提交 8feb5836 编写于 作者: Y Yu Yang

Merge branch 'feature/fix_ccache_not_in_path' into feature/c_api

[submodule "book"]
path = book
url = https://github.com/PaddlePaddle/book.git
......@@ -2,12 +2,12 @@
sha: c25201a00e6b0514370501050cf2a8538ac12270
hooks:
- id: remove-crlf
files: (?!.*third_party)^.*$
files: (?!.*third_party)^.*$ | (?!.*book)^.*$
- repo: https://github.com/reyoung/mirrors-yapf.git
sha: v0.13.2
hooks:
- id: yapf
files: (.*\.(py|bzl)|BUILD|.*\.BUILD|WORKSPACE)$ # Bazel BUILD files follow Python syntax.
files: (.*\.(py|bzl)|BUILD|.*\.BUILD|WORKSPACE)$
- repo: https://github.com/pre-commit/pre-commit-hooks
sha: 7539d8bd1a00a3c1bfd34cdb606d3a6372e83469
hooks:
......@@ -15,7 +15,7 @@
- id: check-merge-conflict
- id: check-symlinks
- id: detect-private-key
files: (?!.*third_party)^.*$
files: (?!.*third_party)^.*$ | (?!.*book)^.*$
- id: end-of-file-fixer
- repo: https://github.com/PaddlePaddle/clang-format-pre-commit-hook.git
sha: 28c0ea8a67a3e2dbbf4822ef44e85b63a0080a29
......
......@@ -29,13 +29,16 @@ Luo, Tao
Lyu, Qin
Mao, Hongyue
Qian, Xiaojun
Qiao, Longfei
Qi, Jun
Qin, Duohao
Shen, Guolong
Shi, Guangchuan
Song, Xiang
Wang, Helin
Wang, Jiang
Wang, Yanfei
Wang, Yi
Wang, Yong
Weng, Renliang
Xu, Tianbing
......
Subproject commit 22ed2a01aee872f055b5f5f212428f481cefc10d
# Use ccache if found ccache program
find_program(CCACHE_FOUND ccache)
find_program(CCACHE_PATH ccache)
if(CCACHE_FOUND)
if(CCACHE_PATH)
message(STATUS "Ccache is founded, use ccache to speed up compile.")
set_property(GLOBAL PROPERTY RULE_LAUNCH_COMPILE ccache)
set_property(GLOBAL PROPERTY RULE_LAUNCH_LINK ccache)
endif(CCACHE_FOUND)
\ No newline at end of file
set_property(GLOBAL PROPERTY RULE_LAUNCH_COMPILE ${CCACHE_PATH})
set_property(GLOBAL PROPERTY RULE_LAUNCH_LINK ${CCACHE_PATH})
endif(CCACHE_PATH)
......@@ -14,7 +14,7 @@
INCLUDE(ExternalProject)
FIND_PACKAGE(Protobuf)
FIND_PACKAGE(Protobuf 3.1)
IF(NOT PROTOBUF_FOUND)
SET(PROTOBUF_SOURCES_DIR ${THIRD_PARTY_PATH}/protobuf)
......
......@@ -13,9 +13,10 @@
# limitations under the License
import sys
import paddle.v2 as paddle
from api_v2_vgg import vgg_bn_drop
from api_v2_resnet import resnet_cifar10
def main():
......@@ -23,16 +24,16 @@ def main():
classdim = 10
# PaddlePaddle init
paddle.init(use_gpu=True, trainer_count=1)
paddle.init(use_gpu=False, trainer_count=1)
image = paddle.layer.data(
name="image", type=paddle.data_type.dense_vector(datadim))
# Add neural network config
# option 1. resnet
net = resnet_cifar10(image, depth=32)
# net = resnet_cifar10(image, depth=32)
# option 2. vgg
# net = vgg_bn_drop(image)
net = vgg_bn_drop(image)
out = paddle.layer.fc(input=net,
size=classdim,
......@@ -68,7 +69,7 @@ def main():
result = trainer.test(
reader=paddle.batch(
paddle.dataset.cifar.test10(), batch_size=128),
reader_dict={'image': 0,
feeding={'image': 0,
'label': 1})
print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)
......@@ -83,7 +84,7 @@ def main():
batch_size=128),
num_passes=5,
event_handler=event_handler,
reader_dict={'image': 0,
feeding={'image': 0,
'label': 1})
......
......@@ -30,25 +30,25 @@ def main():
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 100 == 0:
print "Pass %d, Batch %d, Cost %f, %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics)
print "Pass %d, Batch %d, Cost %f" % (
event.pass_id, event.batch_id, event.cost)
if isinstance(event, paddle.event.EndPass):
if (event.pass_id + 1) % 10 == 0:
result = trainer.test(
reader=paddle.reader.batched(
reader=paddle.batch(
uci_housing.test(), batch_size=2),
reader_dict={'x': 0,
feeding={'x': 0,
'y': 1})
if event.pass_id % 10 == 0:
print "Test %d, %s" % (event.pass_id, result.metrics)
print "Test %d, %.2f" % (event.pass_id, result.cost)
# training
trainer.train(
reader=paddle.reader.batched(
reader=paddle.batch(
paddle.reader.shuffle(
uci_housing.train(), buf_size=500),
batch_size=2),
reader_dict={'x': 0,
feeding={'x': 0,
'y': 1},
event_handler=event_handler,
num_passes=30)
......
......@@ -92,18 +92,14 @@ def main():
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 1000 == 0:
result = trainer.test(reader=paddle.reader.batched(
paddle.dataset.mnist.test(), batch_size=256))
print "Pass %d, Batch %d, Cost %f, %s, Testing metrics %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics,
result.metrics)
print "Pass %d, Batch %d, Cost %f, %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics)
with gzip.open('params.tar.gz', 'w') as f:
parameters.to_tar(f)
elif isinstance(event, paddle.event.EndPass):
result = trainer.test(reader=paddle.reader.batched(
result = trainer.test(reader=paddle.batch(
paddle.dataset.mnist.test(), batch_size=128))
print "Test with Pass %d, Cost %f, %s\n" % (
event.pass_id, result.cost, result.metrics)
......@@ -123,17 +119,17 @@ def main():
print 'Best pass is %s, testing Avgcost is %s' % (best[0], best[1])
print 'The classification accuracy is %.2f%%' % (100 - float(best[2]) * 100)
test_creator = paddle.dataset.mnist.test()
test_data = []
for item in test_creator():
test_data.append((item[0], ))
if len(test_data) == 100:
break
# output is a softmax layer. It returns probabilities.
# Shape should be (100, 10)
probs = paddle.infer(
output=predict,
parameters=parameters,
reader=paddle.batch(
paddle.reader.firstn(
paddle.reader.map_readers(lambda item: (item[0], ),
paddle.dataset.mnist.test()),
n=100),
batch_size=32))
output_layer=predict, parameters=parameters, input=test_data)
print probs.shape
......
