Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
99c9dbf5
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
99c9dbf5
编写于
2月 12, 2018
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
差异文件
remove conflict
上级
49c50c9f
7757a8ad
变更
19
显示空白变更内容
内联
并排
Showing
19 changed file
with
1475 addition
and
71 deletion
+1475
-71
paddle/fluid/operators/compare_op.cc
paddle/fluid/operators/compare_op.cc
+2
-0
paddle/fluid/operators/compare_op.cu
paddle/fluid/operators/compare_op.cu
+1
-0
paddle/fluid/operators/compare_op.h
paddle/fluid/operators/compare_op.h
+8
-0
paddle/fluid/operators/detection_map_op.cc
paddle/fluid/operators/detection_map_op.cc
+184
-0
paddle/fluid/operators/detection_map_op.h
paddle/fluid/operators/detection_map_op.h
+451
-0
paddle/fluid/operators/prior_box_op.cc
paddle/fluid/operators/prior_box_op.cc
+16
-16
paddle/fluid/operators/prior_box_op.h
paddle/fluid/operators/prior_box_op.h
+4
-4
paddle/fluid/operators/smooth_l1_loss_op.cc
paddle/fluid/operators/smooth_l1_loss_op.cc
+6
-8
python/paddle/v2/fluid/layers/__init__.py
python/paddle/v2/fluid/layers/__init__.py
+4
-1
python/paddle/v2/fluid/layers/detection.py
python/paddle/v2/fluid/layers/detection.py
+248
-25
python/paddle/v2/fluid/layers/math_op_patch.py
python/paddle/v2/fluid/layers/math_op_patch.py
+6
-1
python/paddle/v2/fluid/layers/nn.py
python/paddle/v2/fluid/layers/nn.py
+121
-0
python/paddle/v2/fluid/learning_rate_decay.py
python/paddle/v2/fluid/learning_rate_decay.py
+2
-2
python/paddle/v2/fluid/tests/test_detection.py
python/paddle/v2/fluid/tests/test_detection.py
+57
-10
python/paddle/v2/fluid/tests/test_detection_map_op.py
python/paddle/v2/fluid/tests/test_detection_map_op.py
+265
-0
python/paddle/v2/fluid/tests/test_layers.py
python/paddle/v2/fluid/tests/test_layers.py
+20
-2
python/paddle/v2/fluid/tests/test_prior_box_op.py
python/paddle/v2/fluid/tests/test_prior_box_op.py
+2
-2
python/paddle/v2/fluid/tests/test_python_operator_overriding.py
.../paddle/v2/fluid/tests/test_python_operator_overriding.py
+76
-0
tools/manylinux1/Dockerfile.x64
tools/manylinux1/Dockerfile.x64
+2
-0
未找到文件。
paddle/fluid/operators/compare_op.cc
浏览文件 @
99c9dbf5
...
@@ -102,3 +102,5 @@ REGISTER_LOGICAL_OP(less_equal, "Out = X <= Y");
...
@@ -102,3 +102,5 @@ REGISTER_LOGICAL_OP(less_equal, "Out = X <= Y");
REGISTER_LOGICAL_KERNEL
(
less_equal
,
CPU
,
paddle
::
operators
::
LessEqualFunctor
);
REGISTER_LOGICAL_KERNEL
(
less_equal
,
CPU
,
paddle
::
operators
::
LessEqualFunctor
);
REGISTER_LOGICAL_OP
(
equal
,
"Out = X == Y"
);
REGISTER_LOGICAL_OP
(
equal
,
"Out = X == Y"
);
REGISTER_LOGICAL_KERNEL
(
equal
,
CPU
,
paddle
::
operators
::
EqualFunctor
);
REGISTER_LOGICAL_KERNEL
(
equal
,
CPU
,
paddle
::
operators
::
EqualFunctor
);
REGISTER_LOGICAL_OP
(
not_equal
,
"Out = X != Y"
);
REGISTER_LOGICAL_KERNEL
(
not_equal
,
CPU
,
paddle
::
operators
::
NotEqualFunctor
);
paddle/fluid/operators/compare_op.cu
浏览文件 @
99c9dbf5
...
@@ -17,3 +17,4 @@ limitations under the License. */
...
@@ -17,3 +17,4 @@ limitations under the License. */
REGISTER_LOGICAL_KERNEL
(
less_than
,
CUDA
,
paddle
::
operators
::
LessThanFunctor
);
REGISTER_LOGICAL_KERNEL
(
less_than
,
CUDA
,
paddle
::
operators
::
LessThanFunctor
);
REGISTER_LOGICAL_KERNEL
(
less_equal
,
CUDA
,
paddle
::
operators
::
LessEqualFunctor
);
REGISTER_LOGICAL_KERNEL
(
less_equal
,
CUDA
,
paddle
::
operators
::
LessEqualFunctor
);
REGISTER_LOGICAL_KERNEL
(
equal
,
CUDA
,
paddle
::
operators
::
EqualFunctor
);
REGISTER_LOGICAL_KERNEL
(
equal
,
CUDA
,
paddle
::
operators
::
EqualFunctor
);
REGISTER_LOGICAL_KERNEL
(
not_equal
,
CUDA
,
paddle
::
operators
::
NotEqualFunctor
);
paddle/fluid/operators/compare_op.h
浏览文件 @
99c9dbf5
...
@@ -48,6 +48,14 @@ struct EqualFunctor {
...
@@ -48,6 +48,14 @@ struct EqualFunctor {
}
}
};
};
template
<
typename
T
>
struct
NotEqualFunctor
{
using
ELEM_TYPE
=
T
;
HOSTDEVICE
bool
operator
()(
const
T
&
a
,
const
T
&
b
)
const
{
return
!
EqualFunctor
<
T
>
()(
a
,
b
);
}
};
template
<
typename
DeviceContext
,
typename
Functor
>
template
<
typename
DeviceContext
,
typename
Functor
>
class
CompareOpKernel
class
CompareOpKernel
:
public
framework
::
OpKernel
<
typename
Functor
::
ELEM_TYPE
>
{
:
public
framework
::
OpKernel
<
typename
Functor
::
ELEM_TYPE
>
{
...
...
paddle/fluid/operators/detection_map_op.cc
0 → 100644
浏览文件 @
99c9dbf5
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/detection_map_op.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
class
DetectionMAPOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"DetectRes"
),
"Input(DetectRes) of DetectionMAPOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Label"
),
"Input(Label) of DetectionMAPOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"AccumPosCount"
),
"Output(AccumPosCount) of DetectionMAPOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"AccumTruePos"
),
"Output(AccumTruePos) of DetectionMAPOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"AccumFalsePos"
),
"Output(AccumFalsePos) of DetectionMAPOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"MAP"
),
"Output(MAP) of DetectionMAPOp should not be null."
);
auto
det_dims
=
ctx
->
GetInputDim
(
"DetectRes"
);
PADDLE_ENFORCE_EQ
(
det_dims
.
size
(),
2UL
,
"The rank of Input(DetectRes) must be 2, "
"the shape is [N, 6]."
);
PADDLE_ENFORCE_EQ
(
det_dims
[
1
],
6UL
,
"The shape is of Input(DetectRes) [N, 6]."
);
auto
label_dims
=
ctx
->
GetInputDim
(
"Label"
);
PADDLE_ENFORCE_EQ
(
label_dims
.
size
(),
2UL
,
"The rank of Input(Label) must be 2, "
"the shape is [N, 6]."
);
PADDLE_ENFORCE_EQ
(
label_dims
[
1
],
6UL
,
"The shape is of Input(Label) [N, 6]."
);
if
(
ctx
->
HasInput
(
"PosCount"
))
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"TruePos"
),
"Input(TruePos) of DetectionMAPOp should not be null when "
"Input(TruePos) is not null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"FalsePos"
),
"Input(FalsePos) of DetectionMAPOp should not be null when "
"Input(FalsePos) is not null."
);
}
ctx
->
SetOutputDim
(
"MAP"
,
framework
::
make_ddim
({
1
}));
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
Tensor
>
(
"DetectRes"
)
->
type
()),
ctx
.
device_context
());
}
};
class
DetectionMAPOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
DetectionMAPOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"DetectRes"
,
"(LoDTensor) A 2-D LoDTensor with shape [M, 6] represents the "
"detections. Each row has 6 values: "
"[label, confidence, xmin, ymin, xmax, ymax], M is the total "
"number of detect results in this mini-batch. For each instance, "
"the offsets in first dimension are called LoD, the number of "
"offset is N + 1, if LoD[i + 1] - LoD[i] == 0, means there is "
"no detected data."
);
AddInput
(
"Label"
,
"(LoDTensor) A 2-D LoDTensor with shape[N, 6] represents the"
"Labeled ground-truth data. Each row has 6 values: "
"[label, is_difficult, xmin, ymin, xmax, ymax], N is the total "
"number of ground-truth data in this mini-batch. For each "
"instance, the offsets in first dimension are called LoD, "
"the number of offset is N + 1, if LoD[i + 1] - LoD[i] == 0, "
"means there is no ground-truth data."
);
AddInput
(
"PosCount"
,
"(Tensor) A tensor with shape [Ncls, 1], store the "
"input positive example count of each class, Ncls is the count of "
"input classification. "
"This input is used to pass the AccumPosCount generated by the "
"previous mini-batch when the multi mini-batches cumulative "
"calculation carried out. "
"When the input(PosCount) is empty, the cumulative "
"calculation is not carried out, and only the results of the "
"current mini-batch are calculated."
)
.
AsDispensable
();
AddInput
(
"TruePos"
,
"(LoDTensor) A 2-D LoDTensor with shape [Ntp, 2], store the "
"input true positive example of each class."
"This input is used to pass the AccumTruePos generated by the "
"previous mini-batch when the multi mini-batches cumulative "
"calculation carried out. "
)
.
AsDispensable
();
AddInput
(
"FalsePos"
,
"(LoDTensor) A 2-D LoDTensor with shape [Nfp, 2], store the "
"input false positive example of each class."
"This input is used to pass the AccumFalsePos generated by the "
"previous mini-batch when the multi mini-batches cumulative "
"calculation carried out. "
)
.
AsDispensable
();
AddOutput
(
"AccumPosCount"
,
"(Tensor) A tensor with shape [Ncls, 1], store the "
"positive example count of each class. It combines the input "
"input(PosCount) and the positive example count computed from "
"input(Detection) and input(Label)."
);
AddOutput
(
"AccumTruePos"
,
"(LoDTensor) A LoDTensor with shape [Ntp', 2], store the "
"true positive example of each class. It combines the "
"input(TruePos) and the true positive examples computed from "
"input(Detection) and input(Label)."
);
AddOutput
(
"AccumFalsePos"
,
"(LoDTensor) A LoDTensor with shape [Nfp', 2], store the "
"false positive example of each class. It combines the "
"input(FalsePos) and the false positive examples computed from "
"input(Detection) and input(Label)."
);
AddOutput
(
"MAP"
,
"(Tensor) A tensor with shape [1], store the mAP evaluate "
"result of the detection."
);
AddAttr
<
float
>
(
"overlap_threshold"
,
"(float) "
"The lower bound jaccard overlap threshold of detection output and "
"ground-truth data."
)
.
SetDefault
(
.3
f
);
AddAttr
<
bool
>
(
"evaluate_difficult"
,
"(bool, default true) "
"Switch to control whether the difficult data is evaluated."
)
.
SetDefault
(
true
);
AddAttr
<
std
::
string
>
(
"ap_type"
,
"(string, default 'integral') "
"The AP algorithm type, 'integral' or '11point'."
)
.
SetDefault
(
"integral"
)
.
InEnum
({
"integral"
,
"11point"
})
.
AddCustomChecker
([](
const
std
::
string
&
ap_type
)
{
PADDLE_ENFORCE_NE
(
GetAPType
(
ap_type
),
APType
::
kNone
,
"The ap_type should be 'integral' or '11point."
);
});
AddComment
(
R"DOC(
Detection mAP evaluate operator.
The general steps are as follows. First, calculate the true positive and
false positive according to the input of detection and labels, then
calculate the mAP evaluate value.
