未验证 提交 a0363d18 编写于 作者: C Chenxiao Niu 提交者: GitHub

[MLU] add UTs for mlu interp_v2(bilinear). (#43386)

上级 67bd5d9c
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import sys
sys.path.append('..')
from op_test import OpTest
import paddle.fluid.core as core
import paddle.fluid as fluid
from paddle.nn.functional import interpolate
import paddle
paddle.enable_static()
def bilinear_interp_np(input,
out_h,
out_w,
scale_w=0,
scale_h=0,
out_size=None,
actual_shape=None,
align_corners=True,
align_mode=0,
data_layout='NCHW'):
"""bilinear interpolation implement in shape [N, C, H, W]"""
if data_layout == "NHWC":
input = np.transpose(input, (0, 3, 1, 2)) # NHWC => NCHW
if out_size is not None:
out_h = out_size[0]
out_w = out_size[1]
if actual_shape is not None:
out_h = actual_shape[0]
out_w = actual_shape[1]
batch_size, channel, in_h, in_w = input.shape
ratio_h = ratio_w = 0.0
if out_h > 1:
if (align_corners):
ratio_h = (in_h - 1.0) / (out_h - 1.0)
else:
if scale_h > 0:
ratio_h = 1.0 / scale_h
else:
ratio_h = 1.0 * in_h / out_h
if out_w > 1:
if (align_corners):
ratio_w = (in_w - 1.0) / (out_w - 1.0)
else:
if scale_w > 0:
ratio_w = 1.0 / scale_w
else:
ratio_w = 1.0 * in_w / out_w
out = np.zeros((batch_size, channel, out_h, out_w))
for i in range(out_h):
if (align_mode == 0 and not align_corners):
h = int(ratio_h * (i + 0.5) - 0.5)
else:
h = int(ratio_h * i)
h = max(0, h)
hid = 1 if h < in_h - 1 else 0
if (align_mode == 0 and not align_corners):
idx_src_h = max(ratio_h * (i + 0.5) - 0.5, 0)
h1lambda = idx_src_h - h
else:
h1lambda = ratio_h * i - h
h2lambda = 1.0 - h1lambda
for j in range(out_w):
if (align_mode == 0 and not align_corners):
w = int(ratio_w * (j + 0.5) - 0.5)
else:
w = int(ratio_w * j)
w = max(0, w)
wid = 1 if w < in_w - 1 else 0
if (align_mode == 0 and not align_corners):
idx_src_w = max(ratio_w * (j + 0.5) - 0.5, 0)
w1lambda = idx_src_w - w
else:
w1lambda = ratio_w * j - w
w2lambda = 1.0 - w1lambda
out[:, :, i, j] = h2lambda*(w2lambda*input[:, :, h, w] +
w1lambda*input[:, :, h, w+wid]) + \
h1lambda*(w2lambda*input[:, :, h+hid, w] +
w1lambda*input[:, :, h+hid, w+wid])
if data_layout == "NHWC":
out = np.transpose(out, (0, 2, 3, 1)) # NCHW => NHWC
return out.astype(input.dtype)
class TestBilinearInterpOp(OpTest):
def setUp(self):
self.place = paddle.device.MLUPlace(0)
self.__class__.use_mlu = True
self.out_size = None
self.actual_shape = None
self.data_layout = 'NCHW'
self.init_test_case()
self.dtype = "float32"
self.op_type = "bilinear_interp_v2"
input_np = np.random.random(self.input_shape).astype(self.dtype)
if self.data_layout == "NCHW":
in_h = self.input_shape[2]
in_w = self.input_shape[3]
else:
in_h = self.input_shape[1]
in_w = self.input_shape[2]
scale_h = 0
scale_w = 0
if self.scale:
if isinstance(self.scale, float) or isinstance(self.scale, int):
if self.scale > 0.:
scale_h = scale_w = float(self.scale)
if isinstance(self.scale, list) and len(self.scale) == 1:
scale_w = scale_h = self.scale[0]
elif isinstance(self.scale, list) and len(self.scale) > 1:
scale_w = self.scale[1]
scale_h = self.scale[0]
out_h = int(in_h * scale_h)
out_w = int(in_w * scale_w)
else:
out_h = self.out_h
out_w = self.out_w
output_np = bilinear_interp_np(input_np, out_h, out_w, 0, 0,
self.out_size, self.actual_shape,
self.align_corners, self.align_mode,
self.data_layout)
self.inputs = {'X': input_np}
if self.out_size is not None:
self.inputs['OutSize'] = self.out_size
if self.actual_shape is not None:
self.inputs['OutSize'] = self.actual_shape
self.attrs = {
'out_h': self.out_h,
'out_w': self.out_w,
'interp_method': self.interp_method,
'align_corners': self.align_corners,
'align_mode': self.align_mode,
'data_layout': self.data_layout
}
if self.scale:
if isinstance(self.scale, float) or isinstance(self.scale, int):
if self.scale > 0.:
self.scale = [self.scale]
if isinstance(self.scale, list) and len(self.scale) == 1:
self.scale = [self.scale[0], self.scale[0]]
self.attrs['scale'] = self.scale
self.outputs = {'Out': output_np}
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad(self):
self.check_grad_with_place(self.place, ['X'], 'Out', in_place=True)
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [2, 3, 5, 5]
self.out_h = 2
self.out_w = 2
self.scale = 0.