import paddle.v2 as paddle
import cPickle
import copy
def main():
paddle.init(use_gpu=False)
movie_title_dict = paddle.dataset.movielens.get_movie_title_dict()
uid = paddle.layer.data(
name='user_id',
type=paddle.data_type.integer_value(
paddle.dataset.movielens.max_user_id() + 1))
usr_emb = paddle.layer.embedding(input=uid, size=32)
usr_gender_id = paddle.layer.data(
name='gender_id', type=paddle.data_type.integer_value(2))
usr_gender_emb = paddle.layer.embedding(input=usr_gender_id, size=16)
usr_age_id = paddle.layer.data(
name='age_id',
type=paddle.data_type.integer_value(
len(paddle.dataset.movielens.age_table)))
usr_age_emb = paddle.layer.embedding(input=usr_age_id, size=16)
usr_job_id = paddle.layer.data(
name='job_id',
type=paddle.data_type.integer_value(paddle.dataset.movielens.max_job_id(
) + 1))
usr_job_emb = paddle.layer.embedding(input=usr_job_id, size=16)
usr_combined_features = paddle.layer.fc(
input=[usr_emb, usr_gender_emb, usr_age_emb, usr_job_emb],
size=200,
act=paddle.activation.Tanh())
mov_id = paddle.layer.data(
name='movie_id',
type=paddle.data_type.integer_value(
paddle.dataset.movielens.max_movie_id() + 1))
mov_emb = paddle.layer.embedding(input=mov_id, size=32)
mov_categories = paddle.layer.data(
name='category_id',
type=paddle.data_type.sparse_binary_vector(
len(paddle.dataset.movielens.movie_categories())))
mov_categories_hidden = paddle.layer.fc(input=mov_categories, size=32)
mov_title_id = paddle.layer.data(
name='movie_title',
type=paddle.data_type.integer_value_sequence(len(movie_title_dict)))
mov_title_emb = paddle.layer.embedding(input=mov_title_id, size=32)
mov_title_conv = paddle.networks.sequence_conv_pool(
input=mov_title_emb, hidden_size=32, context_len=3)
mov_combined_features = paddle.layer.fc(
input=[mov_emb, mov_categories_hidden, mov_title_conv],
size=200,
act=paddle.activation.Tanh())
inference = paddle.layer.cos_sim(
a=usr_combined_features, b=mov_combined_features, size=1, scale=5)
cost = paddle.layer.regression_cost(
input=inference,
label=paddle.layer.data(
name='score', type=paddle.data_type.dense_vector(1)))
parameters = paddle.parameters.create(cost)
trainer = paddle.trainer.SGD(cost=cost,
parameters=parameters,
update_equation=paddle.optimizer.Adam(
learning_rate=1e-4))
feeding = {
'user_id': 0,
'gender_id': 1,
'age_id': 2,
'job_id': 3,
'movie_id': 4,
'category_id': 5,
'movie_title': 6,
'score': 7
}
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 100 == 0:
print "Pass %d Batch %d Cost %.2f" % (
event.pass_id, event.batch_id, event.cost)
trainer.train(
reader=paddle.batch(
paddle.reader.shuffle(
paddle.dataset.movielens.train(), buf_size=8192),
batch_size=256),
event_handler=event_handler,
feeding=feeding,
num_passes=1)
user_id = 234
movie_id = 345
user = paddle.dataset.movielens.user_info()[user_id]
movie = paddle.dataset.movielens.movie_info()[movie_id]
feature = user.value() + movie.value()
def reader():
yield feature
infer_dict = copy.copy(feeding)
del infer_dict['score']
prediction = paddle.infer(
output=inference,
parameters=parameters,
reader=paddle.batch(
reader, batch_size=32),
feeding=infer_dict)
print(prediction + 5) / 2
if __name__ == '__main__':
main()
......@@ -163,11 +163,11 @@ def main():
update_equation=optimizer)
parameters.set('emb', load_parameter(conll05.get_embedding(), 44068, 32))
trn_reader = paddle.reader.batched(
trn_reader = paddle.batch(
paddle.reader.shuffle(
conll05.test(), buf_size=8192), batch_size=10)
reader_dict = {
feeding = {
'word_data': 0,
'ctx_n2_data': 1,
'ctx_n1_data': 2,
......@@ -183,7 +183,7 @@ def main():
reader=trn_reader,
event_handler=event_handler,
num_passes=10000,
reader_dict=reader_dict)
feeding=feeding)
if __name__ == '__main__':
......
......@@ -13,16 +13,10 @@
# limitations under the License.
import sys
import paddle.trainer_config_helpers.attrs as attrs
from paddle.trainer_config_helpers.poolings import MaxPooling
import paddle.v2 as paddle
def convolution_net(input_dim,
class_dim=2,
emb_dim=128,
hid_dim=128,
is_predict=False):
def convolution_net(input_dim, class_dim=2, emb_dim=128, hid_dim=128):
data = paddle.layer.data("word",
paddle.data_type.integer_value_sequence(input_dim))
emb = paddle.layer.embedding(input=data, size=emb_dim)
......@@ -42,8 +36,7 @@ def stacked_lstm_net(input_dim,
class_dim=2,
emb_dim=128,
hid_dim=512,
stacked_num=3,
is_predict=False):
stacked_num=3):
"""
A Wrapper for sentiment classification task.
This network uses bi-directional recurrent network,
......@@ -56,16 +49,14 @@ def stacked_lstm_net(input_dim,
emb_dim: dimension of word embedding.
hid_dim: dimension of hidden layer.
stacked_num: number of stacked lstm-hidden layer.
is_predict: is predicting or not.
Some layers is not needed in network when predicting.
"""
assert stacked_num % 2 == 1
layer_attr = attrs.ExtraLayerAttribute(drop_rate=0.5)
fc_para_attr = attrs.ParameterAttribute(learning_rate=1e-3)
lstm_para_attr = attrs.ParameterAttribute(initial_std=0., learning_rate=1.)
layer_attr = paddle.attr.Extra(drop_rate=0.5)
fc_para_attr = paddle.attr.Param(learning_rate=1e-3)
lstm_para_attr = paddle.attr.Param(initial_std=0., learning_rate=1.)
para_attr = [fc_para_attr, lstm_para_attr]
bias_attr = attrs.ParameterAttribute(initial_std=0., l2_rate=0.)
bias_attr = paddle.attr.Param(initial_std=0., l2_rate=0.)
relu = paddle.activation.Relu()
linear = paddle.activation.Linear()
......@@ -95,8 +86,10 @@ def stacked_lstm_net(input_dim,
layer_attr=layer_attr)
inputs = [fc, lstm]
fc_last = paddle.layer.pooling(input=inputs[0], pooling_type=MaxPooling())
lstm_last = paddle.layer.pooling(input=inputs[1], pooling_type=MaxPooling())
fc_last = paddle.layer.pooling(
input=inputs[0], pooling_type=paddle.pooling.Max())
lstm_last = paddle.layer.pooling(
input=inputs[1], pooling_type=paddle.pooling.Max())
output = paddle.layer.fc(input=[fc_last, lstm_last],
size=class_dim,
act=paddle.activation.Softmax(),
......@@ -110,14 +103,23 @@ def stacked_lstm_net(input_dim,
if __name__ == '__main__':
# init
paddle.init(use_gpu=True, trainer_count=4)
paddle.init(use_gpu=False)
# network config
#data
print 'load dictionary...'
word_dict = paddle.dataset.imdb.word_dict()
dict_dim = len(word_dict)
class_dim = 2
train_reader = paddle.batch(
paddle.reader.shuffle(
lambda: paddle.dataset.imdb.train(word_dict), buf_size=1000),
batch_size=100)
test_reader = paddle.batch(
lambda: paddle.dataset.imdb.test(word_dict), batch_size=100)
feeding = {'word': 0, 'label': 1}
# network config
# Please choose the way to build the network
# by uncommenting the corresponding line.
cost = convolution_net(dict_dim, class_dim=class_dim)
......@@ -142,12 +144,7 @@ if __name__ == '__main__':
sys.stdout.write('.')
