Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
925432d8
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
925432d8
编写于
3月 16, 2021
作者:
Z
zhang wenhui
提交者:
GitHub
3月 16, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
【NPU】Support npu kernel for mul op (#31584)
* add mul * add test mul
上级
1e956001
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
569 addition
and
0 deletion
+569
-0
paddle/fluid/operators/mul_op_npu.cc
paddle/fluid/operators/mul_op_npu.cc
+243
-0
python/paddle/fluid/tests/unittests/npu/test_mul_op_npu.py
python/paddle/fluid/tests/unittests/npu/test_mul_op_npu.py
+326
-0
未找到文件。
paddle/fluid/operators/mul_op_npu.cc
0 → 100644
浏览文件 @
925432d8
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include <string>
#include "paddle/fluid/operators/mul_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
DeviceContext
,
typename
T
>
class
MulNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Y"
);
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
int
x_num_col_dims
=
ctx
.
Attr
<
int
>
(
"x_num_col_dims"
);
int
y_num_col_dims
=
ctx
.
Attr
<
int
>
(
"y_num_col_dims"
);
auto
stream
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
if
(
x_num_col_dims
==
1
&&
y_num_col_dims
==
1
)
{
if
(
x
->
dims
().
size
()
==
2
&&
y
->
dims
().
size
()
==
2
)
{
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
runner
=
NpuOpRunner
(
"MatMul"
,
{
*
x
,
*
y
},
{
*
out
},
{{
"transpose_x1"
,
false
},
{
"transpose_x2"
,
false
}});
runner
.
Run
(
stream
);
}
else
if
(
x
->
dims
().
size
()
==
3
&&
y
->
dims
().
size
()
==
2
)
{
// reshape
Tensor
tmp_x
(
x
->
type
());
int64_t
sec_dim
=
x
->
dims
()[
1
]
*
x
->
dims
()[
2
];
int64_t
first_dim
=
x
->
dims
()[
0
];
tmp_x
.
Resize
(
framework
::
make_ddim
({
first_dim
,
sec_dim
}));
tmp_x
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
framework
::
TensorCopy
(
*
x
,
ctx
.
GetPlace
(),
ctx
.
template
device_context
<
platform
::
DeviceContext
>(),
&
tmp_x
);
tmp_x
.
Resize
(
framework
::
make_ddim
({
first_dim
,
sec_dim
}));
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// matmul
auto
runner
=
NpuOpRunner
(
"MatMul"
,
{
tmp_x
,
*
y
},
{
*
out
},
{{
"transpose_x1"
,
false
},
{
"transpose_x2"
,
false
}});
runner
.
Run
(
stream
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"not suppert dims"
));
}
// to do other
}
else
if
(
x
->
dims
().
size
()
==
3
&&
y
->
dims
().
size
()
==
2
)
{
// for example: x.shape=[2, 3, 4] y.shape=[4, 5], expect [2, 3, 5]
PADDLE_ENFORCE_EQ
(
x_num_col_dims
,
2
,
platform
::
errors
::
InvalidArgument
(
"now only support x_num_col_dims == 2: but got %d"
,
x_num_col_dims
));
// flatten => x.shape=[6, 4]
Tensor
tmp_x
(
x
->
type
());
int64_t
first_dim
=
x
->
dims
()[
0
]
*
x
->
dims
()[
1
];
int64_t
sec_dim
=
x
->
dims
()[
2
];
tmp_x
.
Resize
(
framework
::
make_ddim
({
first_dim
,
sec_dim
}));
tmp_x
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
framework
::
TensorCopy
(
*
x
,
ctx
.
GetPlace
(),
ctx
.
template
device_context
<
platform
::
DeviceContext
>(),
&
tmp_x
);
tmp_x
.
Resize
(
framework
::
make_ddim
({
first_dim
,
sec_dim
}));
// matmul [6,4] , [4, 5] => [6, 5]
Tensor
tmp_matmul
(
x
->
type
());
tmp_matmul
.
