Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
9ac27ac3
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
9ac27ac3
编写于
8月 25, 2022
作者:
H
handiz
提交者:
GitHub
8月 25, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add new function ptq first then initialize qat scale with ptq scale (#44747)
上级
bdd0b0f1
变更
8
显示空白变更内容
内联
并排
Showing
8 changed file
with
560 addition
and
115 deletion
+560
-115
python/paddle/fluid/contrib/slim/quantization/post_training_quantization.py
...d/contrib/slim/quantization/post_training_quantization.py
+161
-37
python/paddle/fluid/contrib/slim/quantization/quantization_pass.py
...ddle/fluid/contrib/slim/quantization/quantization_pass.py
+102
-49
python/paddle/fluid/contrib/slim/quantization/utils.py
python/paddle/fluid/contrib/slim/quantization/utils.py
+0
-1
python/paddle/fluid/contrib/slim/tests/CMakeLists.txt
python/paddle/fluid/contrib/slim/tests/CMakeLists.txt
+3
-0
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_mobilenetv1.py
...slim/tests/test_post_training_quantization_mobilenetv1.py
+4
-28
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_program_resnet50.py
...tests/test_post_training_quantization_program_resnet50.py
+279
-0
python/paddle/fluid/contrib/slim/tests/test_quantization_mkldnn_pass.py
...fluid/contrib/slim/tests/test_quantization_mkldnn_pass.py
+5
-0
python/paddle/fluid/contrib/slim/tests/test_quantization_pass.py
...paddle/fluid/contrib/slim/tests/test_quantization_pass.py
+6
-0
未找到文件。
python/paddle/fluid/contrib/slim/quantization/post_training_quantization.py
浏览文件 @
9ac27ac3
...
...
@@ -11,12 +11,14 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
math
import
os
import
re
import
math
import
shutil
import
logging
import
numpy
as
np
import
shutil
try
:
from
tqdm
import
tqdm
except
:
...
...
@@ -34,7 +36,10 @@ from .cal_kl_threshold import cal_kl_threshold
from
.adaround
import
run_adaround
from
.
import
utils
__all__
=
[
'PostTrainingQuantization'
,
'WeightQuantization'
]
__all__
=
[
'PostTrainingQuantization'
,
'WeightQuantization'
,
'PostTrainingQuantizationProgram'
]
_logger
=
get_logger
(
__name__
,
logging
.
INFO
,
...
...
@@ -108,9 +113,9 @@ class PostTrainingQuantization(object):
"""
def
__init__
(
self
,
executor
=
None
,
executor
,
model_dir
,
scope
=
None
,
model_dir
=
None
,
model_filename
=
None
,
params_filename
=
None
,
batch_generator
=
None
,
...
...
@@ -130,10 +135,15 @@ class PostTrainingQuantization(object):
activation_quantize_type
=
'range_abs_max'
,
weight_quantize_type
=
'channel_wise_abs_max'
,
onnx_format
=
False
,
freeze_model
=
True
,
optimize_model
=
False
,
is_use_cache_file
=
False
,
skip_tensor_list
=
None
,
cache_dir
=
None
):
same_scale_tensor_list
=
None
,
scale_trainable
=
False
,
cache_dir
=
None
,
scale_dict
=
None
,
return_graph
=
False
):
'''
Constructor.
...
...
@@ -206,7 +216,12 @@ class PostTrainingQuantization(object):
the model accuracy is usually higher when it is 'channel_wise_abs_max'.
onnx_format(bool): Whether to export the quantized model with format of ONNX.
Default is False.
skip_tensor_list(list): List of skip quant tensor name.
freeze_model(bool): Whether to convert quantized and trained ``program`` to final
quantized ``program``. Default: True.
skip_tensor_list(list): List of skip quant tensor name. Default: None.
same_scale_tensor_list(list(list)): The list of tensor keep same scale in the outermost
list, the final scale about every list is the max of the scale in the list
of tensor. Default: None.
optimize_model(bool, optional): If set optimize_model as True, it applies
some passes to the model before quantization, and it supports
`conv2d/depthwise_conv2d + bn` pass so far. Some targets require the
...
...
@@ -215,6 +230,7 @@ class PostTrainingQuantization(object):
`conv2d/depthwise_conv2d + bn`, the weights scale for all channel will
be different. In address this problem, fuse the pattern before
quantization. Default False.
scale_trainable(bool, optional): whether scale can be train.
is_use_cache_file(bool, optional): This param is deprecated.
cache_dir(str, optional): This param is deprecated.
Returns:
...
...
@@ -275,7 +291,6 @@ class PostTrainingQuantization(object):
# Check inputs
assert
executor
is
not
None
,
"The executor cannot be None."
assert
model_dir
is
not
None
,
"The model_dir cannot be None."
assert
any
([
gen
is
not
None
]
for
gen
in
[
sample_generator
,
batch_generator
,
data_loader
]),
"The sample_generator, batch_generator "
\
"and data_loader cannot be None in the same time."
...
...
@@ -347,6 +362,11 @@ class PostTrainingQuantization(object):
self
.
_best_calibration_loss
=
{}
# The threshold for algo = abs_max, mse or avg
self
.
_quantized_threshold
=
{}
self
.
_same_scale_tensor_list
=
same_scale_tensor_list
self
.
_freeze_model
=
freeze_model
self
.
_scale_trainable
=
scale_trainable
self
.
_scale_dict
=
scale_dict
self
.
_return_graph
=
return_graph
def
quantize
(
self
):
'''
...
...
@@ -441,7 +461,11 @@ class PostTrainingQuantization(object):
persistables
.
extend
(
_op
.
input
(
'X'
))
_op
.
desc
.
set_input
(
"X"
,
persistables
)
if
not
self
.
