未验证 提交 9261dff4 编写于 作者: Z zn 提交者: GitHub

[MLU]add allreduce max/prod/min mlu kernel (#40792)

上级 01b688c0
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/collective/c_allreduce_op.h"
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_MLU_KERNEL(c_allreduce_max,
ops::CAllReduceOpMLUKernel<ops::kRedMax, float>,
ops::CAllReduceOpMLUKernel<ops::kRedMax, plat::float16>,
ops::CAllReduceOpMLUKernel<ops::kRedMax, int>,
ops::CAllReduceOpMLUKernel<ops::kRedMax, int16_t>,
ops::CAllReduceOpMLUKernel<ops::kRedMax, int8_t>,
ops::CAllReduceOpMLUKernel<ops::kRedMax, uint8_t>)
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/collective/c_allreduce_op.h"
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_MLU_KERNEL(c_allreduce_min,
ops::CAllReduceOpMLUKernel<ops::kRedMin, float>,
ops::CAllReduceOpMLUKernel<ops::kRedMin, plat::float16>,
ops::CAllReduceOpMLUKernel<ops::kRedMin, int>,
ops::CAllReduceOpMLUKernel<ops::kRedMin, int16_t>,
ops::CAllReduceOpMLUKernel<ops::kRedMin, int8_t>,
ops::CAllReduceOpMLUKernel<ops::kRedMin, uint8_t>)
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/collective/c_allreduce_op.h"
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_MLU_KERNEL(c_allreduce_prod,
ops::CAllReduceOpMLUKernel<ops::kRedProd, float>,
ops::CAllReduceOpMLUKernel<ops::kRedProd, plat::float16>,
ops::CAllReduceOpMLUKernel<ops::kRedProd, int>,
ops::CAllReduceOpMLUKernel<ops::kRedProd, int16_t>,
ops::CAllReduceOpMLUKernel<ops::kRedProd, int8_t>,
ops::CAllReduceOpMLUKernel<ops::kRedProd, uint8_t>)
...@@ -21,7 +21,10 @@ if (WITH_MLU) ...@@ -21,7 +21,10 @@ if (WITH_MLU)
bash_test_modules(test_launch_nproc_mlu START_BASH test_launch_nproc_mlu.sh ENVS PADDLE_BINARY_DIR=${PADDLE_BINARY_DIR}) bash_test_modules(test_launch_nproc_mlu START_BASH test_launch_nproc_mlu.sh ENVS PADDLE_BINARY_DIR=${PADDLE_BINARY_DIR})
bash_test_modules(test_c_comm_init_op_mlu START_BASH test_c_comm_init_op_mlu.sh ENVS PADDLE_BINARY_DIR=${PADDLE_BINARY_DIR}) bash_test_modules(test_c_comm_init_op_mlu START_BASH test_c_comm_init_op_mlu.sh ENVS PADDLE_BINARY_DIR=${PADDLE_BINARY_DIR})
set_tests_properties(test_collective_broadcast PROPERTIES TIMEOUT 120) set_tests_properties(test_collective_broadcast PROPERTIES TIMEOUT 120)
set_tests_properties(test_collective_allreduce PROPERTIES TIMEOUT 120) set_tests_properties(test_collective_allreduce_sum PROPERTIES TIMEOUT 120)
set_tests_properties(test_collective_allreduce_max PROPERTIES TIMEOUT 120)
set_tests_properties(test_collective_allreduce_min PROPERTIES TIMEOUT 120)
set_tests_properties(test_collective_allreduce_prod PROPERTIES TIMEOUT 120)
set_tests_properties(test_collective_allgather PROPERTIES TIMEOUT 120) set_tests_properties(test_collective_allgather PROPERTIES TIMEOUT 120)
set_tests_properties(test_collective_broadcast_api_mlu PROPERTIES TIMEOUT 120) set_tests_properties(test_collective_broadcast_api_mlu PROPERTIES TIMEOUT 120)
set_tests_properties(test_collective_allreduce_api_mlu PROPERTIES TIMEOUT 120) set_tests_properties(test_collective_allreduce_api_mlu PROPERTIES TIMEOUT 120)
......