Resize
(
framework
::
make_ddim
({
first_dim
,
y
->
dims
()[
1
]}));
tmp_matmul
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
runner_matmul
=
NpuOpRunner
(
"MatMul"
,
{
tmp_x
,
*
y
},
{
tmp_matmul
},
{{
"transpose_x1"
,
false
},
{
"transpose_x2"
,
false
}});
runner_matmul
.
Run
(
stream
);
// reshape [6, 5] => [2, 3, 5]
(
*
out
).
Resize
(
framework
::
make_ddim
({
x
->
dims
()[
0
],
x
->
dims
()[
1
],
y
->
dims
()[
1
]}));
out
->
mutable_data
(
ctx
.
GetPlace
(),
x
->
type
());
framework
::
TensorCopy
(
tmp_matmul
,
ctx
.
GetPlace
(),
ctx
.
template
device_context
<
platform
::
DeviceContext
>(),
out
);
(
*
out
).
Resize
(
framework
::
make_ddim
({
x
->
dims
()[
0
],
x
->
dims
()[
1
],
y
->
dims
()[
1
]}));
}
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
MulGradNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Y"
);
auto
*
dout
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dx
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dy
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
int
x_num_col_dims
=
ctx
.
Attr
<
int
>
(
"x_num_col_dims"
);
int
y_num_col_dims
=
ctx
.
Attr
<
int
>
(
"y_num_col_dims"
);
auto
stream
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
if
(
x_num_col_dims
==
1
&&
y_num_col_dims
==
1
)
{
if
(
x
->
dims
().
size
()
==
2
&&
y
->
dims
().
size
()
==
2
)
{
if
(
dx
)
{
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
runner_dx
=
NpuOpRunner
(
"MatMul"
,
{
*
dout
,
*
y
},
{
*
dx
},
{{
"transpose_x1"
,
false
},
{
"transpose_x2"
,
true
}});
runner_dx
.
Run
(
stream
);
}
if
(
dy
)
{
dy
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
runner_dy
=
NpuOpRunner
(
"MatMul"
,
{
*
x
,
*
dout
},
{
*
dy
},
{{
"transpose_x1"
,
true
},
{
"transpose_x2"
,
false
}});
runner_dy
.
Run
(
stream
);
}
}
else
if
(
x
->
dims
().
size
()
==
3
&&
y
->
dims
().
size
()
==
2
)
{
// flatten => x.shape=[6, 4]
// matmul
if
(
dx
)
{
// matmul [2, 5] * [12, 5] => [2, 12]
Tensor
tmp_matmul
(
y
->
type
());
tmp_matmul
.
Resize
(
framework
::
make_ddim
({
dout
->
dims
()[
0
],
y
->
dims
()[
0
]}));
tmp_matmul
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
runner_matmul
=
NpuOpRunner
(
"MatMul"
,
{
*
dout
,
*
y
},
{
tmp_matmul
},
{{
"transpose_x1"
,
false
},
{
"transpose_x2"
,
true
}});
runner_matmul
.
Run
(
stream
);
// reshape [2, 12] => [2, 3, 4]
dx
->
mutable_data
(
ctx
.
GetPlace
(),
x
->
type
());
framework
::
TensorCopy
(
tmp_matmul
,
ctx
.
GetPlace
(),
ctx
.
template
device_context
<
platform
::
DeviceContext
>(),
dx
);
}
if
(
dy
)
{
// flatten
Tensor
tmp_x
(
x
->
type
());
int64_t
sec_dim
=
x
->
dims
()[
1
]
*
x
->
dims
()[
2
];
int64_t
first_dim
=
x
->
dims
()[
0
];
tmp_x
.
Resize
(
framework
::
make_ddim
({
first_dim
,
sec_dim
}));
tmp_x
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
framework
::
TensorCopy
(
*
x
,
ctx
.
GetPlace
(),
ctx
.
template
device_context
<
platform
::
DeviceContext
>(),
&
tmp_x
);
tmp_x
.