_return_graph
:
return
self
.
_program
else
:
main_graph
=
IrGraph
(
core
.
Graph
(
self
.
_program
.
desc
),
for_test
=
True
)
return
main_graph
def
_adaround_apply
(
self
):
assert
self
.
_algo
!=
"min_max"
,
"The algo should not be min_max."
...
...
@@ -495,6 +519,7 @@ class PostTrainingQuantization(object):
'''
Load model and set data loader.
'''
if
self
.
_program
is
None
:
_logger
.
info
(
"Load model and set data loader ..."
)
[
self
.
_program
,
self
.
_feed_list
,
self
.
_fetch_list
]
=
\
io
.
load_inference_model
(
dirname
=
self
.
_model_dir
,
...
...
@@ -972,7 +997,8 @@ class PostTrainingQuantization(object):
activation_bits
=
self
.
_activation_bits
,
activation_quantize_type
=
self
.
_activation_quantize_type
,
weight_quantize_type
=
self
.
_weight_quantize_type
,
quantizable_op_type
=
major_quantizable_op_types
)
quantizable_op_type
=
major_quantizable_op_types
,
is_test
=
not
self
.
_scale_trainable
)
else
:
transform_pass
=
QuantizationTransformPassV2
(
scope
=
self
.
_scope
,
...
...
@@ -981,7 +1007,8 @@ class PostTrainingQuantization(object):
activation_bits
=
self
.
_activation_bits
,
activation_quantize_type
=
self
.
_activation_quantize_type
,
weight_quantize_type
=
self
.
_weight_quantize_type
,
quantizable_op_type
=
major_quantizable_op_types
)
quantizable_op_type
=
major_quantizable_op_types
,
is_test
=
not
self
.
_scale_trainable
)
for
sub_graph
in
graph
.
all_sub_graphs
():
# Insert fake_quant/fake_dequantize op must in test graph, so
...
...
@@ -998,24 +1025,68 @@ class PostTrainingQuantization(object):
add_quant_dequant_pass
=
AddQuantDequantPass
(
scope
=
self
.
_scope
,
place
=
self
.
_place
,
quantizable_op_type
=
minor_quantizable_op_types
)
quantizable_op_type
=
minor_quantizable_op_types
,
is_test
=
not
self
.
_scale_trainable
)
else
:
add_quant_dequant_pass
=
AddQuantDequantPassV2
(
scope
=
self
.
_scope
,
place
=
self
.
_place
,
quantizable_op_type
=
minor_quantizable_op_types
,
is_full_quantized
=
self
.
_is_full_quantize
)
is_full_quantized
=
self
.
_is_full_quantize
,
is_test
=
not
self
.
_scale_trainable
)
for
sub_graph
in
graph
.
all_sub_graphs
():
sub_graph
.
_for_test
=
True
add_quant_dequant_pass
.
apply
(
sub_graph
)
# save threshold to scale var node
if
self
.
_scale_dict
is
None
:
if
self
.
_algo
in
[
"KL"
,
"hist"
]:
scale_dict
=
self
.
_quantized_var_threshold
else
:
scale_dict
=
self
.
_quantized_threshold
for
key
,
val
in
scale_dict
.
items
():
if
self
.
_same_scale_tensor_list
is
not
None
:
for
tensor_list
in
self
.
_same_scale_tensor_list
:
max_scale
=
None
tmp_tensor_list
=
[]
for
tensor_name
in
tensor_list
:
if
'#'
in
tensor_name
:
real_tensor_name
,
opera
,
scalar
=
tensor_name
.
split
(
'#'
)
if
opera
==
'*'
:
scale_dict
[
real_tensor_name
]
=
float
(
scale_dict
[
real_tensor_name
])
*
float
(
scalar
)
elif
opera
==
'/'
:
scale_dict
[
real_tensor_name
]
=
float
(
scale_dict
[
real_tensor_name
])
/
float
(
scalar
)
max_scale
=
scale_dict
[
real_tensor_name
]
if
max_scale
is
None
else
max
(
max_scale
,
scale_dict
[
real_tensor_name
])
else
:
max_scale
=
scale_dict
[
tensor_name
]
if
max_scale
is
None
else
max
(
max_scale
,
scale_dict
[
tensor_name
])
for
tensor_name
in
tensor_list
:
if
'#'
in
tensor_name
:
real_tensor_name
,
opera
,
scalar
=
tensor_name
.
split
(
'#'
)
if
opera
==
'*'
:
scale_dict
[
real_tensor_name
]
=
max_scale
/
float
(
scalar
)
elif
opera
==
'/'
:
scale_dict
[
real_tensor_name
]
=
max_scale
*
float
(
scalar
)
else
:
scale_dict
[
tensor_name
]
=
max_scale
self
.
_scale_dict
=
scale_dict
for
key
,
val
in
self
.
_scale_dict
.
items
():
utils
.
set_variable_data
(
self
.
_scope
,
self
.
_place
,
key
+
"@scale"
,
np
.
array
([
val
],
dtype
=
np
.
float32
))
utils
.
set_variable_data
(
self
.
_scope
,
self
.
_place
,
...
...
@@ -1024,6 +1095,7 @@ class PostTrainingQuantization(object):
if
not
self
.
_onnx_format
:
# apply QuantizationFreezePass, and obtain the final quant model
if
self
.
_freeze_model
:
freeze_pass
=
QuantizationFreezePass
(
scope
=
self
.
_scope
,
place
=
self
.
_place
,
...
...
