Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
8d8d48a3
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8d8d48a3
编写于
8月 17, 2018
作者:
F
fengjiayi
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Complete sequence_pad_op and its CPU kernel. Add unittests
上级
3c749fae
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
234 addition
and
135 deletion
+234
-135
paddle/fluid/operators/math/sequence_padding.cc
paddle/fluid/operators/math/sequence_padding.cc
+17
-7
paddle/fluid/operators/math/sequence_padding.h
paddle/fluid/operators/math/sequence_padding.h
+0
-3
paddle/fluid/operators/sequence_pad_op.cc
paddle/fluid/operators/sequence_pad_op.cc
+54
-51
paddle/fluid/operators/sequence_pad_op.cu
paddle/fluid/operators/sequence_pad_op.cu
+8
-2
paddle/fluid/operators/sequence_pad_op.h
paddle/fluid/operators/sequence_pad_op.h
+21
-72
python/paddle/fluid/tests/unittests/test_sequence_pad_op.py
python/paddle/fluid/tests/unittests/test_sequence_pad_op.py
+134
-0
未找到文件。
paddle/fluid/operators/math/sequence_padding.cc
浏览文件 @
8d8d48a3
...
...
@@ -70,9 +70,10 @@ class PaddingLoDTensorFunctor<platform::CPUDeviceContext, T> {
std
::
vector
<
T
>
pad_value
=
{
0
},
int
pad_seq_len
=
-
1
,
int
lod_level
=
0
,
bool
norm_by_times
=
false
,
const
PadLayout
layout
=
kBatchLengthWidth
)
{
auto
seq_offsets
=
framework
::
ToAbsOffset
(
seq_tensor
.
lod
())[
lod_level
];
auto
seq_tensor_dims
=
seq_tensor
.
dims
();
auto
pad_tensor_dims
=
pad_tensor
->
dims
();
auto
seq_lod
=
seq_tensor
.
lod
();
const
auto
seq_offsets
=
framework
::
ToAbsOffset
(
seq_lod
)[
lod_level
];
const
auto
&
seq_tensor_dims
=
seq_tensor
.
dims
();
const
auto
&
pad_tensor_dims
=
pad_tensor
->
dims
();
if
(
pad_seq_len
==
-
1
)
{
pad_seq_len
=
MaximumSequenceLength
(
seq_offsets
);
}
...
...
@@ -91,12 +92,21 @@ class PaddingLoDTensorFunctor<platform::CPUDeviceContext, T> {
// fill padding value
T
*
pad_data
=
pad_tensor
->
data
<
T
>
();
for
(
int
i
=
0
;
i
<
pad_tensor
->
numel
()
/
step_width
;
++
i
)
{
memcpy
(
pad_data
,
pad_value
.
data
(),
step_width
*
sizeof
(
T
));
for
(
int
i
=
0
;
i
<
pad_tensor
->
numel
()
;
i
+=
step_width
)
{
memcpy
(
pad_data
+
i
,
pad_value
.
data
(),
step_width
*
sizeof
(
T
));
}
CopyValidData
<
T
>
(
pad_tensor
,
&
seq_tensor
,
seq_offsets
,
pad_seq_len
,
step_width
,
norm_by_times
,
kSeqToPad
,
layout
);
// Set pad_tensor's lod info if possible
if
(
layout
==
kBatchLengthWidth
)
{
framework
::
LoD
pad_lod
(
seq_lod
.
begin
()
+
lod_level
,
seq_lod
.
end
());
for
(
size_t
i
=
0
;
i
<
pad_lod
[
0
].
size
();
++
i
)
{
pad_lod
[
0
][
i
]
=
i
*
pad_seq_len
;
}
pad_tensor
->
set_lod
(
pad_lod
);
}
}
};
...
...
@@ -109,8 +119,8 @@ class UnpaddingLoDTensorFunctor<platform::CPUDeviceContext, T> {
int
lod_level
=
0
,
bool
norm_by_times
=
false
,
const
PadLayout
&
layout
=
kBatchLengthWidth
)
{
auto
seq_offsets
=
framework
::
ToAbsOffset
(
seq_tensor
->
lod
())[
lod_level
];
auto
seq_tensor_dims
=
seq_tensor
->
dims
();
auto
pad_tensor_dims
=
pad_tensor
.
dims
();
const
auto
&
seq_tensor_dims
=
seq_tensor
->
dims
();
const
auto
&
pad_tensor_dims
=
pad_tensor
.
dims
();
if
(
pad_seq_len
==
-
1
)
{
pad_seq_len
=
MaximumSequenceLength
(
seq_offsets
);
}
...
