diff --git a/python/paddle/v2/fluid/layers/nn.py b/python/paddle/v2/fluid/layers/nn.py index 1d03f357eb23942e16fdc35c7b3fd78507a3d0be..2c38c232240fbe3541ca5e0efc51d8f47c6e4190 100644 --- a/python/paddle/v2/fluid/layers/nn.py +++ b/python/paddle/v2/fluid/layers/nn.py @@ -764,7 +764,7 @@ def conv2d_transpose(input, return out -def sequence_expand(x, y, main_program=None, startup_program=None): +def sequence_expand(x, y): """Sequence Expand Layer. This layer will expand the input variable **x** according to LoD information of **y**. And the following examples will explain how sequence_expand works: @@ -808,8 +808,6 @@ def sequence_expand(x, y, main_program=None, startup_program=None): Args: x (Variable): The input variable which is a Tensor or LoDTensor. y (Variable): The input variable which is a LoDTensor. - main_program (Program): The main program. - startup_program (Program): The startup program. Returns: Variable: The expanded variable which is a LoDTensor. @@ -836,9 +834,7 @@ def lstm_unit(x_t, cell_t_prev, forget_bias=0.0, param_attr=None, - bias_attr=None, - main_program=None, - startup_program=None): + bias_attr=None): """Lstm unit layer. The equation of a lstm step is: .. math:: @@ -881,8 +877,6 @@ def lstm_unit(x_t, initializer, name etc. bias_attr (ParamAttr): The attributes of bias weights, if not False, bias weights will be created and be set to default value. - main_program (Program): The main program. - startup_program (Program): the startup program. Returns: tuple: The hidden value and cell value of lstm unit. @@ -923,18 +917,11 @@ def lstm_unit(x_t, bias_attr = ParamAttr() size = cell_t_prev.shape[1] - concat_out = concat( - input=[x_t, hidden_t_prev], - axis=1, - main_program=main_program, - startup_program=startup_program) + concat_out = concat(input=[x_t, hidden_t_prev], axis=1) fc_out = fc(input=concat_out, size=4 * size, param_attr=param_attr, - bias_attr=bias_attr, - act='linear', - main_program=main_program, - startup_program=startup_program) + bias_attr=bias_attr) dtype = x_t.dtype c = helper.create_tmp_variable(dtype) h = helper.create_tmp_variable(dtype)