Supporting '11 point' and 'integral' mAP algorithm. Please get more information
from the following articles:
https://sanchom.wordpress.com/tag/average-precision/
https://arxiv.org/abs/1512.02325
)DOC"
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_WITHOUT_GRADIENT
(
detection_map
,
ops
::
DetectionMAPOp
,
ops
::
DetectionMAPOpMaker
);
REGISTER_OP_CPU_KERNEL
(
detection_map
,
ops
::
DetectionMAPOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
DetectionMAPOpKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
);
paddle/fluid/operators/detection_map_op.h
0 → 100644
浏览文件 @
99c9dbf5
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
enum
APType
{
kNone
=
0
,
kIntegral
,
k11point
};
APType
GetAPType
(
std
::
string
str
)
{
if
(
str
==
"integral"
)
{
return
APType
::
kIntegral
;
}
else
if
(
str
==
"11point"
)
{
return
APType
::
k11point
;
}
else
{
return
APType
::
kNone
;
}
}
template
<
typename
T
>
inline
bool
SortScorePairDescend
(
const
std
::
pair
<
float
,
T
>&
pair1
,
const
std
::
pair
<
float
,
T
>&
pair2
)
{
return
pair1
.
first
>
pair2
.
first
;
}
template
<
typename
T
>
inline
void
GetAccumulation
(
std
::
vector
<
std
::
pair
<
T
,
int
>>
in_pairs
,
std
::
vector
<
int
>*
accu_vec
)
{
std
::
stable_sort
(
in_pairs
.
begin
(),
in_pairs
.
end
(),
SortScorePairDescend
<
int
>
);
accu_vec
->
clear
();
size_t
sum
=
0
;
for
(
size_t
i
=
0
;
i
<
in_pairs
.
size
();
++
i
)
{
auto
count
=
in_pairs
[
i
].
second
;
sum
+=
count
;
accu_vec
->
push_back
(
sum
);
}
}
template
<
typename
Place
,
typename
T
>
class
DetectionMAPOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in_detect
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"DetectRes"
);
auto
*
in_label
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Label"
);
auto
*
out_map
=
ctx
.
Output
<
framework
::
Tensor
>
(
"MAP"
);
auto
*
in_pos_count
=
ctx
.
Input
<
framework
::
Tensor
>
(
"PosCount"
);
auto
*
in_true_pos
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"TruePos"
);
auto
*
in_false_pos
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"FalsePos"
);
auto
*
out_pos_count
=
ctx
.
Output
<
framework
::
Tensor
>
(
"AccumPosCount"
);
auto
*
out_true_pos
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"AccumTruePos"
);
auto
*
out_false_pos
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"AccumFalsePos"
);
float
overlap_threshold
=
ctx
.
Attr
<
float
>
(
"overlap_threshold"
);
float
evaluate_difficult
=
ctx
.
Attr
<
bool
>
(
"evaluate_difficult"
);
auto
ap_type
=
GetAPType
(
ctx
.
Attr
<
std
::
string
>
(
"ap_type"
));
auto
label_lod
=
in_label
->
lod
();
auto
detect_lod
=
in_detect
->
lod
();
PADDLE_ENFORCE_EQ
(
label_lod
.
size
(),
1UL
,
"Only support one level sequence now."
);
PADDLE_ENFORCE_EQ
(
label_lod
[
0
].
size
(),
detect_lod
[
0
].
size
(),
"The batch_size of input(Label) and input(Detection) "
"must be the same."
);
std
::
vector
<
std
::
map
<
int
,
std
::
vector
<
Box
>>>
gt_boxes
;
std
::
vector
<
std
::
map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
Box
>>>>
detect_boxes
;
GetBoxes
(
*
in_label
,
*
in_detect
,
gt_boxes
,
detect_boxes
);
std
::
map
<
int
,
int
>
label_pos_count
;
std
::
map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
int
>>>
true_pos
;
std
::
map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
int
>>>
false_pos
;
if
(
in_pos_count
!=
nullptr
)
{
GetInputPos
(
*
in_pos_count
,
*
in_true_pos
,
*
in_false_pos
,
label_pos_count
,
true_pos
,
false_pos
);
}
CalcTrueAndFalsePositive
(
gt_boxes
,
detect_boxes
,
evaluate_difficult
,
overlap_threshold
,
label_pos_count
,
true_pos
,
false_pos
);
T
map
=
CalcMAP
(
ap_type
,
label_pos_count
,
true_pos
,
false_pos
);
GetOutputPos
(
ctx
,
label_pos_count
,
true_pos
,
false_pos
,
*
out_pos_count
,
*
out_true_pos
,
*
out_false_pos
);
T
*
map_data
=
out_map
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
map_data
[
0
]
=
map
;
}
protected:
struct
Box
{
Box
(
T
xmin
,
T
ymin
,
T
xmax
,
T
ymax
)
:
xmin
(
xmin
),
ymin
(
ymin
),
xmax
(
xmax
),
ymax
(
ymax
),
is_difficult
(
false
)
{}
T
xmin
,
ymin
,
xmax
,
ymax
;
bool
is_difficult
;
};
inline
T
JaccardOverlap
(
const
Box
&
box1
,
const
Box
&
box2
)
const
{
if
(
box2
.
xmin
>
box1
.
xmax
||
box2
.
xmax
<
box1
.
xmin
||
box2
.
ymin
>
box1
.
ymax
||
box2
.
ymax
<
box1
.
ymin
)
{
return
0.0
;
}
else
{
T
inter_xmin
=
std
::
max
(
box1
.
xmin
,
box2
.
xmin
);
T
inter_ymin
=
std
::
max
(
box1
.
ymin
,
box2
.
ymin
);
T
inter_xmax
=
std
::
min
(
box1
.
xmax
,
box2
.
xmax
);
T
inter_ymax
=
std
::
min
(
box1
.
ymax
,
box2
.
ymax
);
T
inter_width
=
inter_xmax
-
inter_xmin
;
T
inter_height
=
inter_ymax
-
inter_ymin
;
T
inter_area
=
inter_width
*
inter_height
;
T
bbox_area1
=
(
box1
.
xmax
-
box1
.
xmin
)
*
(
box1
.
ymax
-
box1
.
ymin
);
T
bbox_area2
=
(
box2
.
xmax
-
box2
.
xmin
)
*
(
box2
.
ymax
-
box2
.
ymin
);
return
inter_area
/
(
bbox_area1
+
bbox_area2
-
inter_area
);
}
}
void
GetBoxes
(
const
framework
::
LoDTensor
&
input_label
,
const
framework
::
LoDTensor
&
input_detect
,
std
::
vector
<
std
::
map
<
int
,
std
::
vector
<
Box
>>>&
gt_boxes
,
std
::
vector
<
std
::
map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
Box
>>>>&
detect_boxes
)
const
{
auto
labels
=
framework
::
EigenTensor
<
T
,
2
>::
From
(
input_label
);
auto
detect
=
framework
::
EigenTensor
<
T
,
2
>::
From
(
input_detect
);
auto
label_lod
=
input_label
.
lod
();
auto
detect_lod
=
input_detect
.
lod
();
int
batch_size
=
label_lod
[
0
].
size
()
-
1
;
auto
label_index
=
label_lod
[
0
];
for
(
int
n
=
0
;
n
<
batch_size
;
++
n
)
{
std
::
map
<
int
,
std
::
vector
<
Box
>>
boxes
;
for
(
int
i
=
label_index
[
n
];
i
<
label_index
[
n
+
1
];
++
i
)
{
Box
box
(
labels
(
i
,
2
),
labels
(
i
,
3
),
labels
(
i
,
4
),
labels
(
i
,
5
));
int
label
=
labels
(
i
,
0
);
auto
is_difficult
=
labels
(
i
,
1
);
if
(
std
::
abs
(
is_difficult
-
0.0
)
<
1e-6
)
box
.
is_difficult
=
false
;
else
box
.
is_difficult
=
true
;
boxes
[
label
].
push_back
(
box
);
}
gt_boxes
.
push_back
(
boxes
);
}
auto
detect_index
=
detect_lod
[
0
];
for
(
int
n
=
0
;
n
<
batch_size
;
++
n
)
{
std
::
map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
Box
>>>
boxes
;
for
(
int
i
=
detect_index
[
n
];
i
<
detect_index
[
n
+
1
];
++
i
)
{
Box
box
(
detect
(
i
,
2
),
detect
(
i
,
3
),
detect
(
i
,
4
),
detect
(
i
,
5
));
int
label
=
detect
(
i
,
0
);
auto
score
=
detect
(
i
,
1
);
boxes
[
label
].
push_back
(
std
::
make_pair
(
score
,
box
));
}
detect_boxes
.
push_back
(
boxes
);
}
}
void
GetOutputPos
(
const
framework
::
ExecutionContext
&
ctx
,
const
std
::
map
<
int
,
int
>&
label_pos_count
,
const
std
::
map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
int
>>>&
true_pos
,
const
std
::
map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
int
>>>&
false_pos
,
framework
::
Tensor
&
output_pos_count
,
framework
::
LoDTensor
&
output_true_pos
,
framework
::
LoDTensor
&
output_false_pos
)
const
{
int
max_class_id
=
0
;
int
true_pos_count
=
0
;
int
false_pos_count
=
0
;
for
(
auto
it
=
label_pos_count
.
begin
();
it
!=
label_pos_count
.
end
();
++
it
)
{
int
label
=
it
->
first
;
if
(
label
>
max_class_id
)
max_class_id
=
label
;
int
label_num_pos
=
it
->
second
;
if
(
label_num_pos
==
0
||
true_pos
.
find
(
label
)
==
true_pos
.
end
())
continue
;
auto
label_true_pos
=
true_pos
.
find
(
label
)
->
second
;
auto
label_false_pos
=
false_pos
.
find
(
label
)
->
second
;
true_pos_count
+=
label_true_pos
.
size
();
false_pos_count
+=
label_false_pos
.
size
();
}
int
*
pos_count_data
=
output_pos_count
.
mutable_data
<
int
>
(
framework
::
make_ddim
({
max_class_id
+
1
,
1
}),
ctx
.
GetPlace
());
T
*
true_pos_data
=
output_true_pos
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
true_pos_count
,
2
}),
ctx
.
GetPlace
());
T
*
false_pos_data
=
output_false_pos
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
false_pos_count
,
2
}),
ctx
.
GetPlace
());
true_pos_count
=
0
;
false_pos_count
=
0
;
std
::
vector
<
size_t
>
true_pos_starts
=
{
0
};
std
::
vector
<
size_t
>
false_pos_starts
=
{
0
};
for
(
int
i
=
0
;
i
<=
max_class_id
;
++
i
)
{
auto
it_count
=
label_pos_count
.
find
(
i
);
pos_count_data
[
i
]
=
0
;
if
(
it_count
!=
label_pos_count
.
end
())
{
pos_count_data
[
i
]
=
it_count
->
second
;
}
auto
it_true_pos
=
true_pos
.
find
(
i
);
if
(
it_true_pos
!=
true_pos
.
end
())
{
const
std
::
vector
<
std
::
pair
<
T
,
int
>>&
true_pos_vec
=
it_true_pos
->
second
;
for
(
const
std
::
pair
<
T
,
int
>&
tp
:
true_pos_vec
)
{
true_pos_data
[
true_pos_count
*
2
]
=
tp
.
first
;
true_pos_data
[
true_pos_count
*
2
+
1
]
=
static_cast
<
T
>
(
tp
.
second
);
true_pos_count
++
;
}
}
true_pos_starts
.
push_back
(
true_pos_count
);
auto
it_false_pos
=
false_pos
.
find
(
i
);
if
(
it_false_pos
!=
false_pos
.
end
())
{
const
std
::
vector
<
std
::
pair
<
T
,
int
>>&
false_pos_vec
=
it_false_pos
->
second
;
for
(
const
std
::
pair
<
T
,
int
>&
fp
:
false_pos_vec
)
{
false_pos_data
[
false_pos_count
*
2
]
=
fp
.
first
;
false_pos_data
[
false_pos_count
*
2
+
1
]
=
static_cast
<
T
>
(
fp
.
second
);
false_pos_count
++
;
}
}
false_pos_starts
.
push_back
(
false_pos_count
);
}
framework
::
LoD
true_pos_lod
;
true_pos_lod
.