...
paddle/fluid/operators/math/sequence_padding.h
浏览文件 @
8d8d48a3
...
...
@@ -44,9 +44,6 @@ inline static void CheckDims(const framework::DDim& seq_tensor_dims,
"Value of 1st dimension of the sequence tensor should be "
"equal to sum of lengths of all sequences."
);
PADDLE_ENFORCE
(
seq_tensor_dims
.
size
()
==
1
||
seq_tensor_dims
.
size
()
==
2
,
"seq_tensor's rank should be 1 or 2."
);
PADDLE_ENFORCE
(
seq_tensor_dims
.
size
()
+
1
==
pad_tensor_dims
.
size
()
||
seq_tensor_dims
.
size
()
==
pad_tensor_dims
.
size
(),
"pad_tensor's rank should be 1 greater than seq_tensor's "
...
...
paddle/fluid/operators/sequence_pad_op.cc
浏览文件 @
8d8d48a3
...
...
@@ -21,82 +21,85 @@ class SequencePadOp : public framework::OperatorWithKernel {
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of SequencePadOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"PadValue"
),
"Input(PadValue) of SequencePadOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of SequencePadOp should not be null."
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
PADDLE_ENFORCE_GE
(
x_dims
.
size
(),
2
,
"The rank of Input(x) can't be less than 2."
);
auto
time_step_dims
=
framework
::
slice_ddim
(
x_dims
,
1
,
x_dims
.
size
());
auto
pad_value_dims
=
ctx
->
GetInputDim
(
"PadValue"
);
PADDLE_ENFORCE
(
pad_value_dims
==
framework
::
make_ddim
({
1
})
||
pad_value_dims
==
time_step_dims
,
"The Input(PadValue) must be a scalar or a tensor whose "
"shape equals to time steps in sequences"
);
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2
,
"Only support 2-D tensor, rank of Input(X) should be 2."
);
int
lod_level
=
ctx
->
Attrs
().
Get
<
int
>
(
"lod_level"
);
int64_t
max_len
=
-
1
;
int64_t
seq_num
=
-
1
;
int
x_lod_size
=
-
1
;
int
batch_dim_size
=
-
1
;
if
(
ctx
->
IsRuntime
())
{
// run time
framework
::
Variable
*
x_var
=
boost
::
get
<
framework
::
Variable
*>
(
ctx
->
GetInputVarPtrs
(
"X"
)[
0
]);
auto
&
x_lod
=
x_var
->
Get
<
LoDTensor
>
().
lod
();
x_lod_size
=
x_lod
.
size
();
auto
x_abs_offset
=
framework
::
ToAbsOffset
(
x_lod
)[
lod_level
];
PADDLE_ENFORCE_EQ
(
x_dims
[
0
],
static_cast
<
int64_t
>
(
x_abs_offset
.
back
()),
"The first dimension of `X` should be equal to sum "
"of all sequences' length."
);
seq_num
=
x_abs_offset
.
size
()
-
1
;
for
(
int64_t
i
=
1
;
i
<=
seq_num
;
++
i
)
{
int64_t
seq_len
=
x_abs_offset
[
i
]
-
x_abs_offset
[
i
-
1
];
max_len
=
max_len
<
seq_len
?
seq_len
:
max_len
;
const
auto
&
x_lod
=
x_var
->
Get
<
LoDTensor
>
().
lod
();
PADDLE_ENFORCE
(
!
x_lod
.
empty
(),
"The Input(X) must hold lod info."
);
const
auto
&
x_lod_0
=
x_lod
[
0
];
PADDLE_ENFORCE_GE
(
x_lod_0
.
size
(),
2
,
"The Input(X)'s lod info is corrupted."
);
PADDLE_ENFORCE_EQ
(
x_dims
[
0
],
static_cast
<
int64_t
>
(
x_lod_0
.
back
()),
"The Input(X)'s lod info mismatches the actual tensor shape."
);
int
seq_num
=
x_lod_0
.
size
()
-
1
;
int
max_seq_len
=
math
::
MaximumSequenceLength
(
x_lod_0
);
int
padded_length
=
ctx
->
Attrs
().
Get
<
int
>
(
"padded_length"
);
if
(
padded_length
==
-
1
)
{
padded_length
=
max_seq_len
;
}
PADDLE_ENFORCE_GE
(
padded_length
,
max_seq_len
,
"The Attr(padded_length) must be -1 or an int greater "
"than the length of the longest original sequence."
