diff --git a/python/paddle/trainer_config_helpers/layers.py b/python/paddle/trainer_config_helpers/layers.py index bb58135084df5dfc76aec1e6d790e29ab0c10a88..d2b3103e36b9a727bf1bc32cfe6221c8370cfd4c 100755 --- a/python/paddle/trainer_config_helpers/layers.py +++ b/python/paddle/trainer_config_helpers/layers.py @@ -4728,7 +4728,7 @@ def ctc_layer(input, fc_layer with softmax activation, should be num_classes + 1. The size of ctc_layer should also be num_classes + 1. - The simple usage: + The example usage is: .. code-block:: python @@ -4815,7 +4815,7 @@ def warp_ctc_layer(input, - As a native 'softmax' activation is interated to the warp-ctc library, 'linear' activation is expected instead in the 'input' layer. - The simple usage: + The example usage is: .. code-block:: python @@ -4876,7 +4876,7 @@ def crf_layer(input, A layer for calculating the cost of sequential conditional random field model. - The simple usage: + The example usage is: .. code-block:: python @@ -4950,7 +4950,7 @@ def crf_decoding_layer(input, this layer will also calculate error. output.value[i] is 1 for incorrect decoding or 0 for correct decoding. - The simple usage: + The example usage is: .. code-block:: python @@ -5143,7 +5143,7 @@ def rank_cost(left, - :math:`o_i` and :math:`o_j`: the left output and right output. Their dimension is one. - The simple usage: + The example usage is: .. code-block:: python @@ -5200,7 +5200,7 @@ def lambda_cost(input, """ lambdaCost for lambdaRank LTR approach. - The simple usage: + The example usage is: .. code-block:: python @@ -5258,6 +5258,8 @@ def cross_entropy(input, """ A loss layer for multi class entropy. + The example usage is: + .. code-block:: python cost = cross_entropy(input=input_layer, @@ -5304,6 +5306,8 @@ def cross_entropy_with_selfnorm(input, A loss layer for multi class entropy with selfnorm. Input should be a vector of positive numbers, without normalization. + The example usage is: + .. code-block:: python cost = cross_entropy_with_selfnorm(input=input_layer, @@ -5345,6 +5349,8 @@ def sum_cost(input, name=None, layer_attr=None): """ A loss layer which calculate the sum of the input as loss + The example usage is: + .. code-block:: python cost = sum_cost(input=input_layer) @@ -5374,6 +5380,8 @@ def huber_cost(input, label, name=None, coeff=1.0, layer_attr=None): """ A loss layer for huber loss. + The example usage is: + .. code-block:: python cost = huber_cost(input=input_layer, @@ -5414,6 +5422,8 @@ def multi_binary_label_cross_entropy(input, """ A loss layer for multi binary label cross entropy. + The example usage is: + .. code-block:: python cost = multi_binary_label_cross_entropy(input=input_layer, @@ -5473,6 +5483,8 @@ def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None): More details can be found by referring to `Fast R-CNN `_ + The example usage is: + .. code-block:: python cost = smooth_l1_cost(input=input_layer, @@ -5522,6 +5534,8 @@ def multiplex_layer(input, name=None, layer_attr=None): where, y is output. :math:`x_{k}` is the k-th input layer and :math:`k = x_{0}[i] + 1`. + The example usage is: + .. code-block:: python maxid = multiplex_layer(input=layers) @@ -5576,17 +5590,23 @@ def prelu_layer(input, z_i &\\quad if \\quad z_i > 0 \\\\ a_i * z_i &\\quad \\mathrm{otherwise} + The example usage is: + + .. code-block:: python + + prelu = prelu_layer(input=layers, partial_sum=1) + :param name: Name of this layer. :type name: basestring :param input: The input layer. :type input: LayerOutput :param partial_sum: this parameter makes a group of inputs share a same weight. - 1. partial_sum = 1 indicates the element-wise activation: - each element has a weight - 2. partial_sum = number of elements in one channel indicates the channel-wise - activation, elements in a channel share a same weight - 3. partial_sum = number of outputs indicates all elements share a same weight - :type int + + - partial_sum = 1, indicates the element-wise activation: each element has a weight. + - partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share a same weight. + - partial_sum = number of outputs, indicates all elements share a same weight. + + :type partial_sum: int :param param_attr: The parameter attribute. See ParameterAttribute for details. :type param_attr: ParameterAttribute|None :param layer_attr: Extra layer configurations. Default is None. @@ -5600,7 +5620,7 @@ def prelu_layer(input, l = Layer( name=name, - type='prelu', + type=LayerType.PRELU, inputs=Input(input.name, **param_attr.attr), partial_sum=partial_sum, **ExtraLayerAttribute.to_kwargs(layer_attr))