From a0478084f8ab6e85c715c5c0aa0882f8c3495252 Mon Sep 17 00:00:00 2001 From: minqiyang Date: Mon, 1 Apr 2019 20:53:16 +0800 Subject: [PATCH] Right transformer --- .../unittests/test_imperative_transformer.py | 22 ++++++++++++++----- 1 file changed, 16 insertions(+), 6 deletions(-) diff --git a/python/paddle/fluid/tests/unittests/test_imperative_transformer.py b/python/paddle/fluid/tests/unittests/test_imperative_transformer.py index 0bd3789fcac..f1c60fe63a7 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_transformer.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_transformer.py @@ -517,7 +517,7 @@ class DecoderSubLayer(Layer): y = self._preprocess_layer(None, input, "n", 0.1) slf_attn_output = self._multihead_attention_layer(y, None, None, slf_attn_bias) - return slf_attn_output + return slf_attn_output, y class TestDygraphTransformer(unittest.TestCase): @@ -536,7 +536,7 @@ class TestDygraphTransformer(unittest.TestCase): dy_param_init = dict() dy_param_updated = dict() for i in range(batch_num): - loss = transformer(to_variable(x1), to_variable(x2)) + loss, y = transformer(to_variable(x1), to_variable(x2)) loss = fluid.layers.reduce_sum(loss) print('dy los', loss.shape) if i == 0: @@ -545,6 +545,7 @@ class TestDygraphTransformer(unittest.TestCase): loss._backward() optimizer.minimize(loss) + dy_key_value = y._gradient() transformer.clear_gradients() if i == batch_num - 1: for param in transformer.parameters(): @@ -563,7 +564,7 @@ class TestDygraphTransformer(unittest.TestCase): data1 = fluid.layers.data(name='X', shape=[4, 512], dtype='float32') data2 = fluid.layers.data( name='Y', shape=[8, 4, 4], dtype='float32') - loss = transformer(data1, data2) + loss, y = transformer(data1, data2) loss = fluid.layers.reduce_sum(loss) print('loss hspae', loss.shape) @@ -580,24 +581,33 @@ class TestDygraphTransformer(unittest.TestCase): for i in range(len(static_param_name_list)): static_param_init[static_param_name_list[i]] = out[i] + print(fluid.default_main_program()) for i in range(batch_num): feed_dict = {"X": x1, "Y": x2} - fetch_list = [] + fetch_list = [ + "transformer/DecoderSubLayer_0/PrePostProcessLayer_0/LayerNorm_0.tmp_2@GRAD" + ] fetch_list.extend(static_param_name_list) out = exe.run(fluid.default_main_program(), feed=feed_dict, fetch_list=fetch_list) if i == batch_num - 1: - for k in range(0, len(out)): + static_key_value = out[0] + for k in range(1, len(out)): static_param_updated[static_param_name_list[k - - 0]] = out[k] + 1]] = out[k] for key, value in six.iteritems(static_param_init): self.assertTrue(np.array_equal(value, dy_param_init[key])) for key, value in six.iteritems(static_param_updated): if not (value == dy_param_updated[key]).all(): print(key) + if not np.array_equal(dy_key_value, static_key_value): + print("xxx", dy_key_value, static_key_value) + print("yyy") + print(dy_key_value - static_key_value) + print(np.where(dy_key_value - static_key_value)) if __name__ == '__main__': -- GitLab