);
batch_dim_size
=
padded_length
*
seq_num
;
}
else
{
// compile time
framework
::
VarDesc
*
x_desc
=
boost
::
get
<
framework
::
VarDesc
*>
(
ctx
->
GetInputVarPtrs
(
"X"
)[
0
]);
x_lod_size
=
x_desc
->
GetLoDLevel
();
}
PADDLE_ENFORCE
(
lod_level
>=
0
&&
lod_level
<
x_lod_size
,
"Invalid `lod_level` which should be at least 0 and less "
"than maximum lod level of `X`"
);
ctx
->
SetOutputDim
(
"Out"
,
{
seq_num
,
max_len
,
x_dims
[
1
]});
PADDLE_ENFORCE_GE
(
x_desc
->
GetLoDLevel
(),
1
);
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
)
->
type
()),
ctx
.
device_context
());
auto
out_dims
=
x_dims
;
out_dims
[
0
]
=
batch_dim_size
;
ctx
->
SetOutputDim
(
"Out"
,
out_dims
);
}
};
class
SequencePadOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
SequencePadOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
void
Make
()
override
{
AddInput
(
"X"
,
"(LoDTensor, default LoDTensor<float>) Input variable which "
"should contain lod information. Length of each sequence would "
"be computed from the most bottom level lod."
);
AddOutput
(
"Out"
,
"(Tensor) Output variable which would be a common tensor "
"without lod. Each sequence would be padded to the maximum "
"length."
);
AddAttr
<
float
>
(
"lod_level"
,
"(int, default 0) Specify which level lod to referred to."
);
AddAttr
<
float
>
(
"pad_value"
,
"(float, default 0.0) Specify which value to be padded to "
"the end of each sequence."
);
"should contain lod information."
);
AddInput
(
"PadValue"
,
"(LoDTensor), this Tensor holds values that will be fill into "
"padded steps. It can be a scalar or a tensor whose shape equals "
"to time steps in sequences. If it's a scalar, it will be "
"automatically broadcasted to the shape of time step."
);
AddOutput
(
"Out"
,
"(LoDTensor) The output vairable, which contains padded sequences."
);
AddAttr
<
int
>
(
"padded_length"
,
"The length of padded sequences. It can be setted to -1 or "
"any positive int. When it is -1, all sequences will be padded up to "
"the length of the longest one among them; when it a certain positive "
"value, it must be greater than the length of the longest original "
"sequence."
)
.
SetDefault
(
-
1
);
AddComment
(
R"DOC(
)DOC"
);
...
...
paddle/fluid/operators/sequence_pad_op.cu
浏览文件 @
8d8d48a3
...
...
@@ -17,7 +17,13 @@ limitations under the License. */
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
sequence_pad
,
ops
::
SequencePadOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
);
ops
::
SequencePadOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
SequencePadOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
SequencePadOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
>
,
ops
::
SequencePadOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
);
REGISTER_OP_CUDA_KERNEL
(
sequence_pad_grad
,
ops
::
SequencePadGradOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
);
ops
::
SequencePadGradOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
SequencePadGradOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
SequencePadGradOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
>
,
ops
::
SequencePadGradOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
);
paddle/fluid/operators/sequence_pad_op.h
浏览文件 @
8d8d48a3
...
...
@@ -13,6 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/operators/math/math_function.h"
...
...
