未验证 提交 8deff48d 编写于 作者: Y Yu Yang 提交者: GitHub

Merge pull request #11081 from reyoung/feature/python_doc

Add document to random crop operator
...@@ -36,7 +36,7 @@ class RandomCropOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -36,7 +36,7 @@ class RandomCropOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput("Seed", "The random seed."); AddInput("Seed", "The random seed.");
AddOutput("Out", "The cropped instance batch."); AddOutput("Out", "The cropped instance batch.");
AddOutput("SeedOut", "The random seed after random cropping.") AddOutput("SeedOut", "The random seed after random cropping.")
.AsDispensable(); .AsIntermediate();
AddAttr<std::vector<int>>("shape", "The shape of a cropped instance."); AddAttr<std::vector<int>>("shape", "The shape of a cropped instance.");
AddComment(R"DOC( AddComment(R"DOC(
This operator takes a batch of instance, and do random cropping on each instance. This operator takes a batch of instance, and do random cropping on each instance.
......
...@@ -15,16 +15,13 @@ import re ...@@ -15,16 +15,13 @@ import re
import cStringIO import cStringIO
import functools import functools
import warnings import warnings
import string
from ..proto import framework_pb2 from ..proto import framework_pb2
from ..framework import OpProtoHolder, Variable from ..framework import OpProtoHolder, Variable
from ..layer_helper import LayerHelper from ..layer_helper import LayerHelper
__all__ = [ __all__ = ['deprecated', 'generate_layer_fn', 'autodoc', 'templatedoc']
'deprecated',
'generate_layer_fn',
'autodoc',
]
def _convert_(name): def _convert_(name):
...@@ -43,6 +40,10 @@ def _convert_(name): ...@@ -43,6 +40,10 @@ def _convert_(name):
return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower() return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower()
def _type_to_str_(tp):
return framework_pb2.AttrType.Name(tp)
def _generate_doc_string_(op_proto): def _generate_doc_string_(op_proto):
""" """
Generate docstring by OpProto Generate docstring by OpProto
...@@ -54,9 +55,6 @@ def _generate_doc_string_(op_proto): ...@@ -54,9 +55,6 @@ def _generate_doc_string_(op_proto):
str: the document string str: the document string
""" """
def _type_to_str_(tp):
return framework_pb2.AttrType.Name(tp)
if not isinstance(op_proto, framework_pb2.OpProto): if not isinstance(op_proto, framework_pb2.OpProto):
raise TypeError("OpProto should be `framework_pb2.OpProto`") raise TypeError("OpProto should be `framework_pb2.OpProto`")
...@@ -224,3 +222,49 @@ def autodoc(comment=""): ...@@ -224,3 +222,49 @@ def autodoc(comment=""):
return func return func
return __impl__ return __impl__
def templatedoc():
"""
Decorator of layer function. It will use the docstring from the layer
function as the template. The template arguments are:
* ${comment}: The operator comment written in CPP.
* ${{name}_comment}: The comment of ${name} written with AddAttr, AddOutput,
and AddInput. The ${name} is Python snake style. i.e., xxx_xxx.
* ${{name}_type}: The type of ${name}.
Returns:
Decorated function.
"""
def __impl__(func):
op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
tmpl = string.Template(func.__doc__)
comment_lines = op_proto.comment.split("\n")
comment = ""
for line in comment_lines:
line = line.lstrip()
comment += line
comment += "\n"
args = {"comment": comment}
for each_input in op_proto.inputs:
input_name = _convert_(each_input.name)
args["{0}_comment".format(input_name)] = each_input.comment
args["{0}_type".format(input_name)] = "Variable"
for each_attr in op_proto.attrs:
input_name = _convert_(each_attr.name)
args["{0}_comment".format(input_name)] = each_attr.comment
args["{0}_type".format(input_name)] = _type_to_str_(each_attr.type)
for each_opt in op_proto.outputs:
output_name = _convert_(each_opt.name)
args["{0}_comment".format(output_name)] = each_opt.comment
args["{0}_type".format(output_name)] = "Variable"
func.__doc__ = tmpl.substitute(args)
return func
return __impl__
...@@ -19,9 +19,10 @@ from ..layer_helper import LayerHelper ...@@ -19,9 +19,10 @@ from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant from ..initializer import Normal, Constant
from ..framework import Variable from ..framework import Variable
from ..param_attr import ParamAttr from ..param_attr import ParamAttr
from layer_function_generator import autodoc from layer_function_generator import autodoc, templatedoc
from tensor import concat from tensor import concat
import utils import utils
import random
__all__ = [ __all__ = [
'fc', 'fc',
...@@ -801,7 +802,22 @@ def gru_unit(input, ...@@ -801,7 +802,22 @@ def gru_unit(input,
return updated_hidden, reset_hidden_pre, gate return updated_hidden, reset_hidden_pre, gate
@templatedoc()
def linear_chain_crf(input, label, param_attr=None): def linear_chain_crf(input, label, param_attr=None):
"""
Linear Chain CRF.
${comment}
Args:
input(${emission_type}): ${emission_comment}
label(${label_type}): ${label_comment}
param_attr(ParamAttr): The attribute of the learnable parameter.
Returns:
${log_likelihood_comment}
"""
helper = LayerHelper('linear_chain_crf', **locals()) helper = LayerHelper('linear_chain_crf', **locals())
size = input.shape[1] size = input.shape[1]
transition = helper.create_parameter( transition = helper.create_parameter(
...@@ -827,7 +843,19 @@ def linear_chain_crf(input, label, param_attr=None): ...@@ -827,7 +843,19 @@ def linear_chain_crf(input, label, param_attr=None):
return log_likelihood return log_likelihood
@templatedoc()
def crf_decoding(input, param_attr, label=None): def crf_decoding(input, param_attr, label=None):
"""
${comment}
Args:
input(${emission_type}): ${emission_comment}
param_attr(ParamAttr): The parameter attribute for training.
label(${label_type}): ${label_comment}
Returns:
${viterbi_path_comment}
"""
helper = LayerHelper('crf_decoding', **locals()) helper = LayerHelper('crf_decoding', **locals())
transition = helper.get_parameter(param_attr.name) transition = helper.get_parameter(param_attr.name)
viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype()) viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
...@@ -4107,10 +4135,31 @@ def gather(input, index): ...@@ -4107,10 +4135,31 @@ def gather(input, index):
return out return out
def random_crop(input, shape, seed=1): @templatedoc()
def random_crop(x, shape, seed=None):
"""
${comment}
Examples:
>>> img = fluid.layers.data("img", [3, 256, 256])
>>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Args:
x(${x_type}): ${x_comment}
shape(${shape_type}): ${shape_comment}
seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
get from `random.randint(-65536, 65535)`.
Returns:
${out_comment}
"""
helper = LayerHelper("random_crop", **locals()) helper = LayerHelper("random_crop", **locals())
dtype = helper.input_dtype() dtype = helper.input_dtype()
out = helper.create_tmp_variable(dtype) out = helper.create_tmp_variable(dtype)
if seed is None:
seed = random.randint(-65536, 65535)
if isinstance(seed, int): if isinstance(seed, int):
seed_value = seed seed_value = seed
seed = helper.create_tmp_variable(dtype="int64") seed = helper.create_tmp_variable(dtype="int64")
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册