@@ -1155,6 +1227,58 @@ class PostTrainingQuantization(object):
return
(
hist_index
-
0.5
)
*
bin_width
class
PostTrainingQuantizationProgram
(
PostTrainingQuantization
):
def
__init__
(
self
,
executor
,
program
,
feed_list
=
None
,
fetch_list
=
None
,
scope
=
None
,
batch_generator
=
None
,
sample_generator
=
None
,
data_loader
=
None
,
batch_size
=
10
,
batch_nums
=
None
,
algo
=
"KL"
,
hist_percent
=
0.99999
,
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
],
round_type
=
'round'
,
learning_rate
=
0.001
,
is_full_quantize
=
False
,
bias_correction
=
False
,
activation_bits
=
8
,
weight_bits
=
8
,
activation_quantize_type
=
'range_abs_max'
,
weight_quantize_type
=
'channel_wise_abs_max'
,
onnx_format
=
False
,
freeze_model
=
True
,
optimize_model
=
False
,
is_use_cache_file
=
False
,
skip_tensor_list
=
None
,
same_scale_tensor_list
=
None
,
scale_trainable
=
False
,
cache_dir
=
None
,
scale_dict
=
None
,
return_graph
=
True
):
super
().
__init__
(
executor
,
scope
,
None
,
None
,
None
,
batch_generator
,
sample_generator
,
data_loader
,
batch_size
,
batch_nums
,
algo
,
hist_percent
,
quantizable_op_type
,
round_type
,
learning_rate
,
is_full_quantize
,
bias_correction
,
activation_bits
,
weight_bits
,
activation_quantize_type
,
weight_quantize_type
,
onnx_format
,
freeze_model
,
optimize_model
,
is_use_cache_file
,
skip_tensor_list
,
same_scale_tensor_list
,
scale_trainable
,
cache_dir
,
scale_dict
,
return_graph
)
self
.
_program
=
program
assert
feed_list
is
not
None
,
\
"Feed list should not be None."
assert
fetch_list
is
not
None
,
\
"Fetch list should not be None."
self
.
_feed_list
=
feed_list
self
.
_fetch_list
=
fetch_list
class
WeightQuantization
(
object
):
_supported_quantizable_op_type
=
[
'conv2d'
,
'depthwise_conv2d'
,
'mul'
]
_supported_weight_quantize_type
=
[
'channel_wise_abs_max'
,
'abs_max'
]
...
...
python/paddle/fluid/contrib/slim/quantization/quantization_pass.py
浏览文件 @
9ac27ac3
...
...
@@ -124,7 +124,8 @@ class QuantizationTransformPass(object):
weight_preprocess_func
=
None
,
act_preprocess_func
=
None
,
optimizer_func
=
None
,
executor
=
None
):
executor
=
None
,
is_test
=
None
):
r
"""
Constructor.
...
...
@@ -241,7 +242,7 @@ class QuantizationTransformPass(object):
self
.
_quantizable_grad_ops
=
[
'%s_grad'
%
(
op
)
for
op
in
self
.
_quantizable_ops
]
self
.
_is_test
=
None
self
.
_is_test
=
is_test
self
.
_global_step
=
None
self
.
create_var_map
=
{}
...
...
@@ -260,6 +261,7 @@ class QuantizationTransformPass(object):
"""
assert
isinstance
(
graph
,
IrGraph
),
'graph must be the instance of IrGraph.'
if
self
.
_is_test
is
None
:
self
.
_is_test
=
graph
.
is_test
()
# marked the variable which has been dequantized.
dequantized_vars
=
collections
.
OrderedDict
()
...
...
@@ -449,16 +451,21 @@ class QuantizationTransformPass(object):
var_type
=
var_node
.
type
(),
shape
=
var_node
.
shape
(),
var_dtype
=
var_node
.
dtype
())
scale_name
=
self
.
_quantized_scale_name
(
name
)
data_type
=
'float64'
if
var_node
.
dtype
(
)
==
core
.
VarDesc
.
VarType
.
FP64
else
'float32'
try
:
scale_value
=
np
.
array
(
self
.
_scope
.
find_var
(
scale_name
).
get_tensor
())
except
:
scale_value
=
np
.
zeros
([
1
],
dtype
=
data_type
)
scale_var_node
=
graph
.
create_persistable_node
(
name
=
s
elf
.
_quantized_scale_name
(
name
)
,
name
=
s
cale_name
,
var_type
=
var_node
.
type
(),
shape
=
[
1
],
var_dtype
=
var_node
.
dtype
())
data_type
=
'float64'
if
var_node
.
dtype
(
)
==
core
.
VarDesc
.
VarType
.
FP64
else
'float32'
_init_var_node
(
scale_var_node
,
np
.
zeros
(
scale_var_node
.
shape
(),
dtype
=
data_type
),
self
.
_scope
,
self
.
_place
)
_init_var_node
(
scale_var_node
,
scale_value
,
self
.
_scope
,
self
.
_place
)
quant_op_node
=
graph
.
create_op_node
(
op_type
=
'fake_quantize_abs_max'
,
attrs
=
{
...
...
@@ -487,16 +494,20 @@ class QuantizationTransformPass(object):
shape
=
var_node
.
shape
(),
var_dtype
=
var_node
.
dtype
())
scale_name
=
self
.
_quantized_scale_name
(
name
)
data_type
=
'float64'
if
var_node
.
dtype
(
)
==
core
.
VarDesc
.
VarType
.
FP64
else
'float32'
try
:
scale_value
=
np
.
array
(
self
.
_scope
.
find_var
(
scale_name
).
get_tensor
())
except
:
scale_value
=
np
.
array
([
_SCALE_DEFAULT_VALUE
],
dtype
=
data_type
)
scale_in_node
=
graph
.
create_persistable_node
(
name
=
s
elf
.
_quantized_scale_name
(
name
)
,
name
=
s
cale_name
,
var_type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
shape
=
[
1
],
var_dtype
=
var_node
.
dtype
())
data_type
=
'float64'
if
var_node
.
dtype
(
)
==
core
.