@@ -24,68 +26,24 @@ namespace operators {
using
LoDTensor
=
framework
::
LoDTensor
;
using
LoD
=
framework
::
LoD
;
template
<
typename
DeviceContext
,
typename
T
>
struct
CopyFunctor
{
LoDTensor
*
lod_tensor_
;
LoDTensor
*
pad_tensor_
;
const
LoD
&
ref_lod_
;
const
DeviceContext
&
ctx_
;
bool
is_lod_to_pad_
;
CopyFunctor
(
LoDTensor
*
lod_tensor
,
const
LoD
&
ref_lod
,
LoDTensor
*
pad_tensor
,
const
DeviceContext
&
ctx
,
bool
is_lod_to_pad
)
:
lod_tensor_
(
lod_tensor
),
pad_tensor_
(
pad_tensor
),
ref_lod_
(
ref_lod
),
ctx_
(
ctx
),
is_lod_to_pad_
(
is_lod_to_pad
)
{}
void
operator
()()
const
{
/*
auto seq_num = ref_lod_.size() - 1;
auto max_len = pad_tensor_->dims()[0] / seq_num;
PADDLE_ENFORCE_EQ(max_len * seq_num, pad_tensor_->dims()[0],
"First dimension of padded tensor should be equal to "
"maximum sequence length mulplied by sequence number.");
for (size_t i = 1; i < ref_lod_.size(); ++i) {
auto seq_start = ref_lod_[i - 1];
auto seq_end = ref_lod_[i];
auto pad_start = (i - 1) * max_len;
auto pad_end = pad_start + (seq_end - seq_start);
auto sub_lod_tensor = lod_tensor_->Slice(seq_start, seq_end);
auto sub_pad_tensor = pad_tensor_->Slice(pad_start, pad_end);
if (is_lod_to_pad_) {
framework::TensorCopy(sub_lod_tensor, ctx.GetPlace(), &sub_pad_tensor);
} else {
framework::TensorCopy(sub_pad_tensor, ctx.GetPlace(), &sub_lod_tensor);
}
}
*/
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
SequencePadOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
/*
auto* x = ctx.Input<LoDTensor>("X");
auto* out_ptr = ctx.Output<LoDTensor>("Out");
out_ptr->mutable_data<T>(ctx.GetPlace());
const
auto
*
x
=
ctx
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
out
=
ctx
.
Output
<
LoDTensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// Resize();
const
auto
*
pad_value
=
ctx
.
Input
<
LoDTensor
>
(
"PadValue"
);
const
T
*
pad_value_data
=
pad_value
->
data
<
T
>
();
std
::
vector
<
T
>
pad_value_vec
(
pad_value_data
,
pad_value_data
+
pad_value
->
numel
());
T pad_value = static_cast<T>(ctx.Attr<float>("pad_value")
);
int
padded_length
=
ctx
.
Attr
<
int
>
(
"padded_length"
);
math
::
PaddingLoDTensorFunctor
<
DeviceContext
,
T
>
()(
ctx.template device_context<DeviceContext>(), *x, *, false);
math::SetConstant<DeviceContext, T> set_func;
set_func(ctx.template device_context<DeviceContext>(), out_ptr, pad_value);
*/
ctx
.
template
device_context
<
DeviceContext
>(),
*
x
,
out
,
pad_value_vec
,
padded_length
,
0
,
false
,
math
::
kBatchLengthWidth
);
}
};
...
...
@@ -93,26 +51,17 @@ template <typename DeviceContext, typename T>
class
SequencePadGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
/*
auto* x_ptr = ctx.Input<LoDTensor>("X");
auto* g_out_ptr = ctx.Input<LoDTensor>(framework::GradVarName("Out"));
auto* g_x_ptr = ctx.Output<LoDTensor>(framework::GradVarName("X"));
math::SetConstant<DeviceContext, T> set_func;
set_func(ctx.template device_context<DeviceContext>(),
g_x_ptr,
static_cast<T>(0));
auto
*
d_x
=
ctx
.
Output
<
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
if
(
d_x
)
{
const
auto
*
d_out
=
ctx
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto& x_lod = x_ptr->lod();
auto& x_last_level_lod = x_lod[x_lod.size() - 1];
int
padded_length
=
ctx
.
Attr
<
int
>
(
"padded_length"
);
CopyFunctor copy_func<DeviceContext, T>(g_out_ptr,
x_last_level_lod,
g_x_ptr,
ctx,
false);
copy_func();
*/
math
::
UnpaddingLoDTensorFunctor
<
DeviceContext
,
T
>
()(
ctx
.
template
device_context
<
DeviceContext
>(),
*
d_out
,
d_x
,
padded_length
,
0
,
false
,
math
::
kBatchLengthWidth
);
}
}
};
...