Resize
(
framework
::
make_ddim
({
first_dim
,
sec_dim
}));
dy
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
runner_dy
=
NpuOpRunner
(
"MatMul"
,
{
tmp_x
,
*
dout
},
{
*
dy
},
{{
"transpose_x1"
,
true
},
{
"transpose_x2"
,
false
}});
runner_dy
.
Run
(
stream
);
}
}
}
else
if
(
x
->
dims
().
size
()
==
3
&&
y
->
dims
().
size
()
==
2
)
{
// for example: x.shape=[2, 3, 4] y.shape=[4, 5], expect [2, 3, 5]
PADDLE_ENFORCE_EQ
(
x_num_col_dims
,
2
,
platform
::
errors
::
InvalidArgument
(
"now only support x_num_col_dims == 2: but got %d"
,
x_num_col_dims
));
// tmp_dout both used by dx and dy
Tensor
tmp_dout
(
x
->
type
());
int64_t
dout_first_dim
=
dout
->
dims
()[
0
]
*
dout
->
dims
()[
1
];
int64_t
dout_sec_dim
=
dout
->
dims
()[
2
];
tmp_dout
.
Resize
(
framework
::
make_ddim
({
dout_first_dim
,
dout_sec_dim
}));
tmp_dout
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
framework
::
TensorCopy
(
*
dout
,
ctx
.
GetPlace
(),
ctx
.
template
device_context
<
platform
::
DeviceContext
>(),
&
tmp_dout
);
tmp_dout
.
Resize
(
framework
::
make_ddim
({
dout_first_dim
,
dout_sec_dim
}));
if
(
dx
)
{
// tmp_dout * y [6,5] * [4,5] => [6, 4]
Tensor
tmp_matmul
(
y
->
type
());
tmp_matmul
.
Resize
(
framework
::
make_ddim
({
dout_first_dim
,
y
->
dims
()[
0
]}));
tmp_matmul
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
runner_matmul
=
NpuOpRunner
(
"MatMul"
,
{
tmp_dout
,
*
y
},
{
tmp_matmul
},
{{
"transpose_x1"
,
false
},
{
"transpose_x2"
,
true
}});
runner_matmul
.
Run
(
stream
);
// reshape [6,4] => [2, 3, 4]
dx
->
mutable_data
(
ctx
.
GetPlace
(),
x
->
type
());
framework
::
TensorCopy
(
tmp_matmul
,
ctx
.
GetPlace
(),
ctx
.
template
device_context
<
platform
::
DeviceContext
>(),
dx
);
}
if
(
dy
)
{
// flatten x.shape [2,3,4] => [6, 4]
Tensor
tmp_x
(
x
->
type
());
int64_t
first_dim
=
x
->
dims
()[
0
]
*
x
->
dims
()[
1
];
int64_t
sec_dim
=
x
->
dims
()[
2
];
tmp_x
.
Resize
(
framework
::
make_ddim
({
first_dim
,
sec_dim
}));
tmp_x
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
framework
::
TensorCopy
(
*
x
,
ctx
.
GetPlace
(),
ctx
.
template
device_context
<
platform
::
DeviceContext
>(),
&
tmp_x
);
tmp_x
.
Resize
(
framework
::
make_ddim
({
first_dim
,
sec_dim
}));
// mamtul [6,4] [6,5] =>[4,5]
dy
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
runner_dy
=
NpuOpRunner
(
"MatMul"
,
{
tmp_x
,
tmp_dout
},
{
*
dy
},
{{
"transpose_x1"
,
true
},
{
"transpose_x2"
,
false
}});
runner_dy
.