VarDesc
.
VarType
.
FP64
else
'float32'
_init_var_node
(
scale_in_node
,
np
.
array
([
_SCALE_DEFAULT_VALUE
],
dtype
=
data_type
),
self
.
_scope
,
self
.
_place
)
_init_var_node
(
scale_in_node
,
scale_value
,
self
.
_scope
,
self
.
_place
)
scale_out_node
=
graph
.
create_var_node_from_desc
(
scale_in_node
.
var
())
inputs
=
{
'X'
:
var_node
,
'InScale'
:
scale_in_node
}
...
...
@@ -549,16 +560,20 @@ class QuantizationTransformPass(object):
var_type
=
var_node
.
type
(),
shape
=
var_node
.
shape
(),
var_dtype
=
var_node
.
dtype
())
scale_name
=
self
.
_quantized_scale_name
(
name
)
data_type
=
'float64'
if
var_node
.
dtype
(
)
==
core
.
VarDesc
.
VarType
.
FP64
else
'float32'
try
:
scale_value
=
np
.
array
(
self
.
_scope
.
find_var
(
scale_name
).
get_tensor
())
except
:
scale_value
=
np
.
array
([
_SCALE_DEFAULT_VALUE
],
dtype
=
data_type
)
scale_in_node
=
graph
.
create_persistable_node
(
name
=
s
elf
.
_quantized_scale_name
(
name
)
,
name
=
s
cale_name
,
var_type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
shape
=
[
1
],
var_dtype
=
var_node
.
dtype
())
data_type
=
'float64'
if
var_node
.
dtype
(
)
==
core
.
VarDesc
.
VarType
.
FP64
else
'float32'
_init_var_node
(
scale_in_node
,
np
.
array
([
_SCALE_DEFAULT_VALUE
],
dtype
=
data_type
),
self
.
_scope
,
self
.
_place
)
_init_var_node
(
scale_in_node
,
scale_value
,
self
.
_scope
,
self
.
_place
)
scale_out_node
=
graph
.
create_var_node_from_desc
(
scale_in_node
.
var
())
ins
=
{
'X'
:
var_node
,
'InScale'
:
scale_in_node
}
...
...
@@ -628,16 +643,21 @@ class QuantizationTransformPass(object):
var_type
=
var_node
.
type
(),
shape
=
var_node
.
shape
(),
var_dtype
=
var_node
.
dtype
())
scale_name
=
self
.
_quantized_scale_name
(
name
)
data_type
=
'float64'
if
var_node
.
dtype
(
)
==
core
.
VarDesc
.
VarType
.
FP64
else
'float32'
try
:
scale_value
=
np
.
array
(
self
.
_scope
.
find_var
(
scale_name
).
get_tensor
())
except
:
scale_value
=
np
.
zeros
([
var_node
.
shape
()[
quant_axis
]],
dtype
=
data_type
)
scale_var_node
=
graph
.
create_persistable_node
(
name
=
self
.
_quantized_scale_name
(
name
),
var_type
=
var_node
.
type
(),
shape
=
[
var_node
.
shape
()[
quant_axis
]],
var_dtype
=
var_node
.
dtype
())
data_type
=
'float64'
if
var_node
.
dtype
(
)
==
core
.
VarDesc
.
VarType
.
FP64
else
'float32'
_init_var_node
(
scale_var_node
,
np
.
zeros
(
scale_var_node
.
shape
(),
dtype
=
data_type
),
self
.
_scope
,
self
.
_place
)
_init_var_node
(
scale_var_node
,
scale_value
,
self
.
_scope
,
self
.
_place
)
quant_op_node
=
graph
.
create_op_node
(
op_type
=
'fake_channel_wise_quantize_abs_max'
,
attrs
=
{
...
...
@@ -1396,7 +1416,12 @@ class TransformForMobilePass(object):
class
OutScaleForTrainingPass
(
object
):
def
__init__
(
self
,
scope
=
None
,
place
=
None
,
moving_rate
=
0.9
):
def
__init__
(
self
,
scope
=
None
,
place
=
None
,
moving_rate
=
0.9
,
is_test
=
None
,
scale_dict
=
None
):
"""
This pass is used for calculating output scales of some operators.
These output scales may be used by tensorRT or some other inference engines.
...
...
@@ -1411,8 +1436,9 @@ class OutScaleForTrainingPass(object):
self
.
_scope
=
scope
self
.
_place
=
_get_paddle_place
(
place
)
self
.
_moving_rate
=
moving_rate
self
.
_is_test
=
None
self
.
_is_test
=
is_test
self
.
_teller_set
=
utils
.
_out_scale_op_list
self
.
_scale_dict
=
scale_dict
def
apply
(
self
,
graph
):
"""
...
...
@@ -1424,6 +1450,7 @@ class OutScaleForTrainingPass(object):
"""
assert
isinstance
(
graph
,
IrGraph
),
'graph must be the instance of IrGraph.'
if
self
.
_is_test
is
None
:
self
.
_is_test
=
graph
.
is_test
()
target_ops
=
[]
for
op
in
graph
.
all_op_nodes
():
...
...
@@ -1440,22 +1467,29 @@ class OutScaleForTrainingPass(object):
[
core
.
VarDesc
.
VarType
.
FP64
,
core
.
VarDesc
.
VarType
.
FP32
]:
continue
data_type
=
'float64'
if
in_node
.
dtype
()
\
==
core
.
VarDesc
.
VarType
.
FP64
else
'float32'
try
:
graph
.
_find_node_by_name
(
scale_node
=
graph
.
_find_node_by_name
(
graph
.
all_var_nodes
(),
self
.