...@@ -41,14 +41,14 @@ class TestCollectiveAllgather(TestCollectiveRunnerBase): ...@@ -41,14 +41,14 @@ class TestCollectiveAllgather(TestCollectiveRunnerBase):
def __init__(self): def __init__(self):
self.global_ring_id = 0 self.global_ring_id = 0
def get_model(self, main_prog, startup_program): def get_model(self, main_prog, startup_program, col_type):
ring_id = 0 ring_id = 0
nranks = 2 nranks = 2
with fluid.program_guard(main_prog, startup_program): with fluid.program_guard(main_prog, startup_program):
tindata = layers.data( tindata = layers.data(
name="tindata", shape=[10, 1000], dtype='float32') name="tindata", shape=[10, 1000], dtype='float32')
toutdata = main_prog.current_block().create_var( toutdata = main_prog.current_block().create_var(
name="outofgather", name="outofallgather",
dtype='float32', dtype='float32',
type=core.VarDesc.VarType.LOD_TENSOR, type=core.VarDesc.VarType.LOD_TENSOR,
persistable=False, persistable=False,
...@@ -68,4 +68,4 @@ class TestCollectiveAllgather(TestCollectiveRunnerBase): ...@@ -68,4 +68,4 @@ class TestCollectiveAllgather(TestCollectiveRunnerBase):
if __name__ == "__main__": if __name__ == "__main__":
runtime_main(TestCollectiveAllgather, "allgather", 0) runtime_main(TestCollectiveAllgather)
...@@ -42,19 +42,19 @@ class TestCollectiveAllreduce(TestCollectiveRunnerBase): ...@@ -42,19 +42,19 @@ class TestCollectiveAllreduce(TestCollectiveRunnerBase):
def __init__(self): def __init__(self):
self.global_ring_id = 0 self.global_ring_id = 0
def get_model(self, main_prog, startup_program): def get_model(self, main_prog, startup_program, col_type):
ring_id = 0 ring_id = 0
with fluid.program_guard(main_prog, startup_program): with fluid.program_guard(main_prog, startup_program):
tindata = layers.data( tindata = layers.data(
name="tindata", shape=[10, 1000], dtype='float32') name="tindata", shape=[10, 1000], dtype='float32')
toutdata = main_prog.current_block().create_var( toutdata = main_prog.current_block().create_var(
name="outofallreduce", name="outof" + col_type,
dtype='float32', dtype='float32',
type=core.VarDesc.VarType.LOD_TENSOR, type=core.VarDesc.VarType.LOD_TENSOR,
persistable=False, persistable=False,
stop_gradient=False) stop_gradient=False)
main_prog.global_block().append_op( main_prog.global_block().append_op(
type="c_allreduce_sum", type="c_" + col_type,
inputs={'X': tindata}, inputs={'X': tindata},
attrs={'ring_id': ring_id}, attrs={'ring_id': ring_id},
outputs={'Out': toutdata}) outputs={'Out': toutdata})
...@@ -67,4 +67,4 @@ class TestCollectiveAllreduce(TestCollectiveRunnerBase): ...@@ -67,4 +67,4 @@ class TestCollectiveAllreduce(TestCollectiveRunnerBase):
if __name__ == "__main__": if __name__ == "__main__":
runtime_main(TestCollectiveAllreduce, "allreduce", 0) runtime_main(TestCollectiveAllreduce)
...@@ -42,7 +42,7 @@ class TestCollectiveBroadcast(TestCollectiveRunnerBase): ...@@ -42,7 +42,7 @@ class TestCollectiveBroadcast(TestCollectiveRunnerBase):
def __init__(self): def __init__(self):
self.global_ring_id = 0 self.global_ring_id = 0
def get_model(self, main_prog, startup_program): def get_model(self, main_prog, startup_program, col_type):
ring_id = 0 ring_id = 0
rootid = 1 rootid = 1
with fluid.program_guard(main_prog, startup_program): with fluid.program_guard(main_prog, startup_program):
...@@ -69,4 +69,4 @@ class TestCollectiveBroadcast(TestCollectiveRunnerBase): ...@@ -69,4 +69,4 @@ class TestCollectiveBroadcast(TestCollectiveRunnerBase):
