Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
98411745
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
98411745
编写于
9月 09, 2017
作者:
Y
yangyaming
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Finish modified huber loss op.
上级
3a49bae0
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
134 addition
and
48 deletion
+134
-48
paddle/operators/modified_huber_loss_op.cc
paddle/operators/modified_huber_loss_op.cc
+19
-7
paddle/operators/modified_huber_loss_op.cu
paddle/operators/modified_huber_loss_op.cu
+43
-6
paddle/operators/modified_huber_loss_op.h
paddle/operators/modified_huber_loss_op.h
+17
-35
python/paddle/v2/framework/tests/test_modified_huber_loss_op.py
.../paddle/v2/framework/tests/test_modified_huber_loss_op.py
+55
-0
未找到文件。
paddle/operators/modified_huber_loss_op.cc
浏览文件 @
98411745
...
...
@@ -45,11 +45,25 @@ class ModifiedHuberLossOpMaker : public framework::OpProtoAndCheckerMaker {
ModifiedHuberLossOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
""
);
AddInput
(
"Y"
,
""
);
AddOutput
(
"intermediate_val"
,
""
).
AsIntermediate
();
AddOutput
(
"Out"
,
""
);
AddComment
(
""
);
AddInput
(
"X"
,
"Input value of ModifiedHuberLossOp."
);
AddInput
(
"Y"
,
"Target labels of ModifiedHuberLossOp."
);
AddOutput
(
"intermediate_val"
,
"Variable to save intermediate result which will be reused in "
"backward processing."
)
.
AsIntermediate
();
AddOutput
(
"Out"
,
"Classification loss for input X."
);
AddComment
(
R"DOC(
Modified huber loss is used in binary classification problem. Dimensions of
input X and target Y are both (N, 1) and so is the dimension of output loss.
Since target Y is not differentiable, cacluating gradient for Y is illegal.
The formulation of modified huber loss is:
L(y, f(x)) = max(0, 1 - yf(x))^2 for yf(x) >= -1,
-4yf(x) otherwise.
Make sure the values of target label Y are in {0, 1} here. The operator will
scale values of Y to {-1, +1} when computing loss and gradients.
)DOC"
);
}
};
...
...
@@ -64,7 +78,6 @@ class ModifiedHuberLossGradOp : public framework::OperatorWithKernel {
auto
*
intermediate_val
=
context
.
Input
<
Tensor
>
(
"intermediate_val"
);
auto
*
out_grad
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
x_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
y_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
PADDLE_ENFORCE_NOT_NULL
(
x
,
"Input X must not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
y
,
"Target Y must not be null."
);
...
...
@@ -80,7 +93,6 @@ class ModifiedHuberLossGradOp : public framework::OperatorWithKernel {
"Dimension of Out gradient and X must be the same (N*1)."
);
if
(
x_grad
)
x_grad
->
Resize
(
x
->
dims
());
if
(
y_grad
)
y_grad
->
Resize
(
y
->
dims
());
}
};
...
...
paddle/operators/modified_huber_loss_op.cu
浏览文件 @
98411745
...
...
@@ -9,24 +9,61 @@
See the License for the specific language governing permissions and
limitations under the License. */
#include <thrust/device_ptr.h>
#include <thrust/device_vector.h>
#include <thrust/for_each.h>
#include <thrust/tuple.h>
#include "paddle/framework/op_registry.h"
#include "paddle/operators/modified_huber_loss_op.h"
#include "paddle/platform/hostdevice.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
struct
ModifiedHuberLossBackward
{
template
<
typename
Tuple
>
HOSTDEVICE
void
operator
()(
Tuple
t
)
const
{
auto
inter_val
=
thrust
::
get
<
1
>
(
t
);
auto
y_val
=
thrust
::
get
<
2
>
(
t
);
auto
out_grad
=
thrust
::
get
<
3
>
(
t
);
if
(
inter_val
<
-
1
)
{
thrust
::
get
<
0
>
(
t
)
=
-
4
*
(
2
*
y_val
-
1
)
*
out_grad
;
}
else
if
(
inter_val
<
1
)
{
thrust
::
get
<
0
>
(
t
)
=
-
2
*
(
1
-
inter_val
)
*
(
2
*
y_val
-
1
)
*
out_grad
;
}
else
{
thrust
::
get
<
0
>
(
t
)
=
0
;
}
}
};
template
<
typename
T
>
class
ModifiedHuberLossGradGPUKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
// auto* in0 = context.Input<Tensor>("X");
// auto* in1 = context.Input<Tensor>("Y");
// auto* in2 = context.Input<Tensor>("intermediate_val");
// auto* in3 = context.Input<Tensor>(framework::GradVarName("Out"));
// auto* out0 = context.Output<Tensor>(framework::GradVarName("X"));
// auto* out1 = context.Output<Tensor>(framework::GradVarName("X"));
auto
*
in0
=
context
.