_scale_name
(
in_node
.
name
()))
continue
except
:
scale_node
=
graph
.
create_persistable_node
(
name
=
self
.
_scale_name
(
in_node
.
name
()),
var_type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
shape
=
[
1
],
var_dtype
=
in_node
.
dtype
())
if
self
.
_scale_dict
is
not
None
:
try
:
scale_value
=
np
.
array
(
[
self
.
_scale_dict
[
in_node
.
name
()]])
except
:
scale_value
=
np
.
ones
([
1
],
dtype
=
data_type
)
else
:
scale_value
=
np
.
ones
([
1
],
dtype
=
data_type
)
_init_var_node
(
scale_node
,
scale_value
,
self
.
_scope
,
self
.
_place
)
data_type
=
'float64'
if
in_node
.
dtype
()
\
==
core
.
VarDesc
.
VarType
.
FP64
else
'float32'
_init_var_node
(
scale_node
,
np
.
ones
([
1
],
dtype
=
data_type
),
self
.
_scope
,
self
.
_place
)
ins
=
{
'X'
:
in_node
}
outs
=
{
'OutScale'
:
scale_node
}
if
not
self
.
_is_test
:
...
...
@@ -1589,7 +1623,9 @@ class AddQuantDequantPass(object):
quant_bits
=
8
,
skip_pattern
=
[
"skip_quant"
],
quantizable_op_type
=
[
"elementwise_add"
,
"pool2d"
],
is_full_quantized
=
False
):
is_full_quantized
=
False
,
is_test
=
None
,
scale_dict
=
None
):
"""
Constructor.
...
...
@@ -1616,8 +1652,9 @@ class AddQuantDequantPass(object):
self
.
_place
=
_get_paddle_place
(
place
)
self
.
_moving_rate
=
moving_rate
self
.
_quant_bits
=
quant_bits
self
.
_is_test
=
None
self
.
_is_test
=
is_test
self
.
_skip_pattern
=
skip_pattern
self
.
_scale_dict
=
scale_dict
if
is_full_quantized
:
self
.
_quantizable_op_type
=
utils
.
_act_supported_quantizable_op_type
...
...
@@ -1645,6 +1682,7 @@ class AddQuantDequantPass(object):
"""
assert
isinstance
(
graph
,
IrGraph
),
'graph must be the instance of IrGraph.'
if
self
.
_is_test
is
None
:
self
.
_is_test
=
graph
.
is_test
()
dequantized_vars_map
=
collections
.
OrderedDict
()
...
...
@@ -1711,17 +1749,28 @@ class AddQuantDequantPass(object):
var_type
=
var_node
.
type
(),
shape
=
var_node
.
shape
(),
var_dtype
=
var_node
.
dtype
())
scale_name
=
"{}.quant_dequant@scale"
.
format
(
var_node
.
name
())
data_type
=
'float64'
if
var_node
.
dtype
(
)
==
core
.
VarDesc
.
VarType
.
FP64
else
'float32'
try
:
if
self
.
_scale_dict
is
not
None
and
var_node
.
name
(
)
in
self
.
_scale_dict
.
keys
():
scale_value
=
np
.
array
([
self
.
_scale_dict
[
var_node
.
name
()]],
dtype
=
data_type
)
else
:
scale_value
=
np
.
array
(
self
.
_scope
.
find_var
(
scale_name
).
get_tensor
(),
dtype
=
data_type
)
except
:
scale_value
=
np
.
array
([
_SCALE_DEFAULT_VALUE
],
dtype
=
data_type
)
scale_in_node
=
graph
.
create_persistable_node
(
name
=
"{}.quant_dequant@scale"
.
format
(
var_node
.
name
()),
var_type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
shape
=
[
1
],
var_dtype
=
var_node
.
dtype
())
data_type
=
'float64'
if
var_node
.
dtype
(
)
==
core
.
VarDesc
.
VarType
.
FP64
else
'float32'
_init_var_node
(
scale_in_node
,
np
.
array
([
_SCALE_DEFAULT_VALUE
],
dtype
=
data_type
),
self
.
_scope
,
self
.
_place
)
_init_var_node
(
scale_in_node
,
scale_value
,
self
.
_scope
,
self
.
_place
)
scale_out_node
=
graph
.
create_var_node_from_desc
(
scale_in_node
.
var
())
ins
=
{
'X'
:
var_node
,
'InScale'
:
scale_in_node
}
outs
=
{
'Out'
:
quant_var_node
,
'OutScale'
:
scale_out_node
}
...
...
@@ -1992,7 +2041,8 @@ class QuantizationTransformPassV2(QuantizationTransformPass):
weight_preprocess_func
=
None
,
act_preprocess_func
=
None
,
optimizer_func
=
None
,
executor
=
None
):
executor
=
None
,
is_test
=
None
):
r
"""
Args:
scope(paddle.Scope): When activation use 'range_abs_max' as the quantize
...
...
@@ -2106,7 +2156,7 @@ class QuantizationTransformPassV2(QuantizationTransformPass):
self
.
_quantizable_grad_ops
=
[
'%s_grad'
%
(
op
)
for
op
in
self
.
_quantizable_ops
]
self
.
_is_test
=
None
self
.
_is_test
=
is_test
self
.
_global_step
=
None
self
.
create_var_map
=
{}
...
...
@@ -2235,6 +2285,7 @@ class QuantizationTransformPassV2(QuantizationTransformPass):
"""
assert
isinstance
(
graph
,
IrGraph
),
'graph must be the instance of IrGraph.'
if
self
.
_is_test
is
None
:
self
.
_is_test
=
graph
.
is_test
()
self
.
persistable_vars
=
[
...
...