emplace_back
(
true_pos_starts
);
framework
::
LoD
false_pos_lod
;
false_pos_lod
.
emplace_back
(
false_pos_starts
);
output_true_pos
.
set_lod
(
true_pos_lod
);
output_false_pos
.
set_lod
(
false_pos_lod
);
return
;
}
void
GetInputPos
(
const
framework
::
Tensor
&
input_pos_count
,
const
framework
::
LoDTensor
&
input_true_pos
,
const
framework
::
LoDTensor
&
input_false_pos
,
std
::
map
<
int
,
int
>&
label_pos_count
,
std
::
map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
int
>>>&
true_pos
,
std
::
map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
int
>>>&
false_pos
)
const
{
constexpr
T
kEPS
=
static_cast
<
T
>
(
1e-6
);
int
class_number
=
input_pos_count
.
dims
()[
0
];
const
int
*
pos_count_data
=
input_pos_count
.
data
<
int
>
();
for
(
int
i
=
0
;
i
<
class_number
;
++
i
)
{
label_pos_count
[
i
]
=
pos_count_data
[
i
];
}
auto
SetData
=
[](
const
framework
::
LoDTensor
&
pos_tensor
,
std
::
map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
int
>>>&
pos
)
{
const
T
*
pos_data
=
pos_tensor
.
data
<
T
>
();
auto
pos_data_lod
=
pos_tensor
.
lod
();
for
(
int
i
=
0
;
i
<
pos_data_lod
.
size
();
++
i
)
{
for
(
int
j
=
pos_data_lod
[
0
][
i
];
j
<
pos_data_lod
[
0
][
i
+
1
];
++
j
)
{
T
score
=
pos_data
[
j
*
2
];
int
flag
=
1
;
if
(
pos_data
[
j
*
2
+
1
]
<
kEPS
)
flag
=
0
;
pos
[
i
].
push_back
(
std
::
make_pair
(
score
,
flag
));
}
}
};
SetData
(
input_true_pos
,
true_pos
);
SetData
(
input_false_pos
,
false_pos
);
return
;
}
void
CalcTrueAndFalsePositive
(
const
std
::
vector
<
std
::
map
<
int
,
std
::
vector
<
Box
>>>&
gt_boxes
,
const
std
::
vector
<
std
::
map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
Box
>>>>&
detect_boxes
,
bool
evaluate_difficult
,
float
overlap_threshold
,
std
::
map
<
int
,
int
>&
label_pos_count
,
std
::
map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
int
>>>&
true_pos
,
std
::
map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
int
>>>&
false_pos
)
const
{
int
batch_size
=
gt_boxes
.
size
();
for
(
int
n
=
0
;
n
<
batch_size
;
++
n
)
{
auto
image_gt_boxes
=
gt_boxes
[
n
];
for
(
auto
it
=
image_gt_boxes
.
begin
();
it
!=
image_gt_boxes
.
end
();
++
it
)
{
size_t
count
=
0
;
auto
labeled_bboxes
=
it
->
second
;
if
(
evaluate_difficult
)
{
count
=
labeled_bboxes
.
size
();
}
else
{
for
(
size_t
i
=
0
;
i
<
labeled_bboxes
.
size
();
++
i
)
if
(
!
(
labeled_bboxes
[
i
].
is_difficult
))
++
count
;
}
if
(
count
==
0
)
{
continue
;
}
int
label
=
it
->
first
;
if
(
label_pos_count
.
find
(
label
)
==
label_pos_count
.
end
())
{
label_pos_count
[
label
]
=
count
;
}
else
{
label_pos_count
[
label
]
+=
count
;
}
}
}
for
(
size_t
n
=
0
;
n
<
detect_boxes
.
size
();
++
n
)
{
auto
image_gt_boxes
=
gt_boxes
[
n
];
auto
detections
=
detect_boxes
[
n
];
if
(
image_gt_boxes
.
size
()
==
0
)
{
for
(
auto
it
=
detections
.
begin
();
it
!=
detections
.
end
();
++
it
)
{
auto
pred_boxes
=
it
->
second
;
int
label
=
it
->
first
;
for
(
size_t
i
=
0
;
i
<
pred_boxes
.
size
();
++
i
)
{
auto
score
=
pred_boxes
[
i
].
first
;
true_pos
[
label
].
push_back
(
std
::
make_pair
(
score
,
0
));
false_pos
[
label
].
push_back
(
std
::
make_pair
(
score
,
1
));
}
}
continue
;
}
for
(
auto
it
=
detections
.
begin
();
it
!=
detections
.
end
();
++
it
)
{
int
label
=
it
->
first
;
auto
pred_boxes
=
it
->
second
;
if
(
image_gt_boxes
.
find
(
label
)
==
image_gt_boxes
.
end
())
{
for
(
size_t
i
=
0
;
i
<
pred_boxes
.
size
();
++
i
)
{
auto
score
=
pred_boxes
[
i
].
first
;
true_pos
[
label
].
push_back
(
std
::
make_pair
(
score
,
0
));
false_pos
[
label
].
push_back
(
std
::
make_pair
(
score
,
1
));
}
continue
;
}
auto
matched_bboxes
=
image_gt_boxes
.
find
(
label
)
->
second
;
std
::
vector
<
bool
>
visited
(
matched_bboxes
.
size
(),
false
);
// Sort detections in descend order based on scores
std
::
sort
(
pred_boxes
.
begin
(),
pred_boxes
.
end
(),
SortScorePairDescend
<
Box
>
);
for
(
size_t
i
=
0
;
i
<
pred_boxes
.
size
();
++
i
)
{
T
max_overlap
=
-
1.0
;
size_t
max_idx
=
0
;
auto
score
=
pred_boxes
[
i
].
first
;
for
(
size_t
j
=
0
;
j
<
matched_bboxes
.
size
();
++
j
)
{
T
overlap
=
JaccardOverlap
(
pred_boxes
[
i
].
second
,
matched_bboxes
[
j
]);
if
(
overlap
>
max_overlap
)
{
max_overlap
=
overlap
;
max_idx
=
j
;
}
}
if
(
max_overlap
>
overlap_threshold
)
{
bool
match_evaluate_difficult
=
evaluate_difficult
||
(
!
evaluate_difficult
&&
!
matched_bboxes
[
max_idx
].
is_difficult
);
if
(
match_evaluate_difficult
)
{
if
(
!
visited
[
max_idx
])
{
true_pos
[
label
].
push_back
(
std
::
make_pair
(
score
,
1
));
false_pos
[
label
].
push_back
(
std
::
make_pair
(
score
,
0
));
visited
[
max_idx
]
=
true
;
}
else
{
true_pos
[
label
].
push_back
(
std
::
make_pair
(
score
,
0
));
false_pos
[
label
].
push_back
(
std
::
make_pair
(
score
,
1
));
}
}
}
else
{
true_pos
[
label
].
push_back
(
std
::
make_pair
(
score
,
0
));
false_pos
[
label
].
push_back
(
std
::
make_pair
(
score
,
1
));
}
}
}
}
}
T
CalcMAP
(
APType
ap_type
,
const
std
::
map
<
int
,
int
>&
label_pos_count
,
const
std
::
map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
int
>>>&
true_pos
,
const
std
::
map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
int
>>>&
false_pos
)
const
{
T
mAP
=
0.0
;
int
count
=
0
;
for
(
auto
it
=
label_pos_count
.
begin
();
it
!=
label_pos_count
.
end
();
++
it
)
{
int
label
=
it
->
first
;
int
label_num_pos
=
it
->
second
;
if
(
label_num_pos
==
0
||
true_pos
.
find
(
label
)
==
true_pos
.
end
())
continue
;
auto
label_true_pos
=
true_pos
.
find
(
label
)
->
second
;
auto
label_false_pos
=
false_pos
.
find
(
label
)
->
second
;
// Compute average precision.
std
::
vector
<
int
>
tp_sum
;
GetAccumulation
<
T
>
(
label_true_pos
,
&
tp_sum
);
std
::
vector
<
int
>
fp_sum
;
GetAccumulation
<
T
>
(
label_false_pos
,
&
fp_sum
);
std
::
vector
<
T
>
precision
,
recall
;
size_t
num
=
tp_sum
.
size
();
// Compute Precision.
for
(
size_t
i
=
0
;
i
<
num
;
++
i
)
{
precision
.
push_back
(
static_cast
<
T
>
(
tp_sum
[
i
])
/
static_cast
<
T
>
(
tp_sum
[
i
]
+
fp_sum
[
i
]));
recall
.
push_back
(
static_cast
<
T
>
(
tp_sum
[
i
])
/
label_num_pos
);
}
// VOC2007 style
if
(
ap_type
==
APType
::
k11point
)
{
std
::
vector
<
T
>
max_precisions
(
11
,
0.0
);
int
start_idx
=
num
-
1
;
for
(
int
j
=
10
;
j
>=
0
;
--
j
)
for
(
int
i
=
start_idx
;
i
>=
0
;
--
i
)
{
if
(
recall
[
i
]
<
j
/
10.
)
{
start_idx
=
i
;
if
(
j
>
0
)
max_precisions
[
j
-
1
]
=
max_precisions
[
j
];
break
;
}
else
{
if
(
max_precisions
[
j
]
<
precision
[
i
])
max_precisions
[
j
]
=
precision
[
i
];
}
}
for
(
int
j
=
10
;
j
>=
0
;
--
j
)
mAP
+=
max_precisions
[
j
]
/
11
;
++
count
;
}
else
if
(
ap_type
==
APType
::
kIntegral
)
{
// Nature integral
float
average_precisions
=
0.
;
float
prev_recall
=
0.
;
for
(
size_t
i
=
0
;
i
<
num
;
++
i
)
{
if
(
fabs
(
recall
[
i
]
-
prev_recall
)
>
1e-6
)
average_precisions
+=
precision
[
i
]
*
fabs
(
recall
[
i
]
-
prev_recall
);
prev_recall
=
recall
[
i
];
}
mAP
+=
average_precisions
;
++
count
;
}
else
{
LOG
(
FATAL
)
<<
"Unkown ap version: "
<<
ap_type
;
}
}
if
(
count
!=
0
)
mAP
/=
count
;
return
mAP
*
100
;
}
};
// namespace operators
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/prior_box_op.cc
浏览文件 @
99c9dbf5
...
@@ -38,8 +38,8 @@ class PriorBoxOp : public framework::OperatorWithKernel {
...
@@ -38,8 +38,8 @@ class PriorBoxOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_LT
(
input_dims
[
3
],
image_dims
[
3
],
PADDLE_ENFORCE_LT
(
input_dims
[
3
],
image_dims
[
3
],
"The width of input must smaller than image."
);
"The width of input must smaller than image."
);
auto
min_sizes
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
in
t
>>
(
"min_sizes"
);
auto
min_sizes
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
floa
t
>>
(
"min_sizes"
);
auto
max_sizes
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
in
t
>>
(
"max_sizes"
);
auto
max_sizes
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
floa
t
>>
(
"max_sizes"
);
auto
variances
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
float
>>
(
"variances"
);
auto
variances
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
float
>>
(
"variances"
);
auto
aspect_ratios
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
float
>>
(
"aspect_ratios"
);
auto
aspect_ratios
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
float
>>
(
"aspect_ratios"
);
bool
flip
=
ctx
->
Attrs
().
Get
<
bool
>
(
"flip"
);
bool
flip
=
ctx
->
Attrs
().
Get
<
bool
>
(
"flip"
);
...
@@ -47,15 +47,15 @@ class PriorBoxOp : public framework::OperatorWithKernel {
...
@@ -47,15 +47,15 @@ class PriorBoxOp : public framework::OperatorWithKernel {
std
::
vector
<
float
>
aspect_ratios_vec
;
std
::
vector
<
float
>
aspect_ratios_vec
;
ExpandAspectRatios
(
aspect_ratios
,
flip
,
aspect_ratios_vec
);
ExpandAspectRatios
(
aspect_ratios
,
flip
,
aspect_ratios_vec
);
in
t
num_priors
=
aspect_ratios_vec
.
size
()
*
min_sizes
.
size
();
size_
t
num_priors
=
aspect_ratios_vec
.
size
()
*
min_sizes
.
size
();
if
(
max_sizes
.
size
()
>
0
)
{
if
(
max_sizes
.
size
()
>
0
)
{
PADDLE_ENFORCE_EQ
(
max_sizes
.
size
(),
min_sizes
.
size
(),
PADDLE_ENFORCE_EQ
(
max_sizes
.
size
(),
min_sizes
.
size
(),
"The number of min_size and max_size must be equal."