sys.stdout.flush()
if isinstance(event, paddle.event.EndPass):
result = trainer.test(
reader=paddle.reader.batched(
lambda: paddle.dataset.imdb.test(word_dict),
batch_size=128),
reader_dict={'word': 0,
'label': 1})
result = trainer.test(reader=test_reader, feeding=feeding)
print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)
# create trainer
......@@ -156,11 +153,7 @@ if __name__ == '__main__':
update_equation=adam_optimizer)
trainer.train(
reader=paddle.reader.batched(
paddle.reader.shuffle(
lambda: paddle.dataset.imdb.train(word_dict), buf_size=1000),
batch_size=100),
reader=train_reader,
event_handler=event_handler,
reader_dict={'word': 0,
'label': 1},
num_passes=10)
feeding=feeding,
num_passes=2)
import os
import sys
import paddle.v2 as paddle
from seqToseq_net_v2 import seqToseq_net_v2
# Data Definiation.
# TODO:This code should be merged to dataset package.
data_dir = "./data/pre-wmt14"
src_lang_dict = os.path.join(data_dir, 'src.dict')
trg_lang_dict = os.path.join(data_dir, 'trg.dict')
source_dict_dim = len(open(src_lang_dict, "r").readlines())
target_dict_dim = len(open(trg_lang_dict, "r").readlines())
def read_to_dict(dict_path):
with open(dict_path, "r") as fin:
out_dict = {
line.strip(): line_count
for line_count, line in enumerate(fin)
}
return out_dict
src_dict = read_to_dict(src_lang_dict)
trg_dict = read_to_dict(trg_lang_dict)
train_list = os.path.join(data_dir, 'train.list')
test_list = os.path.join(data_dir, 'test.list')
UNK_IDX = 2
START = "<s>"
END = "<e>"
def _get_ids(s, dictionary):
words = s.strip().split()
return [dictionary[START]] + \
[dictionary.get(w, UNK_IDX) for w in words] + \
[dictionary[END]]
def train_reader(file_name):
def reader():
with open(file_name, 'r') as f:
for line_count, line in enumerate(f):
line_split = line.strip().split('\t')
if len(line_split) != 2:
continue
src_seq = line_split[0] # one source sequence
src_ids = _get_ids(src_seq, src_dict)
trg_seq = line_split[1] # one target sequence
trg_words = trg_seq.split()
trg_ids = [trg_dict.get(w, UNK_IDX) for w in trg_words]
# remove sequence whose length > 80 in training mode
if len(src_ids) > 80 or len(trg_ids) > 80:
continue
trg_ids_next = trg_ids + [trg_dict[END]]
trg_ids = [trg_dict[START]] + trg_ids
yield src_ids, trg_ids, trg_ids_next
return reader
def seqToseq_net(source_dict_dim, target_dict_dim):
### Network Architecture
word_vector_dim = 512 # dimension of word vector
decoder_size = 512 # dimension of hidden unit in GRU Decoder network
encoder_size = 512 # dimension of hidden unit in GRU Encoder network
#### Encoder
src_word_id = paddle.layer.data(
name='source_language_word',
type=paddle.data_type.integer_value_sequence(source_dict_dim))
src_embedding = paddle.layer.embedding(
input=src_word_id,
size=word_vector_dim,
param_attr=paddle.attr.ParamAttr(name='_source_language_embedding'))
src_forward = paddle.networks.simple_gru(
input=src_embedding, size=encoder_size)
src_backward = paddle.networks.simple_gru(
input=src_embedding, size=encoder_size, reverse=True)
encoded_vector = paddle.layer.concat(input=[src_forward, src_backward])
#### Decoder
with paddle.layer.mixed(size=decoder_size) as encoded_proj:
encoded_proj += paddle.layer.full_matrix_projection(
input=encoded_vector)
backward_first = paddle.layer.first_seq(input=src_backward)
with paddle.layer.mixed(
size=decoder_size, act=paddle.activation.Tanh()) as decoder_boot:
decoder_boot += paddle.layer.full_matrix_projection(
input=backward_first)
def gru_decoder_with_attention(enc_vec, enc_proj, current_word):
decoder_mem = paddle.layer.memory(
name='gru_decoder', size=decoder_size, boot_layer=decoder_boot)
context = paddle.networks.simple_attention(
encoded_sequence=enc_vec,
encoded_proj=enc_proj,
decoder_state=decoder_mem)
with paddle.layer.mixed(size=decoder_size * 3) as decoder_inputs:
decoder_inputs += paddle.layer.full_matrix_projection(input=context)
decoder_inputs += paddle.layer.full_matrix_projection(
input=current_word)
gru_step = paddle.layer.gru_step(
name='gru_decoder',
input=decoder_inputs,
output_mem=decoder_mem,
size=decoder_size)
with paddle.layer.mixed(
size=target_dict_dim,
bias_attr=True,
act=paddle.activation.Softmax()) as out:
out += paddle.layer.full_matrix_projection(input=gru_step)
return out
decoder_group_name = "decoder_group"
group_input1 = paddle.layer.StaticInputV2(input=encoded_vector, is_seq=True)
group_input2 = paddle.layer.StaticInputV2(input=encoded_proj, is_seq=True)
group_inputs = [group_input1, group_input2]
trg_embedding = paddle.layer.embedding(
input=paddle.layer.data(
name='target_language_word',
type=paddle.data_type.integer_value_sequence(target_dict_dim)),
size=word_vector_dim,
param_attr=paddle.attr.ParamAttr(name='_target_language_embedding'))
group_inputs.append(trg_embedding)
# For decoder equipped with attention mechanism, in training,
# target embeding (the groudtruth) is the data input,
# while encoded source sequence is accessed to as an unbounded memory.
# Here, the StaticInput defines a read-only memory
# for the recurrent_group.
decoder = paddle.layer.recurrent_group(
name=decoder_group_name,
step=gru_decoder_with_attention,
input=group_inputs)
lbl = paddle.layer.data(
name='target_language_next_word',
type=paddle.data_type.integer_value_sequence(target_dict_dim))
cost = paddle.layer.classification_cost(input=decoder, label=lbl)
return cost
def main():
paddle.init(use_gpu=False, trainer_count=1)
# source and target dict dim.
dict_size = 30000
source_dict_dim = target_dict_dim = dict_size
# define network topology
cost = seqToseq_net_v2(source_dict_dim, target_dict_dim)
cost = seqToseq_net(source_dict_dim, target_dict_dim)
parameters = paddle.parameters.create(cost)
# define optimize method and trainer
optimizer = paddle.optimizer.Adam(learning_rate=1e-4)
optimizer = paddle.optimizer.Adam(
learning_rate=5e-5,
regularization=paddle.optimizer.L2Regularization(rate=1e-3))
trainer = paddle.trainer.SGD(cost=cost,
parameters=parameters,
update_equation=optimizer)
# define data reader
reader_dict = {
feeding = {
'source_language_word': 0,
'target_language_word': 1,
'target_language_next_word': 2
}
wmt14_reader = paddle.reader.batched(
wmt14_reader = paddle.batch(
paddle.reader.shuffle(
train_reader("data/pre-wmt14/train/train"), buf_size=8192),
paddle.dataset.wmt14.train(dict_size=dict_size), buf_size=8192),
batch_size=5)
# define event_handler callback
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 10 == 0:
print "Pass %d, Batch %d, Cost %f, %s" % (
print "\nPass %d, Batch %d, Cost %f, %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics)
else:
sys.stdout.write('.')
sys.stdout.flush()
# start to train
trainer.train(
reader=wmt14_reader,
event_handler=event_handler,
num_passes=10000,
reader_dict=reader_dict)
feeding=feeding)
if __name__ == '__main__':
......