Input
<
Tensor
>
(
"Y"
);
auto
*
in1
=
context
.
Input
<
Tensor
>
(
"intermediate_val"
);
auto
*
in2
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
out0
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
if
(
out0
)
{
auto
counts
=
framework
::
product
(
in1
->
dims
());
auto
y_ptr
=
thrust
::
device_pointer_cast
(
in0
->
data
<
T
>
());
auto
inter_val_ptr
=
thrust
::
device_pointer_cast
(
in1
->
data
<
T
>
());
auto
out_grad_ptr
=
thrust
::
device_pointer_cast
(
in2
->
data
<
T
>
());
thrust
::
device_ptr
<
T
>
x_grad_ptr
(
out0
->
mutable_data
<
T
>
(
context
.
GetPlace
()));
auto
iter_begin
=
thrust
::
make_zip_iterator
(
thrust
::
make_tuple
(
x_grad_ptr
,
inter_val_ptr
,
y_ptr
,
out_grad_ptr
));
auto
iter_end
=
thrust
::
make_zip_iterator
(
thrust
::
make_tuple
(
x_grad_ptr
+
counts
,
inter_val_ptr
+
counts
,
y_ptr
+
counts
,
out_grad_ptr
+
counts
));
thrust
::
for_each
(
iter_begin
,
iter_end
,
ModifiedHuberLossBackward
());
}
}
};
...
...
paddle/operators/modified_huber_loss_op.h
浏览文件 @
98411745
...
...
@@ -74,49 +74,31 @@ class ModifiedHuberLossKernel : public framework::OpKernel {
}
};
// Use thrust lib to unify cpu and gpu
// CPU backward kernel
template
<
typename
T
>
class
ModifiedHuberLossGradCPUKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in0
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
in1
=
context
.
Input
<
Tensor
>
(
"Y"
);
auto
*
in2
=
context
.
Input
<
Tensor
>
(
"intermediate_val"
);
auto
*
in3
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
in0
=
context
.
Input
<
Tensor
>
(
"Y"
);
auto
*
in1
=
context
.
Input
<
Tensor
>
(
"intermediate_val"
);
auto
*
in2
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
out0
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
out1
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
// loop inter_val (x<-1) (x<1) otherwise
const
T
*
p_inter_val
=
in2
->
data
<
T
>
();
const
T
*
p_out_grad
=
in3
->
data
<
T
>
();
size_t
counts
=
static_cast
<
size_t
>
(
framework
::
product
(
in2
->
dims
()));
if
(
out0
)
{
T
*
p_x_grad
=
out0
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
T
*
p_y
=
in1
->
data
<
T
>
();
ModifiedHuberLossBackward
(
p_inter_val
,
p_y
,
p_out_grad
,
p_x_grad
,
counts
);
}
if
(
out1
)
{
T
*
p_y_grad
=
out1
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
T
*
p_x
=
in0
->
data
<
T
>
();
ModifiedHuberLossBackward
(
p_inter_val
,
p_x
,
p_out_grad
,
p_y_grad
,
counts
);
}
}
protected:
void
ModifiedHuberLossBackward
(
const
T
*
p_inter_data
,
const
T
*
p_in_data
,
const
T
*
p_in_grad
,
T
*
p_out_grad
,
size_t
counts
)
const
{
const
T
*
y_ptr
=
in0
->
data
<
T
>
();
const
T
*
inter_val_ptr
=
in1
->
data
<
T
>
();
const
T
*
out_grad_ptr
=
in2
->
data
<
T
>
();
size_t
counts
=
static_cast
<
size_t
>
(
framework
::
product
(
in1
->
dims
()));
T
*
x_grad_ptr
=
out0
->
mutable_data
<
T
>
(
context
.