Run
(
stream
);
}
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_NPU_KERNEL
(
mul
,
ops
::
MulNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
float
>
,
ops
::
MulNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
paddle
::
platform
::
float16
>
);
REGISTER_OP_NPU_KERNEL
(
mul_grad
,
ops
::
MulGradNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
float
>
,
ops
::
MulGradNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
paddle
::
platform
::
float16
>
);
python/paddle/fluid/tests/unittests/npu/test_mul_op_npu.py
0 → 100644
浏览文件 @
925432d8
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
unittest
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
paddle
.
enable_static
()
SEED
=
2021
class
TestMul
(
OpTest
):
def
config
(
self
):
self
.
x_shape
=
(
32
,
5
)
self
.
y_shape
=
(
5
,
100
)
def
setUp
(
self
):
self
.
set_npu
()
self
.
op_type
=
"mul"
self
.
place
=
paddle
.
NPUPlace
(
0
)
self
.
init_dtype
()
self
.
config
()
np
.
random
.
seed
(
SEED
)
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
self
.
x_shape
).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
random
(
self
.
y_shape
).
astype
(
self
.
dtype
)
}
self
.
outputs
=
{
'Out'
:
np
.
dot
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
self
.
__class__
.
no_need_check_grad
=
True
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
check_dygraph
=
False
,
atol
=
1e-5
)
#
class
TestMulFP16
(
TestMul
):
"""
case 2
"""
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
class
TestMul3
(
TestMul
):
"""
case 3
"""
def
config
(
self
):
self
.
x_shape
=
(
2
,
2
,
5
)
self
.
y_shape
=
(
10
,
5
)
def
setUp
(
self
):
self
.
set_npu
()
self
.
op_type
=
"mul"
self
.
place
=
paddle
.
NPUPlace
(
0
)
self
.
init_dtype
()
self
.
config
()
np
.
random
.
seed
(
SEED
)
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
self
.
x_shape
).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
random
(
self
.
y_shape
).
astype
(
self
.
dtype
)
}
self
.
outputs
=
{
'Out'
:
np
.
dot
(
self
.
inputs
[
'X'
].
reshape
(
2
,
10
),
self
.
inputs
[
'Y'
])
}
class
TestMul4
(
TestMul
):
"""
case 4
"""
def
config
(
self
):
self
.
x_shape
=
(
2
,
3
,
4
)
self
.
y_shape
=
(
4
,
5
)
def
setUp
(
self
):
self
.
set_npu
()
self
.
op_type
=
"mul"
self
.
place
=
paddle
.
NPUPlace
(
0
)
self
.
init_dtype
()
self
.
config
()
np
.
random
.
seed
(
SEED
)
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
self
.
x_shape
).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
random
(
self
.
y_shape
).
astype
(
self
.
dtype
)
}
self
.
attrs
=
{
"x_num_col_dims"
:
2
}
self
.
outputs
=
{
'Out'
:
np
.
matmul
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestMulNet
(
unittest
.
TestCase
):
def
_test
(
self
,
run_npu
=
True
):
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
SEED
startup_prog
.
random_seed
=
SEED
np
.
random
.
seed
(
SEED
)
a_np
=
np
.
random
.
random
(
size
=
(
2
,
3
)).
astype
(
'float32'
)
b_np
=
np
.
random
.
random
(
size
=
(
2
,
3
)).
astype
(
'float32'
)
c_np
=
np
.
random
.
random
(
size
=
(
3
,
2
)).
astype
(
'float32'
)
d_np
=
np
.
random
.
random
(
size
=
(
3
,
2
)).
astype
(
'float32'
)
label_np
=
np
.
random
.
randint
(
2
,
size
=
(
2
,
1
)).
astype
(
'int64'
)
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
a
=
paddle
.
static
.
data
(
name
=
"a"
,
shape
=
[
2
,
3
],
dtype
=
'float32'
)
b
=
paddle
.
static
.
data
(
name
=
"b"
,
shape
=
[
2
,
3
],
dtype
=
'float32'
)
c
=
paddle
.
static
.
data
(
name
=
"c"
,
shape
=
[
3
,
2
],
dtype
=
'float32'
)
d
=
paddle
.
static
.
data
(
name
=
"d"
,
shape
=
[
3
,
2
],
dtype
=
'float32'
)
label
=
paddle
.
static
.
data
(
name
=
"label"
,
shape
=
[
2
,
1
],
dtype
=
'int64'
)
sum_1
=
paddle
.
add
(
a
,
b
)
sum_2
=
paddle
.
add
(
c
,
d
)
result
=
paddle
.
fluid
.
layers
.
mul
(
sum_1
,
sum_2
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
result
,
size
=
8
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
2
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
loss
=
fluid
.
layers
.
reduce_mean
(
cost
)
sgd
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
sgd
.
minimize
(
loss
)
if
run_npu
:
place
=
paddle
.