@@ -2285,7 +2336,8 @@ class AddQuantDequantPassV2(object):
quant_bits
=
8
,
skip_pattern
=
[
"skip_quant"
],
quantizable_op_type
=
[
"elementwise_add"
,
"pool2d"
],
is_full_quantized
=
False
):
is_full_quantized
=
False
,
is_test
=
None
):
"""
Args:
scope(paddle.Scope): The scope is used to initialize these new parameters.
...
...
@@ -2325,7 +2377,7 @@ class AddQuantDequantPassV2(object):
self
.
_place
=
_get_paddle_place
(
place
)
self
.
_moving_rate
=
moving_rate
self
.
_quant_bits
=
quant_bits
self
.
_is_test
=
None
self
.
_is_test
=
is_test
self
.
_skip_pattern
=
skip_pattern
if
is_full_quantized
:
...
...
@@ -2355,6 +2407,7 @@ class AddQuantDequantPassV2(object):
"""
assert
isinstance
(
graph
,
IrGraph
),
'graph must be the instance of IrGraph.'
if
self
.
_is_test
is
None
:
self
.
_is_test
=
graph
.
is_test
()
dequantized_vars_map
=
collections
.
OrderedDict
()
...
...
python/paddle/fluid/contrib/slim/quantization/utils.py
浏览文件 @
9ac27ac3
...
...
@@ -38,7 +38,6 @@ _act_supported_quantizable_op_type = [
"mean"
,
"not_equal"
,
"reshape"
,
"reshape2"
,
"dropout"
,
"bilinear_interp"
,
"nearest_interp"
,
...
...
python/paddle/fluid/contrib/slim/tests/CMakeLists.txt
浏览文件 @
9ac27ac3
...
...
@@ -246,6 +246,7 @@ if(WIN32)
list
(
REMOVE_ITEM TEST_OPS test_post_training_quantization_while
)
list
(
REMOVE_ITEM TEST_OPS test_post_training_quantization_mobilenetv1
)
list
(
REMOVE_ITEM TEST_OPS test_post_training_quantization_resnet50
)
list
(
REMOVE_ITEM TEST_OPS test_post_training_quantization_program_resnet50
)
list
(
REMOVE_ITEM TEST_OPS test_post_training_quantization_lstm_model
)
list
(
REMOVE_ITEM TEST_OPS test_imperative_ptq
)
list
(
REMOVE_ITEM TEST_OPS test_weight_quantization_mobilenetv1
)
...
...
@@ -520,6 +521,8 @@ endforeach()
if
(
NOT WIN32
)
set_tests_properties
(
test_post_training_quantization_lstm_model
PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_post_training_quantization_program_resnet50
PROPERTIES TIMEOUT 240
)
set_tests_properties
(
test_post_training_quantization_mobilenetv1
PROPERTIES TIMEOUT 600 LABELS
"RUN_TYPE=NIGHTLY"
)
set_tests_properties
(
test_post_training_quantization_resnet50
...
...
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_mobilenetv1.py
浏览文件 @
9ac27ac3
...
...
@@ -292,13 +292,13 @@ class TestPostTrainingQuantization(unittest.TestCase):
print
(
"Start FP32 inference for {0} on {1} images ..."
.
format
(
model
,
infer_iterations
*
batch_size
))
(
fp32_throughput
,
fp32_latency
,
fp32_acc1
)
=
self
.
run_program
(
model_cache_folder
+
"/model"
,
batch_size
,
infer_iterations
)
(
fp32_throughput
,
fp32_latency
,
fp32_acc1
)
=
self
.
run_program
(
os
.
path
.
join
(
model_cache_folder
,
"model"
),
batch_size
,
infer_iterations
)
print
(
"Start INT8 post training quantization for {0} on {1} images ..."
.
format
(
model
,
sample_iterations
*
batch_size
))
self
.
generate_quantized_model
(
model_cache_folder
+
"/model"
,
self
.
generate_quantized_model
(
os
.
path
.
join
(
model_cache_folder
,
"model"
)
,
quantizable_op_type
,
algo
,
round_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
onnx_format
)
...
...
@@ -454,29 +454,5 @@ class TestPostTrainingAvgONNXFormatForMobilenetv1(TestPostTrainingQuantization):
onnx_format
=
onnx_format
)
class
TestPostTrainingPtfForMobilenetv1
(
TestPostTrainingQuantization
):
def
test_post_training_ptf_mobilenetv1
(
self
):
model
=
"MobileNet-V1"
algo
=
"ptf"
round_type
=
"round"
data_urls
=
[
'http://paddle-inference-dist.bj.bcebos.com/int8/mobilenetv1_int8_model.tar.gz'
]
data_md5s
=
[
'13892b0716d26443a8cdea15b3c6438b'
]
quantizable_op_type
=
[
"conv2d"
,
"mul"
,
]
is_full_quantize
=
False
is_use_cache_file
=
False
is_optimize_model
=
False
# The accuracy diff of post-training quantization (abs_max) maybe bigger
diff_threshold
=
0.05
self
.
run_test
(
model
,
algo
,
round_type
,
data_urls
,
data_md5s
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_program_resnet50.py
0 → 100644
浏览文件 @
9ac27ac3
# copyright (c) 2018 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
# http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.
import
os
import
sys
import
time
import
paddle
import
random
import
unittest
import
functools
import
contextlib
import
numpy
as
np
import
paddle.fluid
as
fluid
from
PIL
import
Image
,
ImageEnhance
from
paddle.fluid.contrib.slim.quantization
import
PostTrainingQuantizationProgram
from
test_post_training_quantization_mobilenetv1
import
TestPostTrainingQuantization
paddle
.
enable_static
()
random
.
seed
(
0
)
np
.
random
.
seed
(
0
)
THREAD
=
1
DATA_DIM
=
224
BUF_SIZE
=
102400
DATA_DIR
=
'data/ILSVRC2012'
img_mean
=
np
.
array
([
0.485
,
0.456
,
0.406
]).
reshape
((
3
,
1
,
1
))
img_std
=
np
.
array
([
0.229
,
0.224
,
0.225
]).
reshape
((
3
,
1
,
1
))
def
resize_short
(
img
,
target_size
):
percent
=
float
(
target_size
)
/
min
(
img
.
size
[
0
],
img
.
size
[
1
])
resized_width
=
int
(
round
(
img
.
size
[
0
]
*
percent
))
resized_height
=
int
(
round
(
img
.
size
[
1
]
*
percent
))
img
=
img
.
resize
((
resized_width
,
resized_height
),
Image
.
