提交 98460c00 编写于 作者: Y Yibing Liu

Simplify the computation in cpu

上级 94e72ea6
...@@ -28,47 +28,50 @@ class ArgsortKernel : public framework::OpKernel<T> { ...@@ -28,47 +28,50 @@ class ArgsortKernel : public framework::OpKernel<T> {
auto* input = ctx.Input<framework::Tensor>("X"); auto* input = ctx.Input<framework::Tensor>("X");
auto* output = ctx.Output<framework::Tensor>("Out"); auto* output = ctx.Output<framework::Tensor>("Out");
auto* indices = ctx.Output<framework::Tensor>("Indices"); auto* indices = ctx.Output<framework::Tensor>("Indices");
int axis = static_cast<int>(ctx.Attr<int>("axis")); int axis = ctx.Attr<int>("axis");
auto in_dims = input->dims(); auto in_dims = input->dims();
axis = (axis < 0) ? (in_dims.size() + axis) : axis; axis = (axis < 0) ? (in_dims.size() + axis) : axis;
const T* in_data = input->data<T>(); const T* in_data = input->data<T>();
T* out_data = output->mutable_data<T>(ctx.GetPlace()); T* out_data = output->mutable_data<T>(ctx.GetPlace());
int64_t* idx_data = indices->mutable_data<int64_t>(ctx.GetPlace()); int64_t* ids_data = indices->mutable_data<int64_t>(ctx.GetPlace());
int64_t part_dims_prod = input->numel() / in_dims[axis]; int64_t groups = input->numel() / in_dims[axis];
for (int64_t i = 0; i < part_dims_prod; ++i) { int64_t stride = (axis == in_dims.size() - 1)
? 1
: framework::product(framework::slice_ddim(
in_dims, axis + 1, in_dims.size()));
for (int64_t i = 0; i < groups; ++i) {
int64_t idx = i; int64_t idx = i;
std::vector<int64_t> idx_vec(in_dims.size(), 0); std::vector<int64_t> shape_vec(in_dims.size(), 0);
for (int64_t dim = in_dims.size() - 1; dim >= 0; --dim) { for (int64_t dim = in_dims.size() - 1; dim >= 0; --dim) {
if (dim != axis) { if (dim != axis) {
idx_vec[dim] = idx % in_dims[dim]; shape_vec[dim] = idx % in_dims[dim];
idx /= in_dims[dim]; idx /= in_dims[dim];
} }
} }
std::vector<std::pair<T, int64_t>> in_vec;
std::vector<int64_t> org_index_vec(in_dims[axis], 0); int64_t start_index = shape_vec[0];
for (int64_t j = 0; j < in_dims[axis]; ++j) {
idx_vec[axis] = j;
int64_t index = idx_vec[0];
for (int64_t dim = 0; dim < in_dims.size() - 1; ++dim) { for (int64_t dim = 0; dim < in_dims.size() - 1; ++dim) {
index = index * in_dims[dim + 1] + idx_vec[dim + 1]; start_index = start_index * in_dims[dim + 1] + shape_vec[dim + 1];
} }
in_vec.push_back(std::pair<T, int64_t>(in_data[index], j));
org_index_vec[j] = index; std::vector<int64_t> org_index_vec(in_dims[axis], start_index);
for (int64_t j = 1; j < in_dims[axis]; ++j) {
org_index_vec[j] += j * stride;
} }
std::sort( std::sort(org_index_vec.begin(), org_index_vec.end(),
in_vec.begin(), in_vec.end(), [in_data](const int64_t v1, const int64_t v2) {
[](const std::pair<T, int64_t>& v1, const std::pair<T, int64_t>& v2) { return in_data[v1] < in_data[v2];
return v1.first < v2.first;
}); });
for (size_t j = 0; j < org_index_vec.size(); ++j) { for (size_t j = 0; j < org_index_vec.size(); ++j) {
int64_t index = org_index_vec[j]; int64_t index = start_index + j * stride;
out_data[index] = in_vec[j].first; out_data[index] = in_data[org_index_vec[j]];
idx_data[index] = in_vec[j].second; ids_data[index] = (org_index_vec[j] - start_index) / stride;
} }
} }
} }
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册