @unittest.skip("not supported")
class TestCase7_2(TestBase): class TestCase8_2(TestBase):
def set_feed(self): def set_data_feed(self):
self.feed = { x = np.random.uniform(size=[3])
"x": np.random.uniform(size=[3]).astype('float32'), y = np.random.uniform(size=[2])
"y": np.random.uniform(size=[2]).astype('float32'),
}
# equal to
# self.feed = {
# "x": np.random.uniform(size=[3, 1]).astype('float32'),
# "y": np.random.uniform(size=[1, 2]).astype('float32'),
# }
def set_attrs(self): self.feed_fp32 = {"x": x.astype(np.float32), "y": y.astype(np.float32)}
self.feed_fp16 = {"x": x.astype(np.float16), "y": y.astype(np.float16)}
def set_op_attrs(self):
self.attrs = { self.attrs = {
"transpose_x": True, "transpose_x": True,
"transpose_y": True, "transpose_y": True,
...@@ -205,12 +225,12 @@ class TestCase7_2(TestBase): ...@@ -205,12 +225,12 @@ class TestCase7_2(TestBase):
@unittest.skip("dim > 4 is not supported") @unittest.skip("dim > 4 is not supported")
class TestCase8(TestBase): class TestCase9(TestBase):
def set_feed(self): def set_data_feed(self):
self.feed = { x = np.random.uniform(size=[6, 5, 4, 2, 3])
"x": np.random.uniform(size=[6, 5, 4, 2, 3]).astype('float32'),
"y": np.random.uniform(size=[6, 5, 4, 3, 2]).astype('float32'), self.feed_fp32 = {"x": x.astype(np.float32), "y": x.astype(np.float32)}
} self.feed_fp16 = {"x": x.astype(np.float16), "y": x.astype(np.float16)}
if __name__ == "__main__": if __name__ == "__main__":
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册