LANCZOS
)
return
img
def
crop_image
(
img
,
target_size
,
center
):
width
,
height
=
img
.
size
size
=
target_size
if
center
==
True
:
w_start
=
(
width
-
size
)
/
2
h_start
=
(
height
-
size
)
/
2
else
:
w_start
=
np
.
random
.
randint
(
0
,
width
-
size
+
1
)
h_start
=
np
.
random
.
randint
(
0
,
height
-
size
+
1
)
w_end
=
w_start
+
size
h_end
=
h_start
+
size
img
=
img
.
crop
((
w_start
,
h_start
,
w_end
,
h_end
))
return
img
def
process_image
(
sample
,
mode
,
color_jitter
,
rotate
):
img_path
=
sample
[
0
]
img
=
Image
.
open
(
img_path
)
img
=
resize_short
(
img
,
target_size
=
256
)
img
=
crop_image
(
img
,
target_size
=
DATA_DIM
,
center
=
True
)
if
img
.
mode
!=
'RGB'
:
img
=
img
.
convert
(
'RGB'
)
img
=
np
.
array
(
img
).
astype
(
'float32'
).
transpose
((
2
,
0
,
1
))
/
255
img
-=
img_mean
img
/=
img_std
return
img
,
sample
[
1
]
def
_reader_creator
(
file_list
,
mode
,
shuffle
=
False
,
color_jitter
=
False
,
rotate
=
False
,
data_dir
=
DATA_DIR
):
def
reader
():
with
open
(
file_list
)
as
flist
:
full_lines
=
[
line
.
strip
()
for
line
in
flist
]
if
shuffle
:
np
.
random
.
shuffle
(
full_lines
)
lines
=
full_lines
for
line
in
lines
:
img_path
,
label
=
line
.
split
()
img_path
=
os
.
path
.
join
(
data_dir
,
img_path
)
if
not
os
.
path
.
exists
(
img_path
):
continue
yield
img_path
,
int
(
label
)
mapper
=
functools
.
partial
(
process_image
,
mode
=
mode
,
color_jitter
=
color_jitter
,
rotate
=
rotate
)
return
paddle
.
reader
.
xmap_readers
(
mapper
,
reader
,
THREAD
,
BUF_SIZE
)
def
val
(
data_dir
=
DATA_DIR
):
file_list
=
os
.
path
.
join
(
data_dir
,
'val_list.txt'
)
return
_reader_creator
(
file_list
,
'val'
,
shuffle
=
False
,
data_dir
=
data_dir
)
class
TestPostTrainingQuantizationProgram
(
TestPostTrainingQuantization
):
def
run_program
(
self
,
model_path
,
batch_size
,
infer_iterations
):
image_shape
=
[
3
,
224
,
224
]
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
[
infer_program
,
feed_dict
,
fetch_targets
]
=
\
fluid
.
io
.
load_inference_model
(
model_path
,
exe
)
val_reader
=
paddle
.
batch
(
val
(),
batch_size
)
iterations
=
infer_iterations
test_info
=
[]
cnt
=
0
periods
=
[]
for
batch_id
,
data
in
enumerate
(
val_reader
()):
image
=
np
.
array
([
x
[
0
].
reshape
(
image_shape
)
for
x
in
data
]).
astype
(
"float32"
)
label
=
np
.
array
([
x
[
1
]
for
x
in
data
]).
astype
(
"int64"
)
label
=
label
.
reshape
([
-
1
,
1
])
t1
=
time
.
time
()
_
,
acc1
,
_
=
exe
.
run
(
infer_program
,
feed
=
{
feed_dict
[
0
]:
image
,
feed_dict
[
1
]:
label
},
fetch_list
=
fetch_targets
)
t2
=
time
.
time
()
period
=
t2
-
t1
periods
.
append
(
period
)
test_info
.
append
(
np
.
mean
(
acc1
)
*
len
(
data
))
cnt
+=
len
(
data
)
if
(
batch_id
+
1
)
%
100
==
0
:
print
(
"{0} images,"
.
format
(
batch_id
+
1
))
sys
.
stdout
.
flush
()
if
(
batch_id
+
1
)
==
iterations
:
break
throughput
=
cnt
/
np
.
sum
(
periods
)
latency
=
np
.
average
(
periods
)
acc1
=
np
.
sum
(
test_info
)
/
cnt
[
infer_program
,
feed_dict
,
fetch_targets
]
=
\
fluid
.
io
.
load_inference_model
(
model_path
,
exe
)
return
(
throughput
,
latency
,
acc1
,
infer_program
,
feed_dict
,
fetch_targets
)
def
generate_quantized_model
(
self
,
program
,
quantizable_op_type
,
feed_list
,
fetch_list
,
algo
=
"KL"
,
round_type
=
"round"
,
is_full_quantize
=
False
,
is_use_cache_file
=
False
,
is_optimize_model
=
False
,
onnx_format
=
False
,
):
try
:
os
.