import paddle.v2 as paddle
def seqToseq_net_v2(source_dict_dim, target_dict_dim):
### Network Architecture
word_vector_dim = 512 # dimension of word vector
decoder_size = 512 # dimension of hidden unit in GRU Decoder network
encoder_size = 512 # dimension of hidden unit in GRU Encoder network
#### Encoder
src_word_id = paddle.layer.data(
name='source_language_word',
type=paddle.data_type.integer_value_sequence(source_dict_dim))
src_embedding = paddle.layer.embedding(
input=src_word_id,
size=word_vector_dim,
param_attr=paddle.attr.ParamAttr(name='_source_language_embedding'))
src_forward = paddle.networks.simple_gru(
input=src_embedding, size=encoder_size)
src_backward = paddle.networks.simple_gru(
input=src_embedding, size=encoder_size, reverse=True)
encoded_vector = paddle.layer.concat(input=[src_forward, src_backward])
#### Decoder
with paddle.layer.mixed(size=decoder_size) as encoded_proj:
encoded_proj += paddle.layer.full_matrix_projection(
input=encoded_vector)
backward_first = paddle.layer.first_seq(input=src_backward)
with paddle.layer.mixed(
size=decoder_size, act=paddle.activation.Tanh()) as decoder_boot:
decoder_boot += paddle.layer.full_matrix_projection(
input=backward_first)
def gru_decoder_with_attention(enc_vec, enc_proj, current_word):
decoder_mem = paddle.layer.memory(
name='gru_decoder', size=decoder_size, boot_layer=decoder_boot)
context = paddle.networks.simple_attention(
encoded_sequence=enc_vec,
encoded_proj=enc_proj,
decoder_state=decoder_mem)
with paddle.layer.mixed(size=decoder_size * 3) as decoder_inputs:
decoder_inputs += paddle.layer.full_matrix_projection(input=context)
decoder_inputs += paddle.layer.full_matrix_projection(
input=current_word)
gru_step = paddle.layer.gru_step(
name='gru_decoder',
input=decoder_inputs,
output_mem=decoder_mem,
size=decoder_size)
with paddle.layer.mixed(
size=target_dict_dim,
bias_attr=True,
act=paddle.activation.Softmax()) as out:
out += paddle.layer.full_matrix_projection(input=gru_step)
return out
decoder_group_name = "decoder_group"
group_input1 = paddle.layer.StaticInputV2(input=encoded_vector, is_seq=True)
group_input2 = paddle.layer.StaticInputV2(input=encoded_proj, is_seq=True)
group_inputs = [group_input1, group_input2]
trg_embedding = paddle.layer.embedding(
input=paddle.layer.data(
name='target_language_word',
type=paddle.data_type.integer_value_sequence(target_dict_dim)),
size=word_vector_dim,
param_attr=paddle.attr.ParamAttr(name='_target_language_embedding'))
group_inputs.append(trg_embedding)
# For decoder equipped with attention mechanism, in training,
# target embeding (the groudtruth) is the data input,
# while encoded source sequence is accessed to as an unbounded memory.
# Here, the StaticInput defines a read-only memory
# for the recurrent_group.
decoder = paddle.layer.recurrent_group(
name=decoder_group_name,
step=gru_decoder_with_attention,
input=group_inputs)
lbl = paddle.layer.data(
name='target_language_next_word',
type=paddle.data_type.integer_value_sequence(target_dict_dim))
cost = paddle.layer.classification_cost(input=decoder, label=lbl)
return cost
......@@ -2,6 +2,7 @@
Trainer API
###########
==========
Parameters
==========
......@@ -24,3 +25,10 @@ Event
.. automodule:: paddle.v2.event
:members:
=========
Inference
=========
.. autofunction:: paddle.v2.infer
\ No newline at end of file
安装PaddlePaddle的Docker镜像
============================
PaddlePaddle的Docker容器使用方式
================================
PaddlePaddle项目提供官方 `Docker <https://www.docker.com/>`_ 镜像。Docker镜像是我们目前唯一官方支持的部署和运行方式
PaddlePaddle目前唯一官方支持的运行的方式是Docker容器。因为Docker能在所有主要操作系统(包括Linux,Mac OS X和Windows)上运行。 请注意,您需要更改 `Dockers设置 <https://github.com/PaddlePaddle/Paddle/issues/627>`_ 才能充分利用Mac OS X和Windows上的硬件资源
下述内容将分为如下几个类别描述。
* PaddlePaddle提供的Docker镜像版本
* 下载和运行Docker镜像
* 注意事项
通过Docker容器开发PaddlePaddle
------------------------------
PaddlePaddle提供的Docker镜像版本
--------------------------------
开发人员可以在Docker中开发PaddlePaddle。这样开发人员可以以一致的方式在不同的平台上工作 - Linux,Mac OS X和Windows。
我们提供了12个 `Docker image <https://hub.docker.com/r/paddledev/paddle/tags/>`_ ,他们的image name都是 :code:`paddledev/paddle` ,tag分别为
1. 将开发环境构建为Docker镜像
+-----------------+------------------+------------------------+-----------------------+
| | normal | devel | demo |
+=================+==================+========================+=======================+
| CPU | cpu-latest | cpu-devel-latest | cpu-demo-latest |
+-----------------+------------------+------------------------+-----------------------+
| GPU | gpu-latest | gpu-devel-latest | gpu-demo-latest |
+-----------------+------------------+------------------------+-----------------------+
| CPU WITHOUT AVX | cpu-noavx-latest | cpu-noavx-devel-latest | cpu-noavx-demo-latest |
+-----------------+------------------+------------------------+-----------------------+
| GPU WITHOUT AVX | gpu-noavx-latest | gpu-noavx-devel-latest | gpu-noavx-demo-latest |
+-----------------+------------------+------------------------+-----------------------+
.. code-block:: bash
其中,横向包括三个版本,normal,devel和demo。
git clone --recursive https://github.com/PaddlePaddle/Paddle
cd Paddle
docker build -t paddle:dev -f paddle/scripts/docker/Dockerfile .
* Normal: 正常的Docker image,只包括paddle的二进制
* Devel: 包括Paddle的二进制、编译环境和源代码
* Demo: 包括Paddle运行demo所需要的依赖
纵向包括四个版本,他们是。
请注意,默认情况下,:code:`docker build` 不会将源码导入到镜像中并编译它。如果我们想这样做,需要设置一个参数:
* CPU: CPU版本。需要支持AVX指令集的CPU
* GPU: GPU版本。需要支持AVX指令集的CPU
* CPU WITHOUT AVX: CPU版本,不支持AVX指令集的CPU也可以运行
* GPU WITHOUT AVX: GPU版本,不需要AVX指令集的CPU也可以运行。
.. code-block:: bash
用户可以选择对应版本的docker image。使用如下脚本可以确定本机的CPU是否支持 :code:`AVX` 指令集\:
docker build -t paddle:dev -f paddle/scripts/docker/Dockerfile --build-arg BUILD_AND_INSTALL=ON .