if __name__ == "__main__": if __name__ == "__main__":
runtime_main(TestCollectiveBroadcast, "broadcast", 0) runtime_main(TestCollectiveBroadcast)
...@@ -27,27 +27,28 @@ class TestCAllreduceOp(TestDistBase): ...@@ -27,27 +27,28 @@ class TestCAllreduceOp(TestDistBase):
def _setup_config(self): def _setup_config(self):
pass pass
def test_allreduce_fp32(self): def test_allreduce_max_fp32(self):
self.check_with_place("collective_allreduce_op.py", "allreduce", self.check_with_place("collective_allreduce_op.py", "allreduce_max",
"float32") "float32")
def test_allreduce_fp16(self): def test_allreduce_max_fp16(self):
self.check_with_place("collective_allreduce_op.py", "allreduce", self.check_with_place("collective_allreduce_op.py", "allreduce_max",
"float16") "float16")
def test_allreduce_int32(self): def test_allreduce_max_int32(self):
self.check_with_place("collective_allreduce_op.py", "allreduce", self.check_with_place("collective_allreduce_op.py", "allreduce_max",
"int32") "int32")
def test_allreduce_int16(self): def test_allreduce_max_int16(self):
self.check_with_place("collective_allreduce_op.py", "allreduce", self.check_with_place("collective_allreduce_op.py", "allreduce_max",
"int16") "int16")
def test_allreduce_int8(self): def test_allreduce_max_int8(self):
self.check_with_place("collective_allreduce_op.py", "allreduce", "int8") self.check_with_place("collective_allreduce_op.py", "allreduce_max",
"int8")
def test_allreduce_uint8(self): def test_allreduce_max_uint8(self):
self.check_with_place("collective_allreduce_op.py", "allreduce", self.check_with_place("collective_allreduce_op.py", "allreduce_max",
"uint8") "uint8")
......
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import sys
import unittest
import numpy as np
import paddle
from test_collective_base_mlu import TestDistBase
paddle.enable_static()
class TestCAllreduceOp(TestDistBase):
def _setup_config(self):
pass
def test_allreduce_min_fp32(self):
self.check_with_place("collective_allreduce_op.py", "allreduce_min",
"float32")
def test_allreduce_min_fp16(self):
self.check_with_place("collective_allreduce_op.py", "allreduce_min",
"float16")
def test_allreduce_min_int32(self):
self.check_with_place("collective_allreduce_op.py", "allreduce_min",
"int32")
def test_allreduce_min_int16(self):
self.check_with_place("collective_allreduce_op.py", "allreduce_min",
"int16")
def test_allreduce_min_int8(self):
self.check_with_place("collective_allreduce_op.py", "allreduce_min",
"int8")
def test_allreduce_min_uint8(self):
self.check_with_place("collective_allreduce_op.py", "allreduce_min",
"uint8")
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import sys
import unittest
import numpy as np
import paddle
from test_collective_base_mlu import TestDistBase
paddle.enable_static()
class TestCAllreduceOp(TestDistBase):
def _setup_config(self):
pass
def test_allreduce_prod_fp32(self):
self.check_with_place("collective_allreduce_op.py", "allreduce_prod",
"float32")
def test_allreduce_prod_fp16(self):
self.check_with_place("collective_allreduce_op.py", "allreduce_prod",
"float16")
def test_allreduce_prod_int32(self):
self.check_with_place("collective_allreduce_op.py", "allreduce_prod",
"int32")
def test_allreduce_prod_int16(self):
self.check_with_place("collective_allreduce_op.py", "allreduce_prod",
"int16")
def test_allreduce_prod_int8(self):