);
"The number of min_size and max_size must be equal."
);
for
(
size_t
i
=
0
;
i
<
min_sizes
.
size
();
++
i
)
{
num_priors
+=
max_sizes
.
size
();
for
(
size_t
i
=
0
;
i
<
max_sizes
.
size
();
++
i
)
{
PADDLE_ENFORCE_GT
(
max_sizes
[
i
],
min_sizes
[
i
],
PADDLE_ENFORCE_GT
(
max_sizes
[
i
],
min_sizes
[
i
],
"max_size[%d] must be greater than min_size[%d]."
,
i
,
"max_size[%d] must be greater than min_size[%d]."
,
i
,
i
);
i
);
num_priors
+=
1
;
}
}
}
}
...
@@ -90,20 +90,20 @@ class PriorBoxOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -90,20 +90,20 @@ class PriorBoxOpMaker : public framework::OpProtoAndCheckerMaker {
"H is the height of input, W is the width of input, num_priors "
"H is the height of input, W is the width of input, num_priors "
"is the box count of each position."
);
"is the box count of each position."
);
AddAttr
<
std
::
vector
<
in
t
>>
(
"min_sizes"
,
AddAttr
<
std
::
vector
<
floa
t
>>
(
"min_sizes"
,
"(vector<in
t>) List of min sizes "
"(vector<floa
t>) List of min sizes "
"of generated prior boxes."
)
"of generated prior boxes."
)
.
AddCustomChecker
([](
const
std
::
vector
<
in
t
>&
min_sizes
)
{
.
AddCustomChecker
([](
const
std
::
vector
<
floa
t
>&
min_sizes
)
{
PADDLE_ENFORCE_GT
(
min_sizes
.
size
(),
0
,
PADDLE_ENFORCE_GT
(
min_sizes
.
size
(),
0
,
"Size of min_sizes must be at least 1."
);
"Size of min_sizes must be at least 1."
);
for
(
size_t
i
=
0
;
i
<
min_sizes
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
min_sizes
.
size
();
++
i
)
{
PADDLE_ENFORCE_GT
(
min_sizes
[
i
],
0
,
PADDLE_ENFORCE_GT
(
min_sizes
[
i
],
0
.0
,
"min_sizes[%d] must be positive."
,
i
);
"min_sizes[%d] must be positive."
,
i
);
}
}
});
});
AddAttr
<
std
::
vector
<
in
t
>>
(
AddAttr
<
std
::
vector
<
floa
t
>>
(
"max_sizes"
,
"max_sizes"
,
"(vector<
in
t>) List of max sizes of generated prior boxes."
);
"(vector<
floa
t>) List of max sizes of generated prior boxes."
);
AddAttr
<
std
::
vector
<
float
>>
(
AddAttr
<
std
::
vector
<
float
>>
(
"aspect_ratios"
,
"aspect_ratios"
,
"(vector<float>) List of aspect ratios of generated prior boxes."
);
"(vector<float>) List of aspect ratios of generated prior boxes."
);
...
@@ -125,16 +125,16 @@ class PriorBoxOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -125,16 +125,16 @@ class PriorBoxOpMaker : public framework::OpProtoAndCheckerMaker {
.
SetDefault
(
true
);
.
SetDefault
(
true
);
AddAttr
<
float
>
(
"step_w"
,
AddAttr
<
float
>
(
"step_w"
,
"Prior boxes step across width, 0 for auto calculation."
)
"Prior boxes step across width, 0
.0
for auto calculation."
)
.
SetDefault
(
0.0
)
.
SetDefault
(
0.0
)
.
AddCustomChecker
([](
const
float
&
step_w
)
{
.
AddCustomChecker
([](
const
float
&
step_w
)
{
PADDLE_ENFORCE_G
T
(
step_w
,
0.0
,
"step_w should be larger than 0."
);
PADDLE_ENFORCE_G
E
(
step_w
,
0.0
,
"step_w should be larger than 0."
);
});
});
AddAttr
<
float
>
(
"step_h"
,
AddAttr
<
float
>
(
"step_h"
,
"Prior boxes step across height, 0 for auto calculation."
)
"Prior boxes step across height, 0
.0
for auto calculation."
)
.
SetDefault
(
0.0
)
.
SetDefault
(
0.0
)
.
AddCustomChecker
([](
const
float
&
step_h
)
{
.
AddCustomChecker
([](
const
float
&
step_h
)
{
PADDLE_ENFORCE_G
T
(
step_h
,
0.0
,
"step_h should be larger than 0."
);
PADDLE_ENFORCE_G
E
(
step_h
,
0.0
,
"step_h should be larger than 0."
);
});
});
AddAttr
<
float
>
(
"offset"
,
AddAttr
<
float
>
(
"offset"
,
...
...
paddle/fluid/operators/prior_box_op.h
浏览文件 @
99c9dbf5
...
@@ -60,8 +60,8 @@ class PriorBoxOpKernel : public framework::OpKernel<T> {
...
@@ -60,8 +60,8 @@ class PriorBoxOpKernel : public framework::OpKernel<T> {
auto
*
boxes
=
ctx
.
Output
<
paddle
::
framework
::
Tensor
>
(
"Boxes"
);
auto
*
boxes
=
ctx
.
Output
<
paddle
::
framework
::
Tensor
>
(
"Boxes"
);
auto
*
vars
=
ctx
.
Output
<
paddle
::
framework
::
Tensor
>
(
"Variances"
);
auto
*
vars
=
ctx
.
Output
<
paddle
::
framework
::
Tensor
>
(
"Variances"
);
auto
min_sizes
=
ctx
.
Attr
<
std
::
vector
<
in
t
>>
(
"min_sizes"
);
auto
min_sizes
=
ctx
.
Attr
<
std
::
vector
<
floa
t
>>
(
"min_sizes"
);
auto
max_sizes
=
ctx
.
Attr
<
std
::
vector
<
in
t
>>
(
"max_sizes"
);
auto
max_sizes
=
ctx
.
Attr
<
std
::
vector
<
floa
t
>>
(
"max_sizes"
);
auto
input_aspect_ratio
=
ctx
.
Attr
<
std
::
vector
<
float
>>
(
"aspect_ratios"
);
auto
input_aspect_ratio
=
ctx
.
Attr
<
std
::
vector
<
float
>>
(
"aspect_ratios"
);
auto
variances
=
ctx
.
Attr
<
std
::
vector
<
float
>>
(
"variances"
);
auto
variances
=
ctx
.
Attr
<
std
::
vector
<
float
>>
(
"variances"
);
auto
flip
=
ctx
.
Attr
<
bool
>
(
"flip"
);
auto
flip
=
ctx
.
Attr
<
bool
>
(
"flip"
);
...
@@ -108,7 +108,7 @@ class PriorBoxOpKernel : public framework::OpKernel<T> {
...
@@ -108,7 +108,7 @@ class PriorBoxOpKernel : public framework::OpKernel<T> {
T
box_width
,
box_height
;
T
box_width
,
box_height
;
int
idx
=
0
;
int
idx
=
0
;
for
(
size_t
s
=
0
;
s
<
min_sizes
.
size
();
++
s
)
{
for
(
size_t
s
=
0
;
s
<
min_sizes
.
size
();
++
s
)
{
int
min_size
=
min_sizes
[
s
];
auto
min_size
=
min_sizes
[
s
];
// first prior: aspect_ratio = 1, size = min_size
// first prior: aspect_ratio = 1, size = min_size
box_width
=
box_height
=
min_size
;
box_width
=
box_height
=
min_size
;
// xmin
// xmin
...
@@ -124,7 +124,7 @@ class PriorBoxOpKernel : public framework::OpKernel<T> {
...
@@ -124,7 +124,7 @@ class PriorBoxOpKernel : public framework::OpKernel<T> {
idx
++
;
idx
++
;
if
(
max_sizes
.
size
()
>
0
)
{
if
(
max_sizes
.
size
()
>
0
)
{
int
max_size
=
max_sizes
[
s
];
auto
max_size
=
max_sizes
[
s
];
// second prior: aspect_ratio = 1,
// second prior: aspect_ratio = 1,
// size = sqrt(min_size * max_size)
// size = sqrt(min_size * max_size)
box_width
=
box_height
=
sqrt
(
min_size
*
max_size
);
box_width
=
box_height
=
sqrt
(
min_size
*
max_size
);
...
...
paddle/fluid/operators/smooth_l1_loss_op.cc
浏览文件 @
99c9dbf5
...
@@ -44,7 +44,6 @@ class SmoothL1LossOp : public framework::OperatorWithKernel {
...
@@ -44,7 +44,6 @@ class SmoothL1LossOp : public framework::OperatorWithKernel {
}
}
};
};
template
<
typename
AttrType
>
class
SmoothL1LossOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
class
SmoothL1LossOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
public:
SmoothL1LossOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
SmoothL1LossOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
...
@@ -73,10 +72,10 @@ class SmoothL1LossOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -73,10 +72,10 @@ class SmoothL1LossOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput
(
"Out"
,
AddOutput
(
"Out"
,
"(Tensor, default Tensor<float>) A tensor with rank be 2. "
"(Tensor, default Tensor<float>) A tensor with rank be 2. "
"The output smooth l1 loss with shape [batch_size, 1]."
);
"The output smooth l1 loss with shape [batch_size, 1]."
);
AddAttr
<
AttrType
>
(
"sigma"
,
AddAttr
<
float
>
(
"sigma"
,
"Hyper parameter of smooth l1 loss op."
"Hyper parameter of smooth l1 loss op."
"A float scalar with default value 3.0."
)
"A float scalar with default value 3.0."
)
.
SetDefault
(
3
.0
);
.
SetDefault
(
1
.0
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Smooth L1 Loss Operator.
Smooth L1 Loss Operator.
...
@@ -133,9 +132,8 @@ class SmoothL1LossGradOp : public framework::OperatorWithKernel {
...
@@ -133,9 +132,8 @@ class SmoothL1LossGradOp : public framework::OperatorWithKernel {
}
// namespace paddle
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
smooth_l1_loss
,
ops
::
SmoothL1LossOp
,
REGISTER_OP
(
smooth_l1_loss
,
ops
::
SmoothL1LossOp
,
ops
::
SmoothL1LossOpMaker
,
ops
::
SmoothL1LossOpMaker
<
float
>
,
smooth_l1_loss_grad
,
smooth_l1_loss_grad
,
ops
::
SmoothL1LossGradOp
);
ops
::
SmoothL1LossGradOp
);
REGISTER_OP_CPU_KERNEL
(
REGISTER_OP_CPU_KERNEL
(
smooth_l1_loss
,
smooth_l1_loss
,
ops
::
SmoothL1LossKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
ops
::
SmoothL1LossKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
...
...
python/paddle/v2/fluid/layers/__init__.py
浏览文件 @
99c9dbf5
...
@@ -28,8 +28,11 @@ import device
...
@@ -28,8 +28,11 @@ import device
from
device
import
*
from
device
import
*
import
math_op_patch
import
math_op_patch
from
math_op_patch
import
*
from
math_op_patch
import
*
import
detection
from
detection
import
*
__all__
=
[]
__all__
=
[]
__all__
+=
math_op_patch
.
__all__
__all__
+=
detection
.
__all__
__all__
+=
detection
.
__all__
__all__
+=
nn
.
__all__
__all__
+=
nn
.
__all__
__all__
+=
io
.
__all__
__all__
+=
io
.
__all__
...
@@ -37,4 +40,4 @@ __all__ += tensor.__all__
...
@@ -37,4 +40,4 @@ __all__ += tensor.__all__
__all__
+=
control_flow
.
__all__
__all__
+=
control_flow
.
__all__
__all__
+=
ops
.
__all__
__all__
+=
ops
.
__all__
__all__
+=
device
.
__all__
__all__
+=
device
.
__all__
__all__
+=
math_op_patch
.