.. code-block:: bash
if cat /proc/cpuinfo | grep -q avx ; then echo "Support AVX"; else echo "Not support AVX"; fi
2. 运行开发环境
当我们编译好了 :code:`paddle:dev`, 我们可以在docker容器里做开发,源代码可以通过挂载本地文件来被载入Docker的开发环境里面:
.. code-block:: bash
docker run -d -p 2202:22 -v $PWD:/paddle paddle:dev
以上代码会启动一个带有PaddlePaddle开发环境的docker容器,源代码会被挂载到 :code:`/paddle` 。
请注意, :code:`paddle:dev` 的默认入口是 :code:`sshd` 。以上的 :code:`docker run` 命令其实会启动一个在2202端口监听的SSHD服务器。这样,我们就能SSH进入我们的开发容器了:
.. code-block:: bash
ssh root@localhost -p 2202
3. 在Docker开发环境中编译与安装PaddlPaddle代码
如果输出 :code:`Support AVX`,则可以选择上表中的AVX版本PaddlePaddle。否则需要选择非AVX的PaddlePaddle。选择普通CPU版本的devel版本的image,则可以使用 :code:`paddledev/paddle:cpu-devel-latest` 来引用这个image。
当在容器里面的时候,可以用脚本 :code:`paddle/scripts/docker/build.sh` 来编译、安装与测试PaddlePaddle:
PaddlePaddle提供的镜像并不包含任何命令运行,想要运行PaddlePaddle,您需要进入镜像运行PaddlePaddle
程序或者自定义一个含有启动脚本的image。具体请参考注意事项中的 :code:`使用ssh访问PaddlePaddle镜像`
.. code-block:: bash
下载和运行Docker镜像
--------------------
/paddle/paddle/scripts/docker/build.sh
为了运行PaddlePaddle的docker镜像,您需要在机器中安装好Docker。安装Docker需要您的机器
至少具有3.10以上的linux kernel。安装方法请参考
`Docker的官方文档 <https://docs.docker.com/engine/installation/>`_ 。如果您使用
mac osx或者是windows机器,请参考
`mac osx的安装文档 <https://docs.docker.com/engine/installation/mac/>`_ 和
`windows 的安装文档 <https://docs.docker.com/engine/installation/windows/>`_ 。
以上指令会在 :code:`/paddle/build` 中编译PaddlePaddle。通过以下指令可以运行单元测试:
您可以使用 :code:`docker pull` 命令预先下载镜像,也可以直接执行
:code:`docker run` 命令运行镜像。执行方法如下:
.. code-block:: bash
cd /paddle/build
ctest
纯CPU和GPU的docker镜像
----------------------
对于每一个PaddlePaddle版本,我们都会发布两个Docker镜像:纯CPU的和GPU的。我们通过设置 `dockerhub.com <https://hub.docker.com/r/paddledev/paddle/>`_ 自动运行以下两个命令:
.. code-block:: bash
$ docker run -it paddledev/paddle:cpu-latest
docker build -t paddle:cpu -f paddle/scripts/docker/Dockerfile .
docker build -t paddle:gpu -f paddle/scripts/docker/Dockerfile.gpu .
即可启动和进入PaddlePaddle的container。如果运行GPU版本的PaddlePaddle,则需要先将
cuda相关的Driver和设备映射进container中,脚本类似于
以交互容器方式运行纯CPU的镜像:
.. code-block:: bash
$ export CUDA_SO="$(\ls /usr/lib64/libcuda* | xargs -I{} echo '-v {}:{}') $(\ls /usr/lib64/libnvidia* | xargs -I{} echo '-v {}:{}')"
$ export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}')
$ docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddle:gpu-latest
docker run -it --rm paddledev/paddle:cpu-latest /bin/bash
进入Docker container后,运行 :code:`paddle version` 即可打印出PaddlePaddle的版本和构建
信息。安装完成的PaddlePaddle主体包括三个部分, :code:`paddle` 脚本, python的
:code:`paddle` 包和 :code:`py_paddle` 包。其中\:
或者,可以以后台进程方式运行容器:
* :code:`paddle` 脚本和 :code:`paddle` 的python包是PaddlePaddle的训练主要程序。使用
:code:`paddle` 脚本可以启动PaddlePaddle的训练进程和pserver。而 :code:`paddle` 脚本
中的二进制使用了 :code:`paddle` 的python包来做配置文件解析等工作。
* python包 :code:`py_paddle` 是一个swig封装的PaddlePaddle包,用来做预测和简单的定制化
训练。
.. code-block:: bash
注意事项
--------
docker run -d -p 2202:22 paddledev/paddle:cpu-latest
性能问题
++++++++
然后用密码 :code:`root` SSH进入容器:
由于Docker是基于容器的轻量化虚拟方案,所以在CPU的运算性能上并不会有严重的影响。
而GPU的驱动和设备全部映射到了容器内,所以GPU在运算性能上也不会有严重的影响。
.. code-block:: bash
但是如果使用了高性能的网卡,例如RDMA网卡(RoCE 40GbE 或者 IB 56GbE),或者高性能的
以太网卡 (10GbE)。推荐使用将本地网卡,即 "--net=host" 来进行训练。而不使用docker
的网桥来进行网络通信。
ssh -p 2202 root@localhost
远程访问问题和二次开发
++++++++++++++++++++++
SSH方式的一个优点是我们可以从多个终端进入容器。比如,一个终端运行vi,另一个终端运行Python。另一个好处是我们可以把PaddlePaddle容器运行在远程服务器上,并在笔记本上通过SSH与其连接。
由于PaddlePaddle的Docker镜像并不包含任何预定义的运行命令。所以如果想要在后台启用ssh
远程访问,则需要进行一定的二次开发,将ssh装入系统内并开启远程访问。二次开发可以
使用Dockerfile构建一个全新的docker image。需要参考
`Dockerfile的文档 <https://docs.docker.com/engine/reference/builder/>`_ 和
`Dockerfile的最佳实践 <https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/>`_
两个文档。
简单的含有ssh的Dockerfile如下
以上方法在GPU镜像里也能用-只是请不要忘记按装CUDA驱动,以及告诉Docker
.. code-block:: bash
FROM paddledev/paddle:cpu-latest
export CUDA_SO="$(\ls /usr/lib64/libcuda* | xargs -I{} echo '-v {}:{}') $(\ls /usr/lib64/libnvidia* | xargs -I{} echo '-v {}:{}')"
export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}')
docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddle:gpu-latest
MAINTAINER PaddlePaddle dev team <paddle-dev@baidu.com>
RUN apt-get update
RUN apt-get install -y openssh-server
RUN mkdir /var/run/sshd
RUN echo 'root:root' | chpasswd
非AVX镜像
---------
RUN sed -ri 's/^PermitRootLogin\s+.*/PermitRootLogin yes/' /etc/ssh/sshd_config
RUN sed -ri 's/UsePAM yes/#UsePAM yes/g' /etc/ssh/sshd_config
纯CPU镜像以及GPU镜像都会用到AVX指令集,但是2008年之前生产的旧电脑不支持AVX。以下指令能检查Linux电脑是否支持AVX:
EXPOSE 22
CMD ["/usr/sbin/sshd", "-D"]
.. code-block:: bash
if cat /proc/cpuinfo | grep -i avx; then echo Yes; else echo No; fi
使用该Dockerfile构建出镜像,然后运行这个container即可。相关命令为\:
如果输出是No,我们就需要手动编译一个非AVX版本的镜像:
.. code-block:: bash
# cd到含有Dockerfile的路径中
$ docker build . -t paddle_ssh
# 运行这个container,将宿主机的8022端口映射到container的22端口上
$ docker run -d -p 8022:22 --name paddle_ssh_machine paddle_ssh
cd ~
git clone https://github.com/PaddlePaddle/Paddle.git
cd Paddle
docker build --build-arg WITH_AVX=OFF -t paddle:cpu-noavx -f paddle/scripts/docker/Dockerfile .
docker build --build-arg WITH_AVX=OFF -t paddle:gpu-noavx -f paddle/scripts/docker/Dockerfile.gpu .