self.out_size = np.array([3, 3]).astype("int32")
self.align_corners = True
self.align_mode = 1
class TestBilinearInterpCase1(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [4, 1, 7, 8]
self.out_h = 1
self.out_w = 1
self.scale = 0.
self.align_corners = True
self.align_mode = 1
class TestBilinearInterpCase2(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [3, 3, 9, 6]
self.out_h = 12
self.out_w = 12
self.scale = 0.
self.align_corners = True
self.align_mode = 1
class TestBilinearInterpCase3(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [1, 1, 32, 64]
self.out_h = 64
self.out_w = 32
self.scale = 0.
self.align_corners = True
self.align_mode = 1
def test_check_output(self):
self.check_output_with_place(self.place, atol=1e-5)
class TestBilinearInterpCase4(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [4, 1, 7, 8]
self.out_h = 1
self.out_w = 1
self.scale = 0.
self.out_size = np.array([2, 2]).astype("int32")
self.align_corners = True
self.align_mode = 1
class TestBilinearInterpCase5(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [3, 3, 9, 6]
self.out_h = 12
self.out_w = 12
self.scale = 0.
self.out_size = np.array([11, 11]).astype("int32")
self.align_corners = True
self.align_mode = 1
class TestBilinearInterpCase6(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [1, 1, 32, 64]
self.out_h = 64
self.out_w = 32
self.scale = 0.
self.out_size = np.array([65, 33]).astype("int32")
self.align_corners = True
self.align_mode = 1
class TestBilinearInterpCase7(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [1, 1, 32, 64]
self.out_h = 64
self.out_w = 32
self.scale = [2.0, 0.5]
self.align_corners = False
self.align_mode = 1
class TestBilinearInterpSame(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [2, 3, 32, 64]
self.out_h = 32
self.out_w = 64
self.scale = 0.
self.align_corners = True
self.align_mode = 1
class TestBilinearInterpActualShape(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [3, 2, 32, 16]
self.out_h = 64
self.out_w = 32
self.scale = 0.
self.out_size = np.array([66, 40]).astype("int32")
self.align_corners = True
self.align_mode = 1
class TestBilinearInterpDataLayout(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [2, 5, 5, 3]
self.out_h = 2
self.out_w = 2
self.scale = 0.
self.out_size = np.array([3, 3]).astype("int32")
self.align_corners = True
self.align_mode = 1
self.data_layout = "NHWC"
class TestBilinearInterpOtherMethod1(TestBilinearInterpOp):
def set_align_mode(self):
self.align_corners = False
self.align_mode = 1
class TestBilinearInterpWithMethod2(TestBilinearInterpOp):
def set_align_mode(self):
self.align_corners = False
self.align_mode = 0
class TestBilinearInterpWithMethod3(TestBilinearInterpOp):
def set_align_mode(self):
self.align_corners = True
self.align_mode = 0
class TestBilinearInterpScale1(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [2, 3, 5, 7]
self.out_h = 60
self.out_w = 25
self.scale = 2.
self.align_corners = True
self.align_mode = 1
class TestBilinearInterpScale2(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [2, 3, 5, 7]
self.out_h = 60
self.out_w = 25
self.scale = 1.