__all__
__all__
+=
detection
.
__all__
python/paddle/v2/fluid/layers/detection.py
浏览文件 @
99c9dbf5
...
@@ -18,15 +18,15 @@ All layers just related to the detection neural network.
...
@@ -18,15 +18,15 @@ All layers just related to the detection neural network.
from
..layer_helper
import
LayerHelper
from
..layer_helper
import
LayerHelper
from
..param_attr
import
ParamAttr
from
..param_attr
import
ParamAttr
from
..framework
import
Variable
from
..framework
import
Variable
from
layer_function_generator
import
autodoc
from
..nets
import
img_conv_with_bn
from
tensor
import
concat
from
tensor
import
concat
from
ops
import
reshape
from
ops
import
reshape
from
..nets
import
img_conv_with_bn
from
nn
import
transpose
from
nn
import
transpose
import
math
import
math
__all__
=
[
__all__
=
[
'detection_output'
,
'detection_output'
,
'prior_box'
,
'multi_box_head'
,
'multi_box_head'
,
]
]
...
@@ -127,6 +127,211 @@ def detection_output(scores,
...
@@ -127,6 +127,211 @@ def detection_output(scores,
return
nmsed_outs
return
nmsed_outs
def
prior_box
(
inputs
,
image
,
min_ratio
,
max_ratio
,
aspect_ratios
,
base_size
,
steps
=
None
,
step_w
=
None
,
step_h
=
None
,
offset
=
0.5
,
variance
=
[
0.1
,
0.1
,
0.1
,
0.1
],
flip
=
False
,
clip
=
False
,
min_sizes
=
None
,
max_sizes
=
None
,
name
=
None
):
"""
**Prior_boxes**
Generate prior boxes for SSD(Single Shot MultiBox Detector)
algorithm. The details of this algorithm, please refer the
section 2.2 of SSD paper (SSD: Single Shot MultiBox Detector)
<https://arxiv.org/abs/1512.02325>`_ .
Args:
inputs(list): The list of input Variables, the format
of all Variables is NCHW.
image(Variable): The input image data of PriorBoxOp,
the layout is NCHW.
min_ratio(int): the min ratio of generated prior boxes.
max_ratio(int): the max ratio of generated prior boxes.
aspect_ratios(list): the aspect ratios of generated prior
boxes. The length of input and aspect_ratios must be equal.
base_size(int): the base_size is used to get min_size
and max_size according to min_ratio and max_ratio.
step_w(list, optional, default=None): Prior boxes step
across width. If step_w[i] == 0.0, the prior boxes step
across width of the inputs[i] will be automatically calculated.
step_h(list, optional, default=None): Prior boxes step
across height, If step_h[i] == 0.0, the prior boxes
step across height of the inputs[i] will be automatically calculated.
offset(float, optional, default=0.5): Prior boxes center offset.
variance(list, optional, default=[0.1, 0.1, 0.1, 0.1]): the variances
to be encoded in prior boxes.
flip(bool, optional, default=False): Whether to flip
aspect ratios.
clip(bool, optional, default=False): Whether to clip
out-of-boundary boxes.
min_sizes(list, optional, default=None): If `len(inputs) <=2`,
min_sizes must be set up, and the length of min_sizes
should equal to the length of inputs.
max_sizes(list, optional, default=None): If `len(inputs) <=2`,
max_sizes must be set up, and the length of min_sizes
should equal to the length of inputs.
name(str, optional, None): Name of the prior box layer.
Returns:
boxes(Variable): the output prior boxes of PriorBoxOp.
The layout is [num_priors, 4]. num_priors is the total
box count of each position of inputs.
Variances(Variable): the expanded variances of PriorBoxOp.
The layout is [num_priors, 4]. num_priors is the total
box count of each position of inputs
Examples:
.. code-block:: python
prior_box(
inputs = [conv1, conv2, conv3, conv4, conv5, conv6],
image = data,
min_ratio = 20, # 0.20
max_ratio = 90, # 0.90
offset = 0.5,
base_size = 300,
variance = [0.1,0.1,0.1,0.1],
aspect_ratios = [[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
flip=True,
clip=True)
"""
def
_prior_box_
(
input
,
image
,
min_sizes
,
max_sizes
,
aspect_ratios
,
variance
,
flip
=
False
,
clip
=
False
,
step_w
=
0.0
,
step_h
=
0.0
,
offset
=
0.5
,
name
=
None
):
helper
=
LayerHelper
(
"prior_box"
,
**
locals
())
dtype
=
helper
.
input_dtype
()
box
=
helper
.
create_tmp_variable
(
dtype
)
var
=
helper
.
create_tmp_variable
(
dtype
)
helper
.
append_op
(
type
=
"prior_box"
,
inputs
=
{
"Input"
:
input
,
"Image"
:
image
},
outputs
=
{
"Boxes"
:
box
,
"Variances"
:
var
},
attrs
=
{
'min_sizes'
:
min_sizes
,
'max_sizes'
:
max_sizes
,
'aspect_ratios'
:
aspect_ratios
,
'variances'
:
variance
,
'flip'
:
flip
,
'clip'
:
clip
,
'step_w'
:
step_w
,
'step_h'
:
step_h
,
'offset'
:
offset
})
return
box
,
var
def
_reshape_with_axis_
(
input
,
axis
=
1
):
if
not
(
axis
>
0
and
axis
<
len
(
input
.
shape
)):
raise
ValueError
(
"The axis should be smaller than "
"the arity of input and bigger than 0."
)
new_shape
=
[
-
1
,
reduce
(
lambda
x
,
y
:
x
*
y
,
input
.
shape
[
axis
:
len
(
input
.
shape
)])
]
out
=
reshape
(
x
=
input
,
shape
=
new_shape
)
return
out
assert
isinstance
(
inputs
,
list
),
'inputs should be a list.'
num_layer
=
len
(
inputs
)
if
num_layer
<=
2
:
assert
min_sizes
is
not
None
and
max_sizes
is
not
None
assert
len
(
min_sizes
)
==
num_layer
and
len
(
max_sizes
)
==
num_layer
else
:
min_sizes
=
[]
max_sizes
=
[]
step
=
int
(
math
.
floor
(((
max_ratio
-
min_ratio
))
/
(
num_layer
-
2
)))
for
ratio
in
xrange
(
min_ratio
,
max_ratio
+
1
,
step
):
min_sizes
.
append
(
base_size
*
ratio
/
100.
)
max_sizes
.
append
(
base_size
*
(
ratio
+
step
)
/
100.
)
min_sizes
=
[
base_size
*
.
10
]
+
min_sizes
max_sizes
=
[
base_size
*
.
20
]
+
max_sizes
if
aspect_ratios
:
if
not
(
isinstance
(
aspect_ratios
,
list
)
and
len
(
aspect_ratios
)
==
num_layer
):
raise
ValueError
(
'aspect_ratios should be list and the length of inputs '
'and aspect_ratios should be the same.'
)
if
step_h
:
if
not
(
isinstance
(
step_h
,
list
)
and
len
(
step_h
)
==
num_layer
):
raise
ValueError
(
'step_h should be list and the length of inputs and '
'step_h should be the same.'
)
if
step_w
:
if
not
(
isinstance
(
step_w
,
list
)
and
len
(
step_w
)
==
num_layer
):
raise
ValueError
(
'step_w should be list and the length of inputs and '
'step_w should be the same.'
)
if
steps
:
if
not
(
isinstance
(
steps
,
list
)
and
len
(
steps
)
==
num_layer
):
raise
ValueError
(
'steps should be list and the length of inputs and '
'step_w should be the same.'
)
step_w
=
steps
step_h
=
steps
box_results
=
[]
var_results
=
[]
for
i
,
input
in
enumerate
(
inputs
):
min_size
=
min_sizes
[
i
]
max_size
=
max_sizes
[
i
]
aspect_ratio
=
[]
if
not
isinstance
(
min_size
,
list
):
min_size
=
[
min_size
]
if
not
isinstance
(
max_size
,
list
):
max_size
=
[
max_size
]
if
aspect_ratios
:
aspect_ratio
=
aspect_ratios
[
i
]
if
not
isinstance
(
aspect_ratio
,
list
):
aspect_ratio
=
[
aspect_ratio
]
box
,
var
=
_prior_box_
(
input
,
image
,
min_size
,
max_size
,
aspect_ratio
,
variance
,
flip
,
clip
,
step_w
[
i
]
if
step_w
else
0.0
,
step_h
[
i
]
if
step_w
else
0.0
,
offset
)
box_results
.
append
(
box
)
var_results
.
append
(
var
)
if
len
(
box_results
)
==
1
:
box
=
box_results
[
0
]
var
=
var_results
[
0
]
else
:
reshaped_boxes
=
[]
reshaped_vars
=
[]
for
i
in
range
(
len
(
box_results
)):
reshaped_boxes
.
append
(
_reshape_with_axis_
(
box_results
[
i
],
axis
=
3
))
reshaped_vars
.
append
(
_reshape_with_axis_
(
var_results
[
i
],
axis
=
3
))
box
=
concat
(
reshaped_boxes
)
var
=
concat
(
reshaped_vars
)
return
box
,
var
def
multi_box_head
(
inputs
,
def
multi_box_head
(
inputs
,
num_classes
,
num_classes
,
min_sizes
=
None
,
min_sizes
=
None
,
...
@@ -171,34 +376,53 @@ def multi_box_head(inputs,
...
@@ -171,34 +376,53 @@ def multi_box_head(inputs,
Returns:
Returns:
mbox_loc(
Variable
): the output prior boxes of PriorBoxOp. The layout is
mbox_loc(
list
): the output prior boxes of PriorBoxOp. The layout is
[num_priors, 4]. num_priors is the total box count of each
[num_priors, 4]. num_priors is the total box count of each
position of inputs.
position of inputs.
mbox_conf(
Variable
): the expanded variances of PriorBoxOp. The layout
mbox_conf(
list
): the expanded variances of PriorBoxOp. The layout
is [num_priors, 4]. num_priors is the total box count of each
is [num_priors, 4]. num_priors is the total box count of each
position of inputs
position of inputs
Examples:
Examples:
.. code-block:: python
.. code-block:: python
mbox_locs, mbox_confs = detection.multi_box_head(
inputs=[conv1, conv2, conv3, conv4, conv5, conv5],
num_classes=21,
min_ratio=20,
max_ratio=90,
aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
base_size=300,
flip=True)
"""
"""
assert
isinstance
(
inputs
,
list
),
'inputs should be a list.'
if
not
(
isinstance
(
inputs
,
list
)):
raise
ValueError
(
'inputs should be a list.'
)
if
min_sizes
is
not
None
:
if
min_sizes
is
not
None
:
assert
len
(
inputs
)
==
len
(
min_sizes
)
if
not
(
len
(
inputs
)
==
len
(
min_sizes
)):
raise
ValueError
(
'the length of min_sizes '
'and inputs should be the same.'
)
if
max_sizes
is
not
None
:
if
max_sizes
is
not
None
:
assert
len
(
inputs
)
==
len
(
max_sizes
)
if
not
(
len
(
inputs
)
==
len
(
max_sizes
)):
raise
ValueError
(
'the length of max_sizes '
'and inputs should be the same.'
)
if
aspect_ratios
is
not
None
:
if
not
(
len
(
inputs
)
==
len
(
aspect_ratios
)):
raise
ValueError
(
'the length of aspect_ratios '
'and inputs should be the same.'
)
if
min_sizes
is
None
:
if
min_sizes
is
None
:
# if min_sizes is None, min_sizes and max_sizes
# If min_sizes is None, min_sizes and max_sizes
# will be set according to max_ratio and min_ratio
# will be set according to max_ratio and min_ratio.
assert
max_ratio
is
not
None
and
min_ratio
is
not
None
num_layer
=
len
(
inputs
)
assert
max_ratio
is
not
None
and
min_ratio
is
not
None
,
\
'max_ratio and min_ratio must be not None.'
assert
num_layer
>=
3
,
'The length of the input data is at least three.'
min_sizes
=
[]
min_sizes
=
[]
max_sizes
=
[]
max_sizes
=
[]
num_layer
=
len
(
inputs
)
step
=
int
(
math
.
floor
(((
max_ratio
-
min_ratio
))
/
(
num_layer
-
2
)))
step
=
int
(
math
.
floor
(((
max_ratio
-
min_ratio
))
/
(
num_layer
-
2
)))
for
ratio
in
xrange
(
min_ratio
,
max_ratio
+
1
,
step
):
for
ratio
in
xrange
(
min_ratio
,
max_ratio
+
1
,
step
):
min_sizes
.
append
(
base_size
*
ratio
/
100.