执行如下命令即可以关闭这个container,并且删除container中的数据\:
.. code-block:: bash
文档
----
# 关闭container
$ docker stop paddle_ssh_machine
# 删除container
$ docker rm paddle_ssh_machine
Paddle的Docker镜像带有一个通过 `woboq code browser
<https://github.com/woboq/woboq_codebrowser>`_ 生成的HTML版本的C++源代码,便于用户浏览C++源码。
如果想要在外部机器访问这个container,即可以使用ssh访问宿主机的8022端口。用户名为
root,密码也是root。命令为\:
只要在Docker里启动PaddlePaddle的时候给它一个名字,就可以再运行另一个Nginx Docker镜像来服务HTML代码:
.. code-block:: bash
$ ssh -p 8022 root@YOUR_HOST_MACHINE
docker run -d --name paddle-cpu-doc paddle:cpu
docker run -d --volumes-from paddle-cpu-doc -p 8088:80 nginx
至此,您就可以远程的使用PaddlePaddle啦
接着我们就能够打开浏览器在 http://localhost:8088/paddle/ 浏览代码
......@@ -346,8 +346,10 @@ Evaluator* MultiGradientMachine::makeEvaluator() const {
void MultiGradientMachine::eval(Evaluator* evaluator) const {
for (auto& thread : threads_) {
SetDevice device(thread->getDeviceId());
if (thread->hasInputData()) {
thread->getGradientMachine()->eval(evaluator);
}
}
}
void MultiGradientMachine::getOutArgs(std::vector<Argument>* outArgs,
......@@ -356,14 +358,19 @@ void MultiGradientMachine::getOutArgs(std::vector<Argument>* outArgs,
REGISTER_TIMER("waitOutArgs");
thread->waitOutArgsReady();
}
outArgs_.resize(threads_[0]->getOutArgs().size());
outArgs_.resize(threads_[threads_.size() - 1]->getOutArgs().size());
REGISTER_TIMER("copyOutArgs");
for (size_t i = 0; i < outArgs_.size(); ++i) {
std::vector<Argument> args;
args.reserve(threads_.size());
for (auto& thread : threads_) {
args.push_back(thread->getOutArgs()[i]);
// If the thread input is empty, then the output is empty.
auto tmp = thread->getOutArgs();
if (tmp.size() > 0) {
args.push_back(tmp[i]);
}
}
outArgs_[i].concat(args, useGpu_, outArgStream_, passType);
}
......@@ -534,7 +541,7 @@ void TrainerThread::prefetch() {
void TrainerThread::forward() {
if (!inArgsCopied_) {
REGISTER_TIMER("copyInArgs");
copyInArgs();
batchSize_ = copyInArgs();
} else {
inArgsCopied_ = false;
}
......@@ -564,7 +571,12 @@ void TrainerThread::forward() {
{
REGISTER_TIMER("thread_forward");
gradientMachine_->forward(inArgs_, &outArgs_, multiMachine_->getPassType());
if (batchSize_ > 0) {
gradientMachine_->forward(
inArgs_, &outArgs_, multiMachine_->getPassType());
} else {
outArgs_.clear();
}
}
outArgsReadySem_.post();
}
......@@ -574,7 +586,13 @@ void TrainerThread::backward() {
if (multiMachine_->isPassGrad()) {
copyOutputGrad();
}
if (batchSize_ > 0) {
gradientMachine_->backward(backwardCallback_);
} else {
for (size_t i = parameters_.size(); i > 0; i--) {
backwardCallback(parameters_[i - 1].get());
}
}
if (multiMachine_->hasNonstaticCpuParamters()) {
mergeCpuGradients();
}
......@@ -732,7 +750,7 @@ void TrainerThread::notifyValueReady(int paramId) {
notifyValueDispatch(paramId);
}
void TrainerThread::copyInArgs() {
int TrainerThread::copyInArgs() {
const std::vector<Argument>& fullInArgs = multiMachine_->getInArgs();
int numThreads = multiMachine_->getAllThreads().size();
int32_t numSequences = fullInArgs[0].getNumSequences();
......@@ -748,7 +766,7 @@ void TrainerThread::copyInArgs() {
}
if (copySize == 0) {
return;
return 0;
}
for (size_t i = 0; i < fullInArgs.size(); i++) {
......@@ -758,6 +776,7 @@ void TrainerThread::copyInArgs() {
copySize,
FLAGS_parallel_nn ? false : multiMachine_->useGpu());
}
return copySize;
}
void TrainerThread::mergeCpuGradients() {
......
......@@ -387,6 +387,9 @@ public:
/// copy the output gradient from the main GradientMachine.
void copyOutputGrad();
/// Whether the thread has input data.
bool hasInputData() { return batchSize_ != 0; }
protected:
void mergeCpuGradients();
......@@ -407,7 +410,7 @@ protected:
void copyGradToBufferThread();
void gradCollectThread();
void copyInArgs();
int copyInArgs();
void forward();
void backward();
void backwardCallback(Parameter* para);
......@@ -467,6 +470,7 @@ protected:
/// indicate whether inArgs is copied before forward()
bool inArgsCopied_;
int batchSize_;
};
} // namespace paddle
......@@ -39,6 +39,7 @@ register_unary_math_op('abs', act.AbsActivation())
register_unary_math_op('sigmoid', act.SigmoidActivation())
register_unary_math_op('tanh', act.TanhActivation())
register_unary_math_op('square', act.SquareActivation())
register_unary_math_op('relu', act.ReluActivation())
def add(layeroutput, other):
......
......@@ -7,8 +7,9 @@ x = layer_math.exp(x)
x = layer_math.log(x)
x = layer_math.abs(x)
x = layer_math.sigmoid(x)
x = layer_math.tanh(x)
x = layer_math.square(x)
x = layer_math.square(x)
x = layer_math.relu(x)
y = 1 + x
y = y + 1
y = x + y
......
......@@ -65,13 +65,28 @@ layers {
}
}
}
layers {
name: "__tanh_0__"
type: "mixed"
size: 100
active_type: "tanh"
inputs {
input_layer_name: "__sigmoid_0__"
proj_conf {
type: "identity"
name: "___tanh_0__.w0"
input_size: 100
output_size: 100
}
}
}
layers {
name: "__square_0__"
type: "mixed"
size: 100
active_type: "square"
inputs {
input_layer_name: "__sigmoid_0__"
input_layer_name: "__tanh_0__"
proj_conf {
type: "identity"
name: "___square_0__.w0"
......@@ -81,15 +96,15 @@ layers {
}
}
layers {
name: "__square_1__"
name: "__relu_0__"
type: "mixed"
size: 100
active_type: "square"
active_type: "relu"
inputs {
input_layer_name: "__square_0__"
proj_conf {
type: "identity"
name: "___square_1__.w0"
name: "___relu_0__.w0"
input_size: 100
output_size: 100
}
......@@ -101,7 +116,7 @@ layers {
size: 100
active_type: ""
inputs {
input_layer_name: "__square_1__"
input_layer_name: "__relu_0__"
}
slope: 1.0
intercept: 1
......@@ -123,7 +138,7 @@ layers {
size: 100
active_type: ""
inputs {
input_layer_name: "__square_1__"
input_layer_name: "__relu_0__"
proj_conf {
type: "identity"
name: "___mixed_0__.w0"
......@@ -147,7 +162,7 @@ layers {
size: 100
active_type: ""
inputs {
input_layer_name: "__square_1__"
input_layer_name: "__relu_0__"
}
slope: -1.0
intercept: 0.0
......@@ -339,8 +354,9 @@ sub_models {
layer_names: "__log_0__"
layer_names: "__abs_0__"
layer_names: "__sigmoid_0__"
layer_names: "__tanh_0__"
layer_names: "__square_0__"
layer_names: "__square_1__"
layer_names: "__relu_0__"
layer_names: "__slope_intercept_layer_0__"
layer_names: "__slope_intercept_layer_1__"
layer_names: "__mixed_0__"
......
......@@ -14,11 +14,18 @@
from py_paddle import DataProviderConverter
import data_type
import paddle.trainer.PyDataProvider2 as pydp2
__all__ = ['DataFeeder']
def default_feeding_map(data_types):
reader_dict = dict()
for i, tp in enumerate(data_types):
reader_dict[tp[0]] = i
return reader_dict
class DataFeeder(DataProviderConverter):
"""
DataFeeder converts the data returned by paddle.reader into a data structure
......@@ -60,19 +67,27 @@ class DataFeeder(DataProviderConverter):
:type data_types: list
:param reader_dict: A dictionary to specify the position of each data
in the input data.