...
python/paddle/fluid/tests/unittests/test_sequence_pad_op.py
0 → 100644
浏览文件 @
8d8d48a3
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
class
TestSequencePadOp
(
OpTest
):
def
set_attr
(
self
):
self
.
x_shape
=
[
12
,
4
]
self
.
x_len_lod
=
[[
2
,
3
,
4
,
3
]]
self
.
pad_value
=
[
1.0
]
self
.
padded_length
=
-
1
self
.
dtype
=
'float32'
def
set_data
(
self
):
x_data
=
np
.
random
.
uniform
(
0.1
,
0.5
,
self
.
x_shape
).
astype
(
self
.
dtype
)
pad_value_data
=
np
.
array
(
self
.
pad_value
).
astype
(
self
.
dtype
)
self
.
inputs
=
{
'X'
:
(
x_data
,
self
.
x_len_lod
),
'PadValue'
:
pad_value_data
}
self
.
attrs
=
{
'padded_length'
:
self
.
padded_length
}
def
compute
(
self
):
# get padded length
padded_length
=
self
.
padded_length
x_len_lod_0
=
self
.
x_len_lod
[
0
]
if
padded_length
==
-
1
:
max_seq_len
=
0
for
l
in
x_len_lod_0
:
max_seq_len
=
max
(
max_seq_len
,
l
)
padded_length
=
max_seq_len
# do padding
x_data
=
self
.
inputs
[
'X'
][
0
]
pad_value_data
=
self
.
inputs
[
'PadValue'
]
if
pad_value_data
.
shape
==
(
1
,
):
pad_value_data
=
np
.
broadcast_to
(
pad_value_data
,
shape
=
x_data
.
shape
[
1
:])
padded_sequences
=
[]
start_idx
=
0
for
l
in
x_len_lod_0
:
end_idx
=
start_idx
+
l
seq
=
x_data
[
start_idx
:
end_idx
]
to_pad_len
=
padded_length
-
l
for
_
in
range
(
to_pad_len
):
seq
=
np
.
append
(
seq
,
pad_value_data
[
np
.
newaxis
,
:],
axis
=
0
)
padded_sequences
.
append
(
seq
)
start_idx
=
end_idx
out_len_lod
=
self
.
x_len_lod
[:]
out_len_lod_0
=
[
padded_length
]
*
len
(
x_len_lod_0
)
out_len_lod
[
0
]
=
out_len_lod_0
out_data
=
np
.
concatenate
(
padded_sequences
,
axis
=
0
)
self
.
outputs
=
{
'Out'
:
(
out_data
,
out_len_lod
)}
def
setUp
(
self
):
self
.
op_type
=
'sequence_pad'
self
.
set_attr
()
self
.
set_data
()
self
.
compute
()
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
"X"
],
"Out"
)
class
TestSequencePadOp2
(
TestSequencePadOp
):
def
set_attr
(
self
):
self
.
x_shape
=
[
12
,
4
]
self
.
x_len_lod
=
[[
2
,
3
,
4
,
3
]]
self
.
pad_value
=
[
1.0
,
2.0
,
3.0
,
4.0
]
self
.
padded_length
=
-
1
self
.
dtype
=
'float32'
class
TestSequencePadOp3
(
TestSequencePadOp
):
def
set_attr
(
self
):
self
.
x_shape
=
[
12
,
4
]
self
.
x_len_lod
=
[[
2
,
3
,
4
,
3
]]
self
.
pad_value
=
[
1.0
]
self
.
padded_length
=
7
self
.
dtype
=
'float32'
class
TestSequencePadOp4
(
TestSequencePadOp
):
def
set_attr
(
self
):
self
.
x_shape
=
[
12
,
4
]
self
.
x_len_lod
=
[[
2
,
3
,
4
,
3
]]
self
.
pad_value
=
[
1.0
,
2.0
,
3.0
,
4.0
]
self
.
padded_length
=
7
self
.
dtype
=
'float32'
class
TestSequencePadOp5
(
TestSequencePadOp
):
def
set_attr
(
self
):
self
.
x_shape
=
[
12
,
2
,
2
]
self
.
x_len_lod
=
[[
2
,
3
,
4
,
3
]]
self
.
pad_value
=
[
1.0
]
self
.
padded_length
=
-
1
self
.
dtype
=
'float32'
class
TestSequencePadOp6
(
TestSequencePadOp
):
def
set_attr
(
self
):
self
.
x_shape
=
[
12
,
2
,
2
]
self
.
x_len_lod
=
[[
2
,
3
,
4
,
3
]]
self
.
pad_value
=
[[
1.0
,
2.0
],
[
3.0
,
4.0
]]
self
.
padded_length
=
-
1
self
.
dtype
=
'float32'
class
TestSequencePadOp7
(
TestSequencePadOp
):
def
set_attr
(
self
):
self
.
x_shape
=
[
12
,
2
,
2
]
self
.
x_len_lod
=
[[
2
,
3
,
4
,
3
]]
self
.
pad_value
=
[
1.0
]
self
.
padded_length
=
7
self
.
dtype
=
'float32'
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录