self.check_with_place("collective_allreduce_op.py", "allreduce_prod",
"int8")
def test_allreduce_prod_uint8(self):
self.check_with_place("collective_allreduce_op.py", "allreduce_prod",
"uint8")
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import sys
import unittest
import numpy as np
import paddle
from test_collective_base_mlu import TestDistBase
paddle.enable_static()
class TestCAllreduceOp(TestDistBase):
def _setup_config(self):
pass
def test_allreduce_sum_fp32(self):
self.check_with_place("collective_allreduce_op.py", "allreduce_sum",
"float32")
def test_allreduce_sum_fp16(self):
self.check_with_place("collective_allreduce_op.py", "allreduce_sum",
"float16")
def test_allreduce_sum_int32(self):
self.check_with_place("collective_allreduce_op.py", "allreduce_sum",
"int32")
def test_allreduce_sum_int16(self):
self.check_with_place("collective_allreduce_op.py", "allreduce_sum",
"int16")
def test_allreduce_sum_int8(self):
self.check_with_place("collective_allreduce_op.py", "allreduce_sum",
"int8")
def test_allreduce_sum_uint8(self):
self.check_with_place("collective_allreduce_op.py", "allreduce_sum",
"uint8")
if __name__ == '__main__':
unittest.main()
...@@ -53,7 +53,7 @@ def DataTypeCast(date_type): ...@@ -53,7 +53,7 @@ def DataTypeCast(date_type):
class TestCollectiveRunnerBase(object): class TestCollectiveRunnerBase(object):
def get_model(self, train_prog, startup_prog): def get_model(self, train_prog, startup_prog, col_type):
raise NotImplementedError( raise NotImplementedError(
"get model should be implemented by child class.") "get model should be implemented by child class.")
...@@ -129,7 +129,7 @@ class TestCollectiveRunnerBase(object): ...@@ -129,7 +129,7 @@ class TestCollectiveRunnerBase(object):
self.initCommunicator(startup_prog, rank, nranks, True, self.initCommunicator(startup_prog, rank, nranks, True,
current_endpoint, endpoints) current_endpoint, endpoints)
self.rank = rank self.rank = rank
result = self.get_model(train_prog, startup_prog) result = self.get_model(train_prog, startup_prog, args["col_type"])
device_id = int(os.getenv("FLAGS_selected_mlus", "0")) device_id = int(os.getenv("FLAGS_selected_mlus", "0"))
place = fluid.MLUPlace(device_id) place = fluid.MLUPlace(device_id)
exe = fluid.Executor(place) exe = fluid.Executor(place)
...@@ -143,7 +143,7 @@ class TestCollectiveRunnerBase(object): ...@@ -143,7 +143,7 @@ class TestCollectiveRunnerBase(object):
sys.stdout.buffer.write(pickle.dumps(out)) sys.stdout.buffer.write(pickle.dumps(out))
def runtime_main(test_class, col_type, sub_type): def runtime_main(test_class):
args = {} args = {}
model = test_class() model = test_class()
args["deviceid"] = os.getenv("FLAGS_selected_mlus") args["deviceid"] = os.getenv("FLAGS_selected_mlus")
...@@ -151,7 +151,7 @@ def runtime_main(test_class, col_type, sub_type): ...@@ -151,7 +151,7 @@ def runtime_main(test_class, col_type, sub_type):
args["trainernum"] = int(os.getenv("PADDLE_TRAINERS_NUM")) args["trainernum"] = int(os.getenv("PADDLE_TRAINERS_NUM"))
args["endpoints"] = os.getenv('PADDLE_TRAINER_ENDPOINTS') args["endpoints"] = os.getenv('PADDLE_TRAINER_ENDPOINTS')
args["currentendpoint"] = os.getenv("PADDLE_CURRENT_ENDPOINT") args["currentendpoint"] = os.getenv("PADDLE_CURRENT_ENDPOINT")
args["col_type"] = col_type args["col_type"] = os.getenv("COL_TYPE")
args["data_type"] = os.getenv("DATA_TYPE") args["data_type"] = os.getenv("DATA_TYPE")