:type reader_dict: dict
:type feeding: dict
"""
def __init__(self, data_types, reader_dict):
def __init__(self, data_types, feeding=None):
self.input_names = []
input_types = []
self.reader_dict = reader_dict
if feeding is None:
feeding = default_feeding_map(data_types)
self.feeding = feeding
for each in data_types:
self.input_names.append(each[0])
assert isinstance(each[1], data_type.InputType)
if not isinstance(each[1], pydp2.InputType):
raise TypeError("second item in each data_type should be an "
"InputType")
input_types.append(each[1])
DataProviderConverter.__init__(self, input_types)
def __len__(self):
return len(self.input_names)
def convert(self, dat, argument=None):
"""
:param dat: A list of mini-batch data. Each sample is a list or tuple
......@@ -90,7 +105,7 @@ class DataFeeder(DataProviderConverter):
for each in data:
reorder = []
for name in self.input_names:
reorder.append(each[self.reader_dict[name]])
reorder.append(each[self.feeding[name]])
retv.append(reorder)
return retv
......
......@@ -23,7 +23,12 @@ import re
import random
import functools
__all__ = ['train_creator', 'test_creator']
__all__ = [
'train', 'test', 'get_movie_title_dict', 'max_movie_id', 'max_user_id',
'age_table', 'movie_categories', 'max_job_id', 'user_info', 'movie_info'
]
age_table = [1, 18, 25, 35, 45, 50, 56]
class MovieInfo(object):
......@@ -38,17 +43,32 @@ class MovieInfo(object):
[MOVIE_TITLE_DICT[w.lower()] for w in self.title.split()]
]
def __str__(self):
return "<MovieInfo id(%d), title(%s), categories(%s)>" % (
self.index, self.title, self.categories)
def __repr__(self):
return self.__str__()
class UserInfo(object):
def __init__(self, index, gender, age, job_id):
self.index = int(index)
self.is_male = gender == 'M'
self.age = [1, 18, 25, 35, 45, 50, 56].index(int(age))
self.age = age_table.index(int(age))
self.job_id = int(job_id)
def value(self):
return [self.index, 0 if self.is_male else 1, self.age, self.job_id]
def __str__(self):
return "<UserInfo id(%d), gender(%s), age(%d), job(%d)>" % (
self.index, "M"
if self.is_male else "F", age_table[self.age], self.job_id)
def __repr__(self):
return str(self)
MOVIE_INFO = None
MOVIE_TITLE_DICT = None
......@@ -59,7 +79,8 @@ USER_INFO = None
def __initialize_meta_info__():
fn = download(
url='http://files.grouplens.org/datasets/movielens/ml-1m.zip',
md5='c4d9eecfca2ab87c1945afe126590906')
module_name='movielens',
md5sum='c4d9eecfca2ab87c1945afe126590906')
global MOVIE_INFO
if MOVIE_INFO is None:
pattern = re.compile(r'^(.*)\((\d+)\)$')
......@@ -122,14 +143,63 @@ def __reader_creator__(**kwargs):
return lambda: __reader__(**kwargs)
train_creator = functools.partial(__reader_creator__, is_test=False)
test_creator = functools.partial(__reader_creator__, is_test=True)
train = functools.partial(__reader_creator__, is_test=False)
test = functools.partial(__reader_creator__, is_test=True)
def get_movie_title_dict():
__initialize_meta_info__()
return MOVIE_TITLE_DICT
def __max_index_info__(a, b):
if a.index > b.index:
return a
else:
return b
def max_movie_id():
__initialize_meta_info__()
return reduce(__max_index_info__, MOVIE_INFO.viewvalues()).index
def max_user_id():
__initialize_meta_info__()
return reduce(__max_index_info__, USER_INFO.viewvalues()).index
def __max_job_id_impl__(a, b):
if a.job_id > b.job_id:
return a
else:
return b
def max_job_id():
__initialize_meta_info__()
return reduce(__max_job_id_impl__, USER_INFO.viewvalues()).job_id
def movie_categories():
__initialize_meta_info__()
return CATEGORIES_DICT
def user_info():
__initialize_meta_info__()
return USER_INFO
def movie_info():
__initialize_meta_info__()
return MOVIE_INFO
def unittest():
for train_count, _ in enumerate(train_creator()()):
for train_count, _ in enumerate(train()()):
pass
for test_count, _ in enumerate(test_creator()()):
for test_count, _ in enumerate(test()()):
pass
print train_count, test_count
......
......@@ -14,129 +14,92 @@
"""
wmt14 dataset
"""
import paddle.v2.dataset.common
import tarfile
import os.path
import itertools
import paddle.v2.dataset.common
__all__ = ['train', 'test', 'build_dict']
URL_DEV_TEST = 'http://www-lium.univ-lemans.fr/~schwenk/cslm_joint_paper/data/dev+test.tgz'
MD5_DEV_TEST = '7d7897317ddd8ba0ae5c5fa7248d3ff5'
URL_TRAIN = 'http://localhost:8000/train.tgz'
MD5_TRAIN = '72de99da2830ea5a3a2c4eb36092bbc7'
def word_count(f, word_freq=None):
add = paddle.v2.dataset.common.dict_add
if word_freq == None:
word_freq = {}
for l in f:
for w in l.strip().split():
add(word_freq, w)
add(word_freq, '<s>')
add(word_freq, '<e>')
return word_freq
def get_word_dix(word_freq):
TYPO_FREQ = 50
word_freq = filter(lambda x: x[1] > TYPO_FREQ, word_freq.items())
word_freq_sorted = sorted(word_freq, key=lambda x: (-x[1], x[0]))
words, _ = list(zip(*word_freq_sorted))
word_idx = dict(zip(words, xrange(len(words))))
word_idx['<unk>'] = len(words)
return word_idx
def get_word_freq(train, dev):
word_freq = word_count(train, word_count(dev))
if '<unk>' in word_freq:
# remove <unk> for now, since we will set it as last index
del word_freq['<unk>']
return word_freq
def build_dict():
base_dir = './wmt14-data'
train_en_filename = base_dir + '/train/train.en'
train_fr_filename = base_dir + '/train/train.fr'
dev_en_filename = base_dir + '/dev/ntst1213.en'
dev_fr_filename = base_dir + '/dev/ntst1213.fr'
if not os.path.exists(train_en_filename) or not os.path.exists(
train_fr_filename):
with tarfile.open(
paddle.v2.dataset.common.download(URL_TRAIN, 'wmt14',
MD5_TRAIN)) as tf:
tf.extractall(base_dir)
if not os.path.exists(dev_en_filename) or not os.path.exists(
dev_fr_filename):
with tarfile.open(
paddle.v2.dataset.common.download(URL_DEV_TEST, 'wmt14',
MD5_DEV_TEST)) as tf:
tf.extractall(base_dir)
f_en = open(train_en_filename)
f_fr = open(train_fr_filename)
f_en_dev = open(dev_en_filename)
f_fr_dev = open(dev_fr_filename)
word_freq_en = get_word_freq(f_en, f_en_dev)
word_freq_fr = get_word_freq(f_fr, f_fr_dev)
f_en.close()
f_fr.close()
f_en_dev.close()
f_fr_dev.close()
return get_word_dix(word_freq_en), get_word_dix(word_freq_fr)