GetPlace
());
for
(
size_t
i
=
0
;
i
<
counts
;
++
i
)
{
if
(
p_inter_data
[
i
]
<
-
1
)
{
p_out_grad
[
i
]
=
-
4
*
p_in_data
[
i
]
*
p_in_grad
[
i
];
}
else
if
(
p_inter_data
[
i
]
<
1
)
{
p_out_grad
[
i
]
=
-
2
*
(
1
-
p_inter_data
[
i
])
*
p_in_data
[
i
]
*
p_in_grad
[
i
];
if
(
inter_val_ptr
[
i
]
<
-
1
)
{
x_grad_ptr
[
i
]
=
-
4
*
(
2
*
y_ptr
[
i
]
-
1
)
*
out_grad_ptr
[
i
];
}
else
if
(
inter_val_ptr
[
i
]
<
1
)
{
x_grad_ptr
[
i
]
=
-
2
*
(
1
-
inter_val_ptr
[
i
])
*
(
2
*
y_ptr
[
i
]
-
1
)
*
out_grad_ptr
[
i
];
}
else
{
p_out_grad
[
i
]
=
0
;
x_grad_ptr
[
i
]
=
0
;
}
}
}
}
...
...
python/paddle/v2/framework/tests/test_modified_huber_loss_op.py
0 → 100644
浏览文件 @
98411745
import
unittest
from
op_test_util
import
OpTestMeta
from
gradient_checker
import
GradientChecker
,
create_op
from
paddle.v2.framework.op
import
Operator
import
numpy
as
np
def
modified_huber_loss_forward
(
val
):
if
val
<
-
1
:
return
-
4
*
a
elif
val
<
1
:
return
(
1
-
val
)
*
(
1
-
val
)
else
:
return
0
class
TestModifiedHuberLossOp_f0
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
def
setUp
(
self
):
self
.
type
=
'modified_huber_loss'
samples_num
=
32
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
-
1
,
1.
,
(
samples_num
,
1
)).
astype
(
'float32'
),
'Y'
:
np
.
random
.
choice
([
0
,
1
],
samples_num
).
reshape
((
samples_num
,
1
))
}
product_res
=
self
.
inputs
[
'X'
]
*
(
2
*
self
.
inputs
[
'Y'
]
-
1
)
loss
=
np
.
vectorize
(
modified_huber_loss_forward
)(
product_res
)
self
.
outputs
=
{
'intermediate_val'
:
product_res
,
'Out'
:
loss
.
reshape
((
samples_num
,
1
))
}
class
TestModifiedHuberLossGradOp
(
GradientChecker
):
def
test_modified_huber_loss_b0
(
self
):
samples_num
=
10
inputs
=
{
'X'
:
np
.
random
.
uniform
(
-
1
,
1
,
(
samples_num
,
1
)).
astype
(
'float32'
),
'Y'
:
np
.
random
.
choice
([
0
,
1
],
samples_num
).
reshape
((
samples_num
,
1
))
}
op
=
Operator
(
"modified_huber_loss"
,
X
=
'X'
,
Y
=
'Y'
,
intermediate_val
=
'intermediate_val'
,
Out
=
'Out'
)
self
.
compare_grad
(
op
,
inputs
,
no_grad_set
=
set
([
'intermediate_val'
,
'Y'
]))
self
.
check_grad
(
op
,
inputs
,
set
([
"X"
]),
"Out"
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录