model.run_trainer(args) model.run_trainer(args)
...@@ -185,7 +185,7 @@ class TestDistBase(unittest.TestCase): ...@@ -185,7 +185,7 @@ class TestDistBase(unittest.TestCase):
def _run_cluster(self, model_file, envs): def _run_cluster(self, model_file, envs):
worker_endpoints = self._ps_endpoints.split(",") worker_endpoints = self._ps_endpoints.split(",")
w0_ep, w1_ep = worker_endpoints w0_ep, w1_ep = worker_endpoints
#print("w0_ep:",w0_ep," w1_ep:",w1_ep)
env0 = { env0 = {
"FLAGS_selected_mlus": "0", "FLAGS_selected_mlus": "0",
"PADDLE_TRAINER_ID": "0", "PADDLE_TRAINER_ID": "0",
...@@ -209,7 +209,7 @@ class TestDistBase(unittest.TestCase): ...@@ -209,7 +209,7 @@ class TestDistBase(unittest.TestCase):
tr1_cmd = tr_cmd % (self._python_interp, model_file) tr1_cmd = tr_cmd % (self._python_interp, model_file)
tr0_pipe = open("/tmp/tr0_err.log", "wb") tr0_pipe = open("/tmp/tr0_err.log", "wb")
tr1_pipe = open("/tmp/tr1_err.log", "wb") tr1_pipe = open("/tmp/tr1_err.log", "wb")
#print(tr0_cmd)
tr0_proc = subprocess.Popen( tr0_proc = subprocess.Popen(
tr0_cmd.strip().split(), tr0_cmd.strip().split(),
stdout=subprocess.PIPE, stdout=subprocess.PIPE,
...@@ -246,6 +246,7 @@ class TestDistBase(unittest.TestCase): ...@@ -246,6 +246,7 @@ class TestDistBase(unittest.TestCase):
"LD_PRELOAD": os.getenv("LD_PRELOAD", ""), "LD_PRELOAD": os.getenv("LD_PRELOAD", ""),
"GLOG_v": "3", "GLOG_v": "3",
"DATA_TYPE": data_type, "DATA_TYPE": data_type,
"COL_TYPE": col_type,
} }
required_envs.update(need_envs) required_envs.update(need_envs)
if check_error_log: if check_error_log:
...@@ -262,7 +263,7 @@ class TestDistBase(unittest.TestCase): ...@@ -262,7 +263,7 @@ class TestDistBase(unittest.TestCase):
need_result = input2 need_result = input2
self.assertTrue(np.allclose(tr0_out, need_result)) self.assertTrue(np.allclose(tr0_out, need_result))
self.assertTrue(np.allclose(tr1_out, need_result)) self.assertTrue(np.allclose(tr1_out, need_result))
elif col_type == "allreduce": elif col_type == "allreduce_sum":
need_result = input1 + input2 need_result = input1 + input2
self.assertTrue( self.assertTrue(
np.allclose( np.allclose(
...@@ -270,6 +271,30 @@ class TestDistBase(unittest.TestCase): ...@@ -270,6 +271,30 @@ class TestDistBase(unittest.TestCase):
self.assertTrue( self.assertTrue(
np.allclose( np.allclose(
tr1_out, need_result, rtol=1e-05, atol=1e-05)) tr1_out, need_result, rtol=1e-05, atol=1e-05))
elif col_type == "allreduce_prod":
need_result = input1 * input2
self.assertTrue(
np.allclose(
tr0_out, need_result, rtol=1e-05, atol=1e-05))
self.assertTrue(
np.allclose(
tr1_out, need_result, rtol=1e-05, atol=1e-05))
elif col_type == "allreduce_max":
need_result = np.maximum(input1, input2)
self.assertTrue(
np.allclose(
tr0_out, need_result, rtol=1e-05, atol=1e-05))
self.assertTrue(
np.allclose(
tr1_out, need_result, rtol=1e-05, atol=1e-05))
elif col_type == "allreduce_min":
need_result = np.minimum(input1, input2)
self.assertTrue(
np.allclose(
tr0_out, need_result, rtol=1e-05, atol=1e-05))
self.assertTrue(
np.allclose(
tr1_out, need_result, rtol=1e-05, atol=1e-05))
elif col_type == "allgather": elif col_type == "allgather":
need_result = np.vstack((input1, input2)) need_result = np.vstack((input1, input2))
self.assertTrue(np.allclose(tr0_out, need_result)) self.assertTrue(np.allclose(tr0_out, need_result))
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册