)
min_sizes
.
append
(
base_size
*
ratio
/
100.
)
...
@@ -206,9 +430,6 @@ def multi_box_head(inputs,
...
@@ -206,9 +430,6 @@ def multi_box_head(inputs,
min_sizes
=
[
base_size
*
.
10
]
+
min_sizes
min_sizes
=
[
base_size
*
.
10
]
+
min_sizes
max_sizes
=
[
base_size
*
.
20
]
+
max_sizes
max_sizes
=
[
base_size
*
.
20
]
+
max_sizes
if
aspect_ratios
is
not
None
:
assert
len
(
inputs
)
==
len
(
aspect_ratios
)
mbox_locs
=
[]
mbox_locs
=
[]
mbox_confs
=
[]
mbox_confs
=
[]
for
i
,
input
in
enumerate
(
inputs
):
for
i
,
input
in
enumerate
(
inputs
):
...
@@ -221,9 +442,9 @@ def multi_box_head(inputs,
...
@@ -221,9 +442,9 @@ def multi_box_head(inputs,
max_size
=
max_sizes
[
i
]
max_size
=
max_sizes
[
i
]
if
type
(
max_size
)
is
not
list
:
if
type
(
max_size
)
is
not
list
:
max_size
=
[
max_size
]
max_size
=
[
max_size
]
if
max_size
:
if
not
(
len
(
max_size
)
==
len
(
min_size
))
:
assert
len
(
max_size
)
==
len
(
raise
ValueError
(
min_size
),
"max_size and min_size should have same length."
'max_size and min_size should have same length.'
)
aspect_ratio
=
[]
aspect_ratio
=
[]
if
aspect_ratios
is
not
None
:
if
aspect_ratios
is
not
None
:
...
@@ -231,17 +452,19 @@ def multi_box_head(inputs,
...
@@ -231,17 +452,19 @@ def multi_box_head(inputs,
if
type
(
aspect_ratio
)
is
not
list
:
if
type
(
aspect_ratio
)
is
not
list
:
aspect_ratio
=
[
aspect_ratio
]
aspect_ratio
=
[
aspect_ratio
]
# get the number of prior box on each location
num_priors_per_location
=
0
num_priors_per_location
=
0
if
max_sizes
is
not
None
:
if
max_sizes
is
not
None
:
num_priors_per_location
=
len
(
min_size
)
+
len
(
aspect_ratio
)
*
len
(
num_priors_per_location
=
len
(
min_size
)
+
\
min_size
)
+
len
(
max_size
)
len
(
aspect_ratio
)
*
len
(
min_size
)
+
\
len
(
max_size
)
else
:
else
:
num_priors_per_location
=
len
(
min_size
)
+
len
(
aspect_ratio
)
*
len
(
num_priors_per_location
=
len
(
min_size
)
+
\
min_size
)
len
(
aspect_ratio
)
*
len
(
min_size
)
if
flip
:
if
flip
:
num_priors_per_location
+=
len
(
aspect_ratio
)
*
len
(
min_size
)
num_priors_per_location
+=
len
(
aspect_ratio
)
*
len
(
min_size
)
# mbox_loc
#
get
mbox_loc
num_loc_output
=
num_priors_per_location
*
4
num_loc_output
=
num_priors_per_location
*
4
if
share_location
:
if
share_location
:
num_loc_output
*=
num_classes
num_loc_output
*=
num_classes
...
@@ -256,7 +479,7 @@ def multi_box_head(inputs,
...
@@ -256,7 +479,7 @@ def multi_box_head(inputs,
mbox_loc
=
transpose
(
mbox_loc
,
perm
=
[
0
,
2
,
3
,
1
])
mbox_loc
=
transpose
(
mbox_loc
,
perm
=
[
0
,
2
,
3
,
1
])
mbox_locs
.
append
(
mbox_loc
)
mbox_locs
.
append
(
mbox_loc
)
#
get the number of prior box
#
get conf_loc
num_conf_output
=
num_priors_per_location
*
num_classes
num_conf_output
=
num_priors_per_location
*
num_classes
conf_loc
=
img_conv_with_bn
(
conf_loc
=
img_conv_with_bn
(
input
=
input
,
input
=
input
,
...
...
python/paddle/v2/fluid/layers/math_op_patch.py
浏览文件 @
99c9dbf5
...
@@ -152,7 +152,12 @@ def monkey_patch_variable():
...
@@ -152,7 +152,12 @@ def monkey_patch_variable():
(
"__div__"
,
"elementwise_div"
,
False
),
(
"__div__"
,
"elementwise_div"
,
False
),
(
"__rdiv__"
,
"elementwise_div"
,
True
),
(
"__rdiv__"
,
"elementwise_div"
,
True
),
(
"__pow__"
,
"elementwise_pow"
,
False
),
(
"__pow__"
,
"elementwise_pow"
,
False
),
(
"__rpow__"
,
"elementwise_pow"
,
True
)):
(
"__rpow__"
,
"elementwise_pow"
,
True
),
# for logical compare
(
"__eq__"
,
"equal"
,
False
),
(
"__ne__"
,
"not_equal"
,
False
),
(
"__lt__"
,
"less_than"
,
False
),
(
"__le__"
,
"less_equal"
,
False
)):
setattr
(
Variable
,
method_name
,
setattr
(
Variable
,
method_name
,
_elemwise_method_creator_
(
method_name
,
op_type
,
reverse
))
_elemwise_method_creator_
(
method_name
,
op_type
,
reverse
))
...
...
python/paddle/v2/fluid/layers/nn.py
浏览文件 @
99c9dbf5
...
@@ -66,6 +66,8 @@ __all__ = [
...
@@ -66,6 +66,8 @@ __all__ = [
'row_conv'
,
'row_conv'
,
'multiplex'
,
'multiplex'
,
'layer_norm'
,
'layer_norm'
,
'softmax_with_cross_entropy'
,
'smooth_l1'
,
]
]
...
@@ -3091,3 +3093,122 @@ def multiplex(inputs, index):
...
@@ -3091,3 +3093,122 @@ def multiplex(inputs, index):
'Ids'
:
index
},
'Ids'
:
index
},
outputs
=
{
'Out'
:
[
out
]})
outputs
=
{
'Out'
:
[
out
]})
return
out
return
out
def
softmax_with_cross_entropy
(
logits
,
label
,
soft_label
=
False
):
"""
**Softmax With Cross Entropy Operator.**
Cross entropy loss with softmax is used as the output layer extensively. This
operator computes the softmax normalized values for each row of the input
tensor, after which cross-entropy loss is computed. This provides a more
numerically stable gradient.
Because this operator performs a softmax on logits internally, it expects
unscaled logits. This operator should not be used with the output of
softmax operator since that would produce incorrect results.
When the attribute soft_label is set false, this operators expects mutually
exclusive hard labels, each sample in a batch is in exactly one class with a
probability of 1.0. Each sample in the batch will have a single label.
The equation is as follows:
1) Hard label (one-hot label, so every sample has exactly one class)
.. math::
loss_j = -
\\
text{logit}_{label_j} +
\\
log
\\
left(
\\
sum_{i=0}^{K}
\\
exp(
\\
text{logit}_i)
\\
right), j = 1,..., K
2) Soft label (each sample can have a distribution over all classes)
.. math::
loss_j = -
\\
sum_{i=0}^{K}
\\
text{label}_i
\\
left(
\\
text{logit}_i -
\\
log
\\
left(
\\
sum_{i=0}^{K}
\\
exp(
\\
text{logit}_i)
\\
right)
\\
right), j = 1,...,K
Args:
logits (Variable): The unscaled log probabilities, which is a 2-D tensor
with shape [N x K]. N is the batch_size, and K is the class number.
label (Variable): The ground truth which is a 2-D tensor. If soft_label
is set to false, Label is a Tensor<int64> with shape [N x 1]. If
soft_label is set to true, Label is a Tensor<float/double> with
soft_label (bool): A flag to indicate whether to interpretate the given
labels as soft labels. By default, `soft_label` is set to False.
Returns:
Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].
Examples:
.. code-block:: python
data = fluid.layers.data(name='data', shape=[128], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
fc = fluid.layers.fc(input=data, size=100)
out = fluid.layers.softmax_with_cross_entropy(logits=fc, label=label)
"""
helper
=
LayerHelper
(
'softmax_with_cross_entropy'
,
**
locals
())
softmax
=
helper
.
create_tmp_variable
(
dtype
=
logits
.
dtype
)
loss
=
helper
.
create_tmp_variable
(
dtype
=
logits
.
dtype
)
helper
.
append_op
(
type
=
'softmax_with_cross_entropy'
,
inputs
=
{
'Logits'
:
logits
,
'Label'
:
label
},
outputs
=
{
'Softmax'
:
softmax
,
'Loss'
:
loss
},
attrs
=
{
'soft_label'
:
soft_label
})
return
loss
def
smooth_l1
(
x
,
y
,
inside_weight
=
None
,
outside_weight
=
None
,
sigma
=
None
):
"""
**Smooth L1 Loss Operator. **
This operator computes the smooth l1 loss for X and Y.
The operator takes the first dimension of X and Y as batch size.
For each instance, it computes the smooth l1 loss element by element first
and then sums all the losses. So the shape of Out is [batch_size, 1].
Args:
x (Variable): A tensor with rank at least 2. The input value of smooth
l1 loss op with shape [batch_size, dim1, ..., dimN].
y (Variable): A tensor with rank at least 2. The target value of smooth
l1 loss op with same shape as x.
inside_weight (Variable|None): A tensor with rank at least 2. This
input is optional and should have same shape with x. If provided,
the result of (x - y) will be multiplied by this tensor element by
element.
outside_weight (Variable|None): A tensor with rank at least 2. This
input is optional and should have same shape with x. If provided,
the out smooth l1 loss will be multiplied by this tensor element
by element.
sigma (float|None): Hyper parameter of smooth l1 loss op. A float scalar
with default value 1.0.
Returns:
Variable: A tensor with rank be 2. The output smooth l1 loss with
shape [batch_size, 1].
Examples:
.. code-block:: python
data = fluid.layers.data(name='data', shape=[128], dtype='float32')
label = fluid.layers.data(name='label', shape=[100], dtype='int64')
fc = fluid.layers.fc(input=data, size=100)
out = fluid.layers.smooth_l1(logits=fc, label=label)
"""
helper
=
LayerHelper
(
'smooth_l1_loss'
,
**
locals
())
diff
=
helper
.
create_tmp_variable
(
dtype
=
x
.
dtype
)
loss
=
helper
.
create_tmp_variable
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'smooth_l1_loss'
,
inputs
=
{
'X'
:
x
,
'Y'
:
y
,
'InsideWeight'
:
inside_weight
,
'OutsideWeight'
:
outside_weight
},
outputs
=
{
'Diff'
:
diff
,
'Out'
:
loss
},
attrs
=
{
'sigma'
:
sigma
})
return
loss
python/paddle/v2/fluid/learning_rate_decay.py
浏览文件 @
99c9dbf5
...
@@ -179,7 +179,7 @@ def polynomial_decay(learning_rate,
...
@@ -179,7 +179,7 @@ def polynomial_decay(learning_rate,
shape
=
[
1
],
dtype
=
'float32'
,
value
=
1.0
)
shape
=
[
1
],
dtype
=
'float32'
,
value
=
1.0
)
with
layers
.
Switch
()
as
switch
:
with
layers
.
Switch
()
as
switch
:
with
switch
.
case
(
layers
.
equal
(
x
=
global_step
,
y
=
zero_var
)
):
with
switch
.
case
(
global_step
==
zero_var
):
layers
.
assign
(
input
=
one_var
,
output
=
div_res
)
layers
.
assign
(
input
=
one_var
,
output
=
div_res
)
decay_steps
=
decay_steps
*
div_res
decay_steps
=
decay_steps
*
div_res
else
:
else
:
...