NPUPlace
(
0
)
else
:
place
=
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
print
(
"TestMulNet Start run on {} . "
.
format
(
place
))
for
epoch
in
range
(
100
):
pred_res
,
loss_res
=
exe
.
run
(
main_prog
,
feed
=
{
"a"
:
a_np
,
"b"
:
b_np
,
"c"
:
c_np
,
"d"
:
d_np
,
"label"
:
label_np
},
fetch_list
=
[
prediction
,
loss
])
if
epoch
%
10
==
0
:
print
(
"Epoch {} | Prediction[0]: {}, Loss: {}"
.
format
(
epoch
,
pred_res
[
0
],
loss_res
))
return
pred_res
,
loss_res
def
test_npu
(
self
):
cpu_pred
,
cpu_loss
=
self
.
_test
(
False
)
npu_pred
,
npu_loss
=
self
.
_test
(
True
)
self
.
assertTrue
(
np
.
allclose
(
npu_pred
,
cpu_pred
))
self
.
assertTrue
(
np
.
allclose
(
npu_loss
,
cpu_loss
))
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestMulNet3_2
(
unittest
.
TestCase
):
def
_test
(
self
,
run_npu
=
True
):
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
SEED
startup_prog
.
random_seed
=
SEED
np
.
random
.
seed
(
SEED
)
a_np
=
np
.
random
.
random
(
size
=
(
2
,
3
,
4
)).
astype
(
'float32'
)
b_np
=
np
.
random
.
random
(
size
=
(
2
,
3
,
4
)).
astype
(
'float32'
)
c_np
=
np
.
random
.
random
(
size
=
(
12
,
5
)).
astype
(
'float32'
)
d_np
=
np
.
random
.
random
(
size
=
(
12
,
5
)).
astype
(
'float32'
)
label_np
=
np
.
random
.
randint
(
2
,
size
=
(
2
,
1
)).
astype
(
'int64'
)
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
a
=
paddle
.
static
.
data
(
name
=
"a"
,
shape
=
[
2
,
3
,
4
],
dtype
=
'float32'
)
b
=
paddle
.
static
.
data
(
name
=
"b"
,
shape
=
[
2
,
3
,
4
],
dtype
=
'float32'
)
c
=
paddle
.
static
.
data
(
name
=
"c"
,
shape
=
[
12
,
5
],
dtype
=
'float32'
)
d
=
paddle
.
static
.
data
(
name
=
"d"
,
shape
=
[
12
,
5
],
dtype
=
'float32'
)
label
=
paddle
.
static
.
data
(
name
=
"label"
,
shape
=
[
2
,
1
],
dtype
=
'int64'
)
sum_1
=
paddle
.
add
(
a
,
b
)
sum_2
=
paddle
.
add
(
c
,
d
)
result
=
paddle
.
fluid
.
layers
.
mul
(
sum_1
,
sum_2
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
result
,
size
=
8
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
2
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
loss
=
fluid
.
layers
.
reduce_mean
(
cost
)
sgd
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
sgd
.
minimize
(
loss
)
if
run_npu
:
place
=
paddle
.
NPUPlace
(
0
)
else
:
place
=
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
print
(
"testMulNet3_2 tart run on {}"
.
format
(
place
))
for
epoch
in
range
(
100
):
pred_res
,
loss_res
=
exe
.
run
(
main_prog
,
feed
=
{
"a"
:
a_np
,
"b"
:
b_np
,
"c"
:
c_np
,
"d"
:
d_np
,
"label"
:
label_np
},
fetch_list
=
[
prediction
,
loss
])
if
epoch
%
10
==
0
:
print
(
"Epoch {} | Prediction[0]: {}, Loss: {}"
.
format
(
epoch
,
pred_res
[
0
],
loss_res
))
return
pred_res
,
loss_res
def
test_npu
(
self
):
cpu_pred
,
cpu_loss
=
self
.