self.align_corners = True
self.align_mode = 1
class TestBilinearInterpScale3(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [2, 3, 5, 7]
self.out_h = 60
self.out_w = 25
self.scale = 1.5
self.align_corners = True
self.align_mode = 1
class TestBilinearInterpScale4(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [2, 3, 5, 7]
self.out_h = 60
self.out_w = 25
self.scale = [1.5, 0.5]
self.align_corners = True
self.align_mode = 1
class TestBilinearInterpZero(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [2, 3, 5, 7]
self.out_h = 60
self.out_w = 25
self.scale = 0.2
self.align_corners = False
self.align_mode = 0
class TestBilinearInterpOp_attr_tensor(OpTest):
def setUp(self):
self.place = paddle.device.MLUPlace(0)
self.__class__.use_mlu = True
self.out_size = None
self.actual_shape = None
self.init_test_case()
self.op_type = "bilinear_interp_v2"
self.shape_by_1Dtensor = False
self.scale_by_1Dtensor = False
self.attrs = {
'interp_method': self.interp_method,
'align_corners': self.align_corners,
}
input_np = np.random.random(self.input_shape).astype("float32")
self.inputs = {'X': input_np}
if self.scale_by_1Dtensor:
self.inputs['Scale'] = np.array([self.scale]).astype("float32")
elif self.scale:
if isinstance(self.scale, float) or isinstance(self.scale, int):
if self.scale > 0:
scale_h = scale_w = float(self.scale)
if isinstance(self.scale, list) and len(self.scale) == 1:
scale_w = scale_h = self.scale[0]
elif isinstance(self.scale, list) and len(self.scale) > 1:
scale_w = self.scale[1]
scale_h = self.scale[0]
out_h = int(self.input_shape[2] * scale_h)
out_w = int(self.input_shape[3] * scale_w)
else:
out_h = self.out_h
out_w = self.out_w
if self.shape_by_1Dtensor:
self.inputs['OutSize'] = self.out_size
elif self.out_size is not None:
size_tensor = []
for index, ele in enumerate(self.out_size):
size_tensor.append(("x" + str(index), np.ones(
(1)).astype('int32') * ele))
self.inputs['SizeTensor'] = size_tensor
self.attrs['out_h'] = self.out_h
self.attrs['out_w'] = self.out_w
if self.scale:
if isinstance(self.scale, float) or isinstance(self.scale, int):
if self.scale > 0:
self.scale = [self.scale]
if isinstance(self.scale, list) and len(self.scale) == 1:
self.scale = [self.scale[0], self.scale[0]]
self.attrs['scale'] = self.scale
output_np = bilinear_interp_np(input_np, out_h, out_w, 0, 0,
self.out_size, self.actual_shape,
self.align_corners)
self.outputs = {'Out': output_np}
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad(self):
self.check_grad_with_place(self.place, ['X'], 'Out', in_place=True)
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [2, 3, 5, 5]
self.out_h = 3
self.out_w = 3
self.scale = 0.
self.out_size = [3, 3]
self.align_corners = True
# out_size is a 1-D tensor
class TestBilinearInterp_attr_tensor_Case1(TestBilinearInterpOp_attr_tensor):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [3, 3, 9, 6]
self.out_h = 12
self.out_w = 12
self.scale = 0.
self.out_size = [8, 12]
self.align_corners = True
# scale is a 1-D tensor
class TestBilinearInterp_attr_tensor_Case2(TestBilinearInterpOp_attr_tensor):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [3, 2, 32, 16]
self.out_h = 64
self.out_w = 32
self.scale = 0.
self.out_size = np.array([66, 40]).astype("int32")
self.align_corners = True
self.shape_by_1Dtensor = True
# scale is a 1-D tensor
class TestBilinearInterp_attr_tensor_Case3(TestBilinearInterpOp_attr_tensor):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [3, 2, 32, 16]
self.out_h = 64
self.out_w = 32
self.scale = 2.0
self.out_size = None
self.align_corners = True
self.scale_by_1Dtensor = True
#TODO: comment this test for now until bilinear_interp_op added.