@@ -229,7 +229,7 @@ def piecewise_decay(global_step, boundaries, values):
...
@@ -229,7 +229,7 @@ def piecewise_decay(global_step, boundaries, values):
shape
=
[
1
],
dtype
=
'float32'
,
value
=
float
(
boundaries
[
i
]))
shape
=
[
1
],
dtype
=
'float32'
,
value
=
float
(
boundaries
[
i
]))
value_var
=
layers
.
fill_constant
(
value_var
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
float
(
values
[
i
]))
shape
=
[
1
],
dtype
=
'float32'
,
value
=
float
(
values
[
i
]))
with
switch
.
case
(
layers
.
less_than
(
global_step
,
boundary_val
)
):
with
switch
.
case
(
global_step
<
boundary_val
):
layers
.
assign
(
value_var
,
lr
)
layers
.
assign
(
value_var
,
lr
)
last_value_var
=
layers
.
fill_constant
(
last_value_var
=
layers
.
fill_constant
(
shape
=
[
1
],
shape
=
[
1
],
...
...
python/paddle/v2/fluid/tests/test_detection.py
浏览文件 @
99c9dbf5
...
@@ -14,15 +14,10 @@
...
@@ -14,15 +14,10 @@
from
__future__
import
print_function
from
__future__
import
print_function
import
paddle.v2.fluid
as
fluid
import
paddle.v2.fluid
as
fluid
import
paddle.v2.fluid.core
as
core
import
paddle.v2.fluid.layers
as
layers
import
paddle.v2.fluid.layers
as
layers
import
paddle.v2.fluid.layers.detection
as
detection
import
paddle.v2.fluid.layers.detection
as
detection
from
paddle.v2.fluid.framework
import
Program
,
program_guard
from
paddle.v2.fluid.framework
import
Program
,
program_guard
import
unittest
import
unittest
import
numpy
as
np
import
paddle.v2.fluid.layers
as
layers
from
paddle.v2.fluid.framework
import
Program
,
program_guard
class
TestBook
(
unittest
.
TestCase
):
class
TestBook
(
unittest
.
TestCase
):
...
@@ -55,15 +50,67 @@ class TestBook(unittest.TestCase):
...
@@ -55,15 +50,67 @@ class TestBook(unittest.TestCase):
print
(
str
(
program
))
print
(
str
(
program
))
class
TestPriorBox
(
unittest
.
TestCase
):
def
test_prior_box
(
self
):
data_shape
=
[
3
,
224
,
224
]
box
,
var
=
self
.
prior_box_output
(
data_shape
)
assert
len
(
box
.
shape
)
==
2
assert
box
.
shape
==
var
.
shape
assert
box
.
shape
[
1
]
==
4
def
prior_box_output
(
self
,
data_shape
):
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
data_shape
,
dtype
=
'float32'
)
conv1
=
fluid
.
layers
.
conv2d
(
input
=
images
,
num_filters
=
3
,
filter_size
=
3
,
stride
=
2
,
use_cudnn
=
False
)
conv2
=
fluid
.
layers
.
conv2d
(
input
=
conv1
,
num_filters
=
3
,
filter_size
=
3
,
stride
=
2
,
use_cudnn
=
False
)
conv3
=
fluid
.
layers
.
conv2d
(
input
=
conv2
,
num_filters
=
3
,
filter_size
=
3
,
stride
=
2
,
use_cudnn
=
False
)
conv4
=
fluid
.
layers
.
conv2d
(
input
=
conv3
,
num_filters
=
3
,
filter_size
=
3
,
stride
=
2
,
use_cudnn
=
False
)
conv5
=
fluid
.
layers
.
conv2d
(
input
=
conv4
,
num_filters
=
3
,
filter_size
=
3
,
stride
=
2
,
use_cudnn
=
False
)
box
,
var
=
detection
.
prior_box
(
inputs
=
[
conv1
,
conv2
,
conv3
,
conv4
,
conv5
,
conv5
],
image
=
images
,
min_ratio
=
20
,
max_ratio
=
90
,
# steps=[8, 16, 32, 64, 100, 300],
aspect_ratios
=
[[
2.
],
[
2.
,
3.
],
[
2.
,
3.
],
[
2.
,
3.
],
[
2.
],
[
2.
]],
base_size
=
300
,
offset
=
0.5
,
flip
=
True
,
clip
=
True
)
return
box
,
var
class
TestMultiBoxHead
(
unittest
.
TestCase
):
class
TestMultiBoxHead
(
unittest
.
TestCase
):
def
test_prior_box
(
self
):
def
test_prior_box
(
self
):
data_shape
=
[
3
,
224
,
224
]
data_shape
=
[
3
,
224
,
224
]
mbox_locs
,
mbox_confs
=
self
.
multi_box_output
(
data_shape
)
mbox_locs
,
mbox_confs
=
self
.
multi_box_output
(
data_shape
)
# print mbox_locs.shape
# print mbox_confs.shape
# assert len(box.shape) == 2
# assert box.shape == var.shape
# assert box.shape[1] == 4
def
multi_box_output
(
self
,
data_shape
):
def
multi_box_output
(
self
,
data_shape
):
images
=
fluid
.
layers
.
data
(
images
=
fluid
.
layers
.
data
(
...
...
python/paddle/v2/fluid/tests/test_detection_map_op.py
0 → 100644
浏览文件 @
99c9dbf5
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
import
sys
import
collections
import
math
from
op_test
import
OpTest
class
TestDetectionMAPOp
(
OpTest
):
def
set_data
(
self
):
self
.
init_test_case
()
self
.
mAP
=
[
self
.
calc_map
(
self
.
tf_pos
,
self
.
tf_pos_lod
)]
self
.
label
=
np
.
array
(
self
.
label
).
astype
(
'float32'
)
self
.
detect
=
np
.
array
(
self
.
detect
).
astype
(
'float32'
)
self
.
mAP
=
np
.
array
(
self
.
mAP
).
astype
(
'float32'
)
if
(
len
(
self
.
class_pos_count
)
>
0
):
self
.
class_pos_count
=
np
.
array
(
self
.
class_pos_count
).
astype
(
'int32'
)
self
.
true_pos
=
np
.
array
(
self
.
true_pos
).
astype
(
'float32'
)
self
.
false_pos
=
np
.
array
(
self
.
false_pos
).
astype
(
'float32'
)
self
.
inputs
=
{
'Label'
:
(
self
.
label
,
self
.
label_lod
),
'DetectRes'
:
(
self
.
detect
,
self
.
detect_lod
),
'PosCount'
:
self
.
class_pos_count
,
'TruePos'
:
(
self
.
true_pos
,
self
.
true_pos_lod
),
'FalsePos'
:
(
self
.
false_pos
,
self
.
false_pos_lod
)
}
else
:
self
.
inputs
=
{
'Label'
:
(
self
.
label
,
self
.
label_lod
),
'DetectRes'
:
(
self
.
detect
,
self
.
detect_lod
),
}
self
.
attrs
=
{
'overlap_threshold'
:
self
.
overlap_threshold
,
'evaluate_difficult'
:
self
.
evaluate_difficult
,
'ap_type'
:
self
.
ap_type
}
self
.
out_class_pos_count
=
np
.
array
(
self
.
out_class_pos_count
).
astype
(
'int'
)
self
.
out_true_pos
=
np
.
array
(
self
.
out_true_pos
).
astype
(
'float32'
)
self
.
out_false_pos
=
np
.
array
(
self
.
out_false_pos
).
astype
(
'float32'
)
self
.
outputs
=
{
'MAP'
:
self
.
mAP
,
'AccumPosCount'
:
self
.
out_class_pos_count
,
'AccumTruePos'
:
(
self
.
out_true_pos
,
self
.
out_true_pos_lod
),
'AccumFalsePos'
:
(
self
.
out_false_pos
,
self
.
out_false_pos_lod
)
}
def
init_test_case
(
self
):
self
.
overlap_threshold
=
0.3
self
.
evaluate_difficult
=
True
self
.
ap_type
=
"integral"
self
.
label_lod
=
[[
0
,
2
,
4
]]
# label difficult xmin ymin xmax ymax
self
.
label
=
[[
1
,
0
,
0.1
,
0.1
,
0.3
,
0.3
],
[
1
,
1
,
0.6
,
0.6
,
0.8
,
0.8
],
[
2
,
0
,
0.3
,
0.3
,
0.6
,
0.5
],
[
1
,
0
,
0.7
,
0.1
,
0.9
,
0.3
]]
# label score xmin ymin xmax ymax difficult
self
.
detect_lod
=
[[
0
,
3
,
7
]]
self
.
detect
=
[
[
1
,
0.3
,
0.1
,
0.0
,
0.4
,
0.3
],
[
1
,
0.7
,
0.0
,
0.1
,
0.2
,
0.3
],
[
1
,
0.9
,
0.7
,
0.6
,
0.8
,
0.8
],
[
2
,
0.8
,
0.2
,
0.1
,
0.4
,
0.4
],
[
2
,
0.1
,
0.4
,
0.3
,
0.7
,
0.5
],
[
1
,
0.2
,
0.8
,
0.1
,
1.0
,
0.3
],
[
3
,
0.2
,
0.8
,
0.1
,
1.0
,
0.3
]
]
# label score true_pos false_pos
self
.
tf_pos_lod
=
[[
0
,
3
,
7
]]
self
.
tf_pos
=
[[
1
,
0.9
,
1
,
0
],
[
1
,
0.7
,
1
,
0
],
[
1
,
0.3
,
0
,
1
],
[
1
,
0.2
,
1
,
0
],
[
2
,
0.8
,
0
,
1
],
[
2
,
0.1
,
1
,
0
],
[
3
,
0.2
,
0
,
1
]]
self
.
class_pos_count
=
[]
self
.
true_pos_lod
=
[[]]
self
.
true_pos
=
[[]]
self
.
false_pos_lod
=
[[]]
self
.
false_pos
=
[[]]
def
calc_map
(
self
,
tf_pos
,
tf_pos_lod
):
mAP
=
0.0
count
=
0
def
get_input_pos
(
class_pos_count
,
true_pos
,
true_pos_lod
,
false_pos
,
false_pos_lod
):
class_pos_count_dict
=
collections
.
Counter
()
true_pos_dict
=
collections
.
defaultdict
(
list
)
false_pos_dict
=
collections
.
defaultdict
(
list
)
for
i
,
count
in
enumerate
(
class_pos_count
):
class_pos_count_dict
[
i
]
=
count
for
i
in
range
(
len
(
true_pos_lod
[
0
])
-
1
):
start
=
true_pos_lod
[
0
][
i
]
end
=
true_pos_lod
[
0
][
i
+
1
]
for
j
in
range
(
start
,
end
):
true_pos_dict
[
i
].
append
(
true_pos
[
j
])
for
i
in
range
(
len
(
false_pos_lod
[
0
])
-
1
):
start
=
false_pos_lod
[
0
][
i
]
end
=
false_pos_lod
[
0
][
i
+
1
]
for
j
in
range
(
start
,
end
):
false_pos_dict
[
i
].
append
(
false_pos
[
j
])
return
class_pos_count_dict
,
true_pos_dict
,
false_pos_dict
def
get_output_pos
(
label_count
,
true_pos
,
false_pos
):
max_label
=
0
for
(
label
,
label_pos_num
)
in
label_count
.
items
():
if
max_label
<
label
:
max_label
=
label
label_number
=
max_label
+
1
out_class_pos_count
=
[]
out_true_pos_lod
=
[
0
]
out_true_pos
=
[]
out_false_pos_lod
=
[
0
]
out_false_pos
=
[]
for
i
in
range
(
label_number
):
out_class_pos_count
.
append
([
label_count
[
i
]])
true_pos_list
=
true_pos
[
i
]
out_true_pos
+=
true_pos_list
out_true_pos_lod
.
append
(
len
(
out_true_pos
))
false_pos_list
=
false_pos
[
i
]
out_false_pos
+=
false_pos_list
out_false_pos_lod
.