_test
(
False
)
npu_pred
,
npu_loss
=
self
.
_test
(
True
)
self
.
assertTrue
(
np
.
allclose
(
npu_pred
,
cpu_pred
))
self
.
assertTrue
(
np
.
allclose
(
npu_loss
,
cpu_loss
))
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestMulNet3_2_xc2
(
unittest
.
TestCase
):
def
_test
(
self
,
run_npu
=
True
):
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
SEED
startup_prog
.
random_seed
=
SEED
np
.
random
.
seed
(
SEED
)
a_np
=
np
.
random
.
random
(
size
=
(
2
,
3
,
4
)).
astype
(
'float32'
)
b_np
=
np
.
random
.
random
(
size
=
(
2
,
3
,
4
)).
astype
(
'float32'
)
c_np
=
np
.
random
.
random
(
size
=
(
4
,
5
)).
astype
(
'float32'
)
d_np
=
np
.
random
.
random
(
size
=
(
4
,
5
)).
astype
(
'float32'
)
label_np
=
np
.
random
.
randint
(
2
,
size
=
(
2
,
1
)).
astype
(
'int64'
)
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
a
=
paddle
.
static
.
data
(
name
=
"a"
,
shape
=
[
2
,
3
,
4
],
dtype
=
'float32'
)
b
=
paddle
.
static
.
data
(
name
=
"b"
,
shape
=
[
2
,
3
,
4
],
dtype
=
'float32'
)
c
=
paddle
.
static
.
data
(
name
=
"c"
,
shape
=
[
4
,
5
],
dtype
=
'float32'
)
d
=
paddle
.
static
.
data
(
name
=
"d"
,
shape
=
[
4
,
5
],
dtype
=
'float32'
)
label
=
paddle
.
static
.
data
(
name
=
"label"
,
shape
=
[
2
,
1
],
dtype
=
'int64'
)
sum_1
=
paddle
.
add
(
a
,
b
)
sum_2
=
paddle
.
add
(
c
,
d
)
result
=
paddle
.
fluid
.
layers
.
mul
(
sum_1
,
sum_2
,
x_num_col_dims
=
2
)
result_re
=
paddle
.
reshape
(
result
,
shape
=
[
2
,
15
])
fc_1
=
fluid
.
layers
.
fc
(
input
=
result_re
,
size
=
8
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
2
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
loss
=
fluid
.
layers
.
reduce_mean
(
cost
)
sgd
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
sgd
.
minimize
(
loss
)
if
run_npu
:
place
=
paddle
.
NPUPlace
(
0
)
else
:
place
=
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
print
(
"TestMulNet3_2_xc2. Start run on {}"
.
format
(
place
))
for
epoch
in
range
(
100
):
pred_res
,
loss_res
=
exe
.
run
(
main_prog
,
feed
=
{
"a"
:
a_np
,
"b"
:
b_np
,
"c"
:
c_np
,
"d"
:
d_np
,
"label"
:
label_np
},
fetch_list
=
[
prediction
,
loss
])
if
epoch
%
10
==
0
:
print
(
"Epoch {} | Prediction[0]: {}, Loss: {}"
.
format
(
epoch
,
pred_res
[
0
],
loss_res
))
return
pred_res
,
loss_res
def
test_npu
(
self
):
cpu_pred
,
cpu_loss
=
self
.
_test
(
False
)
npu_pred
,
npu_loss
=
self
.
_test
(
True
)
self
.
assertTrue
(
np
.
allclose
(
npu_pred
,
cpu_pred
))
self
.
assertTrue
(
np
.
allclose
(
npu_loss
,
cpu_loss
))
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录