# class TestBilinearInterpOpAPI(unittest.TestCase):
# def test_case(self):
# x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")
# dim = fluid.data(name="dim", shape=[1], dtype="int32")
# shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
# actual_size = fluid.data(name="actual_size", shape=[2], dtype="int32")
# scale_tensor = fluid.data(
# name="scale_tensor", shape=[1], dtype="float32")
# out1 = fluid.layers.resize_bilinear(x, out_shape=[12, 12])
# out2 = fluid.layers.resize_bilinear(x, out_shape=[12, dim])
# out3 = fluid.layers.resize_bilinear(x, out_shape=shape_tensor)
# out4 = fluid.layers.resize_bilinear(
# x, out_shape=[4, 4], actual_shape=actual_size)
# out5 = fluid.layers.resize_bilinear(x, scale=scale_tensor)
# x_data = np.random.random((2, 3, 6, 6)).astype("float32")
# dim_data = np.array([12]).astype("int32")
# shape_data = np.array([12, 12]).astype("int32")
# actual_size_data = np.array([12, 12]).astype("int32")
# scale_data = np.array([2.0]).astype("float32")
# if core.is_compiled_with_mlu():
# place = paddle.device.MLUPlace(0)
# else:
# place = core.CPUPlace()
# exe = fluid.Executor(place)
# exe.run(fluid.default_startup_program())
# results = exe.run(fluid.default_main_program(),
# feed={
# "x": x_data,
# "dim": dim_data,
# "shape_tensor": shape_data,
# "actual_size": actual_size_data,
# "scale_tensor": scale_data
# },
# fetch_list=[out1, out2, out3, out4, out5],
# return_numpy=True)
# expect_res = bilinear_interp_np(
# x_data, out_h=12, out_w=12, align_corners=True)
# for res in results:
# self.assertTrue(np.allclose(res, expect_res))
class TestBilinearInterpOpAPI_dy(unittest.TestCase):
def test_case(self):
import paddle
if core.is_compiled_with_mlu():
place = paddle.device.MLUPlace(0)
else:
place = core.CPUPlace()
with fluid.dygraph.guard(place):
input_data = np.random.random((2, 3, 6, 6)).astype("float32")
input_data = np.load('input.npy').astype("float32")
# print(input_data)
input_x = paddle.to_tensor(input_data)
expect_res = bilinear_interp_np(input_data,
out_h=12,
out_w=12,
align_corners=False)
out = interpolate(x=input_x,
size=[12, 12],
mode="bilinear",
align_corners=False)
self.assertTrue(np.allclose(out.numpy(), expect_res))
class TestBilinearInterpOpAPI_dy2(unittest.TestCase):
def test_case(self):
import paddle
if core.is_compiled_with_mlu():
place = paddle.device.MLUPlace(0)
else:
place = core.CPUPlace()
with fluid.dygraph.guard(place):
input_data = np.random.random((2, 3, 6, 6)).astype("float32")
size_np = np.array([12, 12]).astype("int64")
input_x = paddle.to_tensor(input_data)
size = paddle.to_tensor(size_np)
expect_res = bilinear_interp_np(input_data,
out_h=12,
out_w=12,
align_corners=False)
out = interpolate(x=input_x,
size=size,
mode="bilinear",
align_corners=False)
self.assertTrue(np.allclose(out.numpy(), expect_res))
class TestBilinearInterpOpAPI_dy3(unittest.TestCase):
def test_case(self):
import paddle
if core.is_compiled_with_mlu():
place = paddle.device.MLUPlace(0)
else:
place = core.CPUPlace()
with fluid.dygraph.guard(place):
input_data = np.random.random((2, 3, 6, 6)).astype("float32")
size_1 = np.array([12]).astype("int64")
input_x = paddle.to_tensor(input_data)
size = paddle.to_tensor(size_1)
expect_res = bilinear_interp_np(input_data,
out_h=12,
out_w=12,
align_corners=False)
out = interpolate(x=input_x,
size=[size, size],
mode="bilinear",
align_corners=False)
self.assertTrue(np.allclose(out.numpy(), expect_res))
class TestBilinearInterpOpAPI_dy4(unittest.TestCase):
def test_case(self):
import paddle
if core.is_compiled_with_mlu():
place = paddle.device.MLUPlace(0)
else:
place = core.CPUPlace()
with fluid.dygraph.guard(place):
input_data = np.random.random((2, 3, 6, 6)).astype("float32")
scale_np = np.array([2, 2]).astype("int64")
input_x = paddle.to_tensor(input_data)
scale = paddle.to_tensor(scale_np)
expect_res = bilinear_interp_np(input_data,
out_h=12,
out_w=12,
align_corners=False)
out = interpolate(x=input_x,
scale_factor=scale,
mode="bilinear",
align_corners=False)
self.assertTrue(np.allclose(out.numpy(), expect_res))
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册