system
(
"mkdir "
+
self
.
int8_model
)
except
Exception
as
e
:
print
(
"Failed to create {} due to {}"
.
format
(
self
.
int8_model
,
str
(
e
)))
sys
.
exit
(
-
1
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
scope
=
fluid
.
global_scope
()
val_reader
=
val
()
same_scale_tensor_list
=
[[
'batch_norm_3.tmp_2#/#1'
,
'batch_norm_4.tmp_2#*#1'
],
[
'batch_norm_27.tmp_2'
,
'batch_norm_26.tmp_2'
]]
ptq
=
PostTrainingQuantizationProgram
(
executor
=
exe
,
program
=
program
,
sample_generator
=
val_reader
,
batch_nums
=
10
,
algo
=
algo
,
quantizable_op_type
=
quantizable_op_type
,
round_type
=
round_type
,
is_full_quantize
=
is_full_quantize
,
optimize_model
=
is_optimize_model
,
onnx_format
=
onnx_format
,
is_use_cache_file
=
is_use_cache_file
,
feed_list
=
feed_list
,
fetch_list
=
fetch_list
,
same_scale_tensor_list
=
same_scale_tensor_list
)
ptq
.
quantize
()
ptq
.
save_quantized_model
(
self
.
int8_model
)
def
run_test
(
self
,
model
,
algo
,
round_type
,
data_urls
,
data_md5s
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
,
onnx_format
=
False
):
infer_iterations
=
self
.
infer_iterations
batch_size
=
self
.
batch_size
sample_iterations
=
self
.
sample_iterations
model_cache_folder
=
self
.
download_data
(
data_urls
,
data_md5s
,
model
)
print
(
"Start FP32 inference for {0} on {1} images ..."
.
format
(
model
,
infer_iterations
*
batch_size
))
(
fp32_throughput
,
fp32_latency
,
fp32_acc1
,
infer_program
,
feed_dict
,
fetch_targets
)
=
self
.
run_program
(
os
.
path
.
join
(
model_cache_folder
,
"model"
),
batch_size
,
infer_iterations
)
print
(
"Start INT8 post training quantization for {0} on {1} images ..."
.
format
(
model
,
sample_iterations
*
batch_size
))
self
.
generate_quantized_model
(
infer_program
,
quantizable_op_type
,
feed_dict
,
fetch_targets
,
algo
,
round_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
onnx_format
)
print
(
"Start INT8 inference for {0} on {1} images ..."
.
format
(
model
,
infer_iterations
*
batch_size
))
(
int8_throughput
,
int8_latency
,
int8_acc1
,
_
,
_
,
_
)
=
self
.
run_program
(
self
.
int8_model
,
batch_size
,
infer_iterations
)
print
(
"---Post training quantization of {} method---"
.
format
(
algo
))
print
(
"FP32 {0}: batch_size {1}, throughput {2} images/second, latency {3} second, accuracy {4}."
.
format
(
model
,
batch_size
,
fp32_throughput
,
fp32_latency
,
fp32_acc1
))
print
(
"INT8 {0}: batch_size {1}, throughput {2} images/second, latency {3} second, accuracy {4}.
\n
"
.
format
(
model
,
batch_size
,
int8_throughput
,
int8_latency
,
int8_acc1
))
sys
.
stdout
.
flush
()
delta_value
=
fp32_acc1
-
int8_acc1
self
.
assertLess
(
delta_value
,
diff_threshold
)
class
TestPostTrainingProgramAbsMaxForResnet50
(
TestPostTrainingQuantizationProgram
):
def
test_post_training_abs_max_resnet50
(
self
):
model
=
"ResNet-50"
algo
=
"abs_max"
round_type
=
"round"
data_urls
=
[
'http://paddle-inference-dist.bj.bcebos.com/int8/resnet50_int8_model.tar.gz'
]
data_md5s
=
[
'4a5194524823d9b76da6e738e1367881'
]
quantizable_op_type
=
[
"conv2d"
,
"mul"
]
is_full_quantize
=
False
is_use_cache_file
=
False
is_optimize_model
=
False
diff_threshold
=
0.025
self
.
run_test
(
model
,
algo
,
round_type
,
data_urls
,
data_md5s
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/contrib/slim/tests/test_quantization_mkldnn_pass.py
浏览文件 @
9ac27ac3
...
...
@@ -118,6 +118,11 @@ class TestMKLDNNTransformBasedFreezePass(unittest.TestCase):
activation_quantize_type
=
activation_quant_type
,
weight_quantize_type
=
weight_quant_type
)
transform_pass
.
apply
(
main_graph
)
transform_pass
=
QuantizationTransformPass
(
scope
=
scope
,
place
=
place
,
activation_quantize_type
=
activation_quant_type
,
weight_quantize_type
=
weight_quant_type
)
transform_pass
.
apply
(
test_graph
)
build_strategy
=
fluid
.
BuildStrategy
()
...
...
python/paddle/fluid/contrib/slim/tests/test_quantization_pass.py
浏览文件 @
9ac27ac3
...
...
@@ -313,6 +313,12 @@ class TestQuantizationFreezePass(unittest.TestCase):
weight_quantize_type
=
weight_quant_type
,
skip_pattern
=
quant_skip_pattern
)
transform_pass
.
apply
(
main_graph
)
transform_pass
=
QuantizationTransformPass
(
scope
=
scope
,
place
=
place
,
activation_quantize_type
=
activation_quant_type
,
weight_quantize_type
=
weight_quant_type
,
skip_pattern
=
quant_skip_pattern
)
transform_pass
.
apply
(
test_graph
)
dev_name
=
'_gpu_'
if
use_cuda
else
'_cpu_'
if
not
for_ci
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录