# this is a small set of data for test. The original data is too large and will be add later.
URL_TRAIN = 'http://paddlepaddle.bj.bcebos.com/demo/wmt_shrinked_data/wmt14.tgz'
MD5_TRAIN = 'a755315dd01c2c35bde29a744ede23a6'
START = "<s>"
END = "<e>"
UNK = "<unk>"
UNK_IDX = 2
def __read_to_dict__(tar_file, dict_size):
def __to_dict__(fd, size):
out_dict = dict()
for line_count, line in enumerate(fd):
if line_count < size:
out_dict[line.strip()] = line_count
else:
break
return out_dict
with tarfile.open(tar_file, mode='r') as f:
names = [
each_item.name for each_item in f
if each_item.name.endswith("src.dict")
]
assert len(names) == 1
src_dict = __to_dict__(f.extractfile(names[0]), dict_size)
names = [
each_item.name for each_item in f
if each_item.name.endswith("trg.dict")
]
assert len(names) == 1
trg_dict = __to_dict__(f.extractfile(names[0]), dict_size)
return src_dict, trg_dict
def reader_creator(directory, path_en, path_fr, URL, MD5, dict_en, dict_fr):
def reader_creator(tar_file, file_name, dict_size):
def reader():
if not os.path.exists(path_en) or not os.path.exists(path_fr):
with tarfile.open(
paddle.v2.dataset.common.download(URL, 'wmt14', MD5)) as tf:
tf.extractall(directory)
f_en = open(path_en)
f_fr = open(path_fr)
UNK_en = dict_en['<unk>']
UNK_fr = dict_fr['<unk>']
for en, fr in itertools.izip(f_en, f_fr):
src_ids = [dict_en.get(w, UNK_en) for w in en.strip().split()]
tar_ids = [
dict_fr.get(w, UNK_fr)
for w in ['<s>'] + fr.strip().split() + ['<e>']
src_dict, trg_dict = __read_to_dict__(tar_file, dict_size)
with tarfile.open(tar_file, mode='r') as f:
names = [
each_item.name for each_item in f
if each_item.name.endswith(file_name)
]
for name in names:
for line in f.extractfile(name):
line_split = line.strip().split('\t')
if len(line_split) != 2:
continue
src_seq = line_split[0] # one source sequence
src_words = src_seq.split()
src_ids = [
src_dict.get(w, UNK_IDX)
for w in [START] + src_words + [END]
]
trg_seq = line_split[1] # one target sequence
trg_words = trg_seq.split()
trg_ids = [trg_dict.get(w, UNK_IDX) for w in trg_words]
# remove sequence whose length > 80 in training mode
if len(src_ids) == 0 or len(tar_ids) <= 1 or len(
src_ids) > 80 or len(tar_ids) > 80:
if len(src_ids) > 80 or len(trg_ids) > 80:
continue
trg_ids_next = trg_ids + [trg_dict[END]]
trg_ids = [trg_dict[START]] + trg_ids
yield src_ids, tar_ids[:-1], tar_ids[1:]
f_en.close()
f_fr.close()
yield src_ids, trg_ids, trg_ids_next
return reader
def train(dict_en, dict_fr):
directory = './wmt14-data'
return reader_creator(directory, directory + '/train/train.en',
directory + '/train/train.fr', URL_TRAIN, MD5_TRAIN,
dict_en, dict_fr)
def train(dict_size):
return reader_creator(
paddle.v2.dataset.common.download(URL_TRAIN, 'wmt14', MD5_TRAIN),
'train/train', dict_size)
def test(dict_en, dict_fr):
directory = './wmt14-data'
return reader_creator(directory, directory + '/dev/ntst1213.en',
directory + '/dev/ntst1213.fr', URL_DEV_TEST,
MD5_DEV_TEST, dict_en, dict_fr)
def test(dict_size):
return reader_creator(
paddle.v2.dataset.common.download(URL_TRAIN, 'wmt14', MD5_TRAIN),
'test/test', dict_size)
import numpy
import py_paddle.swig_paddle as api
import collections
import topology
import minibatch
from data_feeder import DataFeeder
import itertools
import numpy
__all__ = ['infer']
class Inference(object):
def __init__(self, output, parameters):
topo = topology.Topology(output)
def __init__(self, output_layer, parameters):
topo = topology.Topology(output_layer)
gm = api.GradientMachine.createFromConfigProto(
topo.proto(), api.CREATE_MODE_TESTING, [api.PARAMETER_VALUE])
for param in gm.getParameters():
......@@ -21,10 +21,16 @@ class Inference(object):
self.__gradient_machine__ = gm
self.__data_types__ = topo.data_type()
def iter_infer(self, reader, reader_dict=None):
if reader_dict is None:
reader_dict = self.default_reader_dict()
feeder = DataFeeder(self.__data_types__, reader_dict)
def iter_infer(self, input, feeding=None):
feeder = DataFeeder(self.__data_types__, feeding)
batch_size = len(input)
def __reader_impl__():
for each_sample in input:
yield each_sample
reader = minibatch.batch(__reader_impl__, batch_size=batch_size)
self.__gradient_machine__.start()
for data_batch in reader():
yield self.__gradient_machine__.forwardTest(feeder(data_batch))
......@@ -47,13 +53,36 @@ class Inference(object):
else:
return retv
def default_reader_dict(self):
reader_dict = dict()
for i, tp in enumerate(self.__data_types__):
reader_dict[tp[0]] = i
return reader_dict
def infer(output_layer, parameters, input, feeding=None, field='value'):
"""
Infer a neural network by given neural network output and parameters. The
user should pass either a batch of input data or reader method.
Example usages:
.. code-block:: python
result = paddle.infer(prediction, parameters, input=SomeData,
batch_size=32)
print result
:param output_layer: output of the neural network that would be inferred
:type output_layer: paddle.v2.config_base.Layer
:param parameters: parameters of the neural network.
:type parameters: paddle.v2.parameters.Parameters
:param input: input data batch. Should be a python iterable object, and each
element is the data batch.
:type input: collections.Iterable
:param feeding: Reader dictionary. Default could generate from input
value.
:param field: The prediction field. It should in [`value`, `ids`]. `value`
means return the prediction probabilities, `ids` means return
the prediction labels. Default is `value`
:type field: str
:return: a numpy array
:rtype: numpy.ndarray
"""
def infer(output, parameters, reader, reader_dict=None, field='value'):
inferer = Inference(output=output, parameters=parameters)
return inferer.infer(field=field, reader=reader, reader_dict=reader_dict)
inferer = Inference(output_layer=output_layer, parameters=parameters)
return inferer.infer(field=field, input=input, feeding=feeding)
......@@ -61,7 +61,7 @@ class SGD(object):
self.__gradient_machine__.randParameters()
parameters.append_gradient_machine(gm)
def train(self, reader, num_passes=1, event_handler=None, reader_dict=None):
def train(self, reader, num_passes=1, event_handler=None, feeding=None):
"""
Training method. Will train num_passes of input data.
......@@ -70,14 +70,13 @@ class SGD(object):
:param event_handler: Event handler. A method will be invoked when event
occurred.
:type event_handler: (BaseEvent) => None
:param feeding: Feeding is a map of neural network input name and array
index that reader returns.
:type feeding: dict
:return:
"""
if event_handler is None:
event_handler = default_event_handler
if reader_dict is None:
reader_dict = self.default_reader_dict()
__check_train_args__(**locals())
updater = self.__optimizer__.create_local_updater()
......@@ -89,9 +88,7 @@ class SGD(object):
pass_evaluator = self.__gradient_machine__.makeEvaluator()
assert isinstance(pass_evaluator, api.Evaluator)
out_args = api.Arguments.createArguments(0)
feeder = DataFeeder(self.__data_types__, reader_dict)
feeder = DataFeeder(self.__data_types__, feeding)
for pass_id in xrange(num_passes):
event_handler(v2_event.BeginPass(pass_id))
pass_evaluator.start()
......@@ -125,17 +122,8 @@ class SGD(object):
event_handler(v2_event.EndPass(pass_id, evaluator=pass_evaluator))
self.__gradient_machine__.finish()
def default_reader_dict(self):
reader_dict = dict()
for i, tp in enumerate(self.__data_types__):
reader_dict[tp[0]] = i
return reader_dict
def test(self, reader, reader_dict=None):
if reader_dict is None:
reader_dict = self.default_reader_dict()
feeder = DataFeeder(self.__data_types__, reader_dict)
def test(self, reader, feeding=None):
feeder = DataFeeder(self.__data_types__, feeding)
evaluator = self.__gradient_machine__.makeEvaluator()
out_args = api.Arguments.createArguments(0)
evaluator.start()
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册