append
(
len
(
out_false_pos
))
return
out_class_pos_count
,
out_true_pos
,
[
out_true_pos_lod
],
out_false_pos
,
[
out_false_pos_lod
]
def
get_accumulation
(
pos_list
):
sorted_list
=
sorted
(
pos_list
,
key
=
lambda
pos
:
pos
[
0
],
reverse
=
True
)
sum
=
0
accu_list
=
[]
for
(
score
,
count
)
in
sorted_list
:
sum
+=
count
accu_list
.
append
(
sum
)
return
accu_list
label_count
,
true_pos
,
false_pos
=
get_input_pos
(
self
.
class_pos_count
,
self
.
true_pos
,
self
.
true_pos_lod
,
self
.
false_pos
,
self
.
false_pos_lod
)
for
(
label
,
difficult
,
xmin
,
ymin
,
xmax
,
ymax
)
in
self
.
label
:
if
self
.
evaluate_difficult
:
label_count
[
label
]
+=
1
elif
not
difficult
:
label_count
[
label
]
+=
1
true_pos
=
collections
.
defaultdict
(
list
)
false_pos
=
collections
.
defaultdict
(
list
)
for
(
label
,
score
,
tp
,
fp
)
in
tf_pos
:
true_pos
[
label
].
append
([
score
,
tp
])
false_pos
[
label
].
append
([
score
,
fp
])
for
(
label
,
label_pos_num
)
in
label_count
.
items
():
if
label_pos_num
==
0
or
label
not
in
true_pos
:
continue
label_true_pos
=
true_pos
[
label
]
label_false_pos
=
false_pos
[
label
]
accu_tp_sum
=
get_accumulation
(
label_true_pos
)
accu_fp_sum
=
get_accumulation
(
label_false_pos
)
precision
=
[]
recall
=
[]
for
i
in
range
(
len
(
accu_tp_sum
)):
precision
.
append
(
float
(
accu_tp_sum
[
i
])
/
float
(
accu_tp_sum
[
i
]
+
accu_fp_sum
[
i
]))
recall
.
append
(
float
(
accu_tp_sum
[
i
])
/
label_pos_num
)
if
self
.
ap_type
==
"11point"
:
max_precisions
=
[
0.0
]
*
11
start_idx
=
len
(
accu_tp_sum
)
-
1
for
j
in
range
(
10
,
-
1
,
-
1
):
for
i
in
range
(
start_idx
,
-
1
,
-
1
):
if
recall
[
i
]
<
float
(
j
)
/
10.0
:
start_idx
=
i
if
j
>
0
:
max_precisions
[
j
-
1
]
=
max_precisions
[
j
]
break
else
:
if
max_precisions
[
j
]
<
precision
[
i
]:
max_precisions
[
j
]
=
precision
[
i
]
for
j
in
range
(
10
,
-
1
,
-
1
):
mAP
+=
max_precisions
[
j
]
/
11
count
+=
1
elif
self
.
ap_type
==
"integral"
:
average_precisions
=
0.0
prev_recall
=
0.0
for
i
in
range
(
len
(
accu_tp_sum
)):
if
math
.
fabs
(
recall
[
i
]
-
prev_recall
)
>
1e-6
:
average_precisions
+=
precision
[
i
]
*
\
math
.
fabs
(
recall
[
i
]
-
prev_recall
)
prev_recall
=
recall
[
i
]
mAP
+=
average_precisions
count
+=
1
self
.
out_class_pos_count
,
self
.
out_true_pos
,
self
.
out_true_pos_lod
,
self
.
out_false_pos
,
self
.
out_false_pos_lod
=
get_output_pos
(
label_count
,
true_pos
,
false_pos
)
if
count
!=
0
:
mAP
/=
count
return
mAP
*
100.0
def
setUp
(
self
):
self
.
op_type
=
"detection_map"
self
.
set_data
()
def
test_check_output
(
self
):
self
.
check_output
()
class
TestDetectionMAPOpSkipDiff
(
TestDetectionMAPOp
):
def
init_test_case
(
self
):
super
(
TestDetectionMAPOpSkipDiff
,
self
).
init_test_case
()
self
.
evaluate_difficult
=
False
self
.
tf_pos_lod
=
[[
0
,
2
,
6
]]
# label score true_pos false_pos
self
.
tf_pos
=
[[
1
,
0.7
,
1
,
0
],
[
1
,
0.3
,
0
,
1
],
[
1
,
0.2
,
1
,
0
],
[
2
,
0.8
,
0
,
1
],
[
2
,
0.1
,
1
,
0
],
[
3
,
0.2
,
0
,
1
]]
class
TestDetectionMAPOp11Point
(
TestDetectionMAPOp
):
def
init_test_case
(
self
):
super
(
TestDetectionMAPOp11Point
,
self
).
init_test_case
()
self
.
ap_type
=
"11point"
class
TestDetectionMAPOpMultiBatch
(
TestDetectionMAPOp
):
def
init_test_case
(
self
):
super
(
TestDetectionMAPOpMultiBatch
,
self
).
init_test_case
()
self
.
class_pos_count
=
[
0
,
2
,
1
]
self
.
true_pos_lod
=
[[
0
,
0
,
3
,
5
]]
self
.
true_pos
=
[[
0.7
,
1.
],
[
0.3
,
0.
],
[
0.2
,
1.
],
[
0.8
,
0.
],
[
0.1
,
1.
]]
self
.
false_pos_lod
=
[[
0
,
0
,
3
,
5
]]
self
.
false_pos
=
[[
0.7
,
0.
],
[
0.3
,
1.
],
[
0.2
,
0.
],
[
0.8
,
1.
],
[
0.1
,
0.
]]
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/v2/fluid/tests/test_layers.py
浏览文件 @
99c9dbf5
...
@@ -161,8 +161,8 @@ class TestBook(unittest.TestCase):
...
@@ -161,8 +161,8 @@ class TestBook(unittest.TestCase):
label
=
label
,
label
=
label
,
chunk_scheme
=
"IOB"
,
chunk_scheme
=
"IOB"
,
num_chunk_types
=
(
label_dict_len
-
1
)
/
2
)
num_chunk_types
=
(
label_dict_len
-
1
)
/
2
)
self
.
assert
NotEqual
(
crf
,
None
)
self
.
assert
False
(
crf
is
None
)
self
.
assert
NotEqual
(
crf_decode
,
None
)
self
.
assert
False
(
crf_decode
is
None
)
print
(
str
(
program
))
print
(
str
(
program
))
...
@@ -309,6 +309,24 @@ class TestBook(unittest.TestCase):
...
@@ -309,6 +309,24 @@ class TestBook(unittest.TestCase):
self
.
assertIsNotNone
(
out
)
self
.
assertIsNotNone
(
out
)
print
(
str
(
program
))
print
(
str
(
program
))
def
test_softmax_with_cross_entropy
(
self
):
program
=
Program
()
with
program_guard
(
program
):
x
=
layers
.
data
(
name
=
'x'
,
shape
=
[
16
],
dtype
=
'float32'
)
y
=
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
loss
=
layers
.
softmax_with_cross_entropy
(
x
,
y
)
self
.
assertIsNotNone
(
loss
)
print
(
str
(
program
))
def
test_smooth_l1
(
self
):
program
=
Program
()
with
program_guard
(
program
):
x
=
layers
.
data
(
name
=
'x'
,
shape
=
[
4
],
dtype
=
'float32'
)
y
=
layers
.
data
(
name
=
'label'
,
shape
=
[
4
],
dtype
=
'float32'
)
loss
=
layers
.
smooth_l1
(
x
,
y
)
self
.
assertIsNotNone
(
loss
)
print
(
str
(
program
))
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
unittest
.
main
()
unittest
.
main
()
python/paddle/v2/fluid/tests/test_prior_box_op.py
浏览文件 @
99c9dbf5
...
@@ -65,9 +65,9 @@ class TestPriorBoxOp(OpTest):
...
@@ -65,9 +65,9 @@ class TestPriorBoxOp(OpTest):
self
.
batch_size
=
10
self
.
batch_size
=
10
self
.
min_sizes
=
[
2
,
4
]
self
.
min_sizes
=
[
2
,
4
]
self
.
min_sizes
=
np
.
array
(
self
.
min_sizes
).
astype
(
'
int64'
)
self
.
min_sizes
=
np
.
array
(
self
.
min_sizes
).
astype
(
'
float32'
).
tolist
(
)
self
.
max_sizes
=
[
5
,
10
]
self
.
max_sizes
=
[
5
,
10
]
self
.
max_sizes
=
np
.
array
(
self
.
max_sizes
).
astype
(
'
int64'
)
self
.
max_sizes
=
np
.
array
(
self
.
max_sizes
).
astype
(
'
float32'
).
tolist
(
)
self
.
aspect_ratios
=
[
2.0
,
3.0
]
self
.
aspect_ratios
=
[
2.0
,
3.0
]
self
.
flip
=
True
self
.
flip
=
True
self
.
real_aspect_ratios
=
[
1
,
2.0
,
1.0
/
2.0
,
3.0
,
1.0
/
3.0
]
self
.
real_aspect_ratios
=
[
1
,
2.0
,
1.0
/
2.0
,
3.0
,
1.0
/
3.0
]
...
...
python/paddle/v2/fluid/tests/test_python_operator_overriding.py
0 → 100644
浏览文件 @
99c9dbf5
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
import
paddle.v2.fluid.layers
as
layers
import
paddle.v2.fluid.framework
as
framework
import
paddle.v2.fluid
as
fluid
class
TestPythonOperatorOverride
(
unittest
.
TestCase
):
def
check_result
(
self
,
fn
,
place
,
dtype
):
shape
=
[
9
,
10
]
x_data
=
np
.
random
.
random
(
size
=
shape
).
astype
(
dtype
)
y_data
=
np
.
random
.
random
(
size
=
shape
).
astype
(
dtype
)
python_out
=
fn
(
x_data
,
y_data
)
x_var
=
layers
.
create_global_var
(
name
=
'x'
,
shape
=
shape
,
value
=
0.0
,
dtype
=
dtype
,
persistable
=
True
)
y_var
=
layers
.
create_global_var
(
name
=
'y'
,
shape
=
shape
,
value
=
0.0
,
dtype
=
dtype
,
persistable
=
True
)
out
=
fn
(
x_var
,
y_var
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
fluid_out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
'x'
:
x_data
,
'y'
:
y_data
},
fetch_list
=
[
out
])
np
.
testing
.
assert_array_equal
(
python_out
,
fluid_out
[
0
])
def
test_override
(
self
):
# compare func to check
compare_fns
=
[
lambda
_a
,
_b
:
_a
==
_b
,
lambda
_a
,
_b
:
_a
!=
_b
,
lambda
_a
,
_b
:
_a
<
_b
,
lambda
_a
,
_b
:
_a
<=
_b
,
lambda
_a
,
_b
:
_a
>
_b
,
lambda
_a
,
_b
:
_a
>=
_b
,
]
# places to check
places
=
[
fluid
.
CPUPlace
()]
if
fluid
.
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
# dtypes to check
dtypes
=
[
'int32'
,
'float32'
]
for
place
in
places
:
for
dtype
in
dtypes
:
for
compare_fn
in
compare_fns
:
with
framework
.
program_guard
(
framework
.
Program
(),
framework
.
Program
()):
self
.
check_result
(
compare_fn
,
place
,
dtype
)
if
__name__
==
'__main__'
:
unittest
.
main
()
tools/manylinux1/Dockerfile.x64
浏览文件 @
99c9dbf5
...
@@ -52,3 +52,5 @@ RUN wget -O /opt/swig-2.0.12.tar.gz https://sourceforge.net/projects/swig/files/
...
@@ -52,3 +52,5 @@ RUN wget -O /opt/swig-2.0.12.tar.gz https://sourceforge.net/projects/swig/files/
RUN mkdir -p /src && cd /src && git clone https://github.com/NVIDIA/nccl.git nccl && cd nccl &&\
RUN mkdir -p /src && cd /src && git clone https://github.com/NVIDIA/nccl.git nccl && cd nccl &&\
make -j `nproc` install <NCCL_MAKE_OPTS> && cd .. && rm -rf nccl
make -j `nproc` install <NCCL_MAKE_OPTS> && cd .. && rm -rf nccl
CMD ["bash", "/paddle/paddle/scripts/docker/build.sh"]
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录