未验证 提交 8c7c53b3 编写于 作者: Z zhang wenhui 提交者: GitHub

【NPU】Merge ascend GE&distributed code by 0208 from ascendrc (#31957)

* Ascend rc (#30483)

* Fix compilcation on CANN20.1 and older (#30494)

Fix compilcation on CANN20.1 and older

* Add distribution supported (#30578)

Add distribution supported

* Build praser for Hcom* operators (#30627)

Build praser for Hcom* operators

* Pass device_ids info from launch to trainer. (#30632)

Pass device_ids info from launch to trainer

* Add Hccl program group (#30642)

Add Hccl program group

* Add startup bash files of test_ascend_group. (#30645)

Add startup bash files of test_ascend_group

* cleanup (#30646)

cleanup test_ascend_group.py

* [Feature] Build parser to support distributed training (#30658)

[Feature] Build parser to support distributed training

* fix compilation on ascend-20.1 (#30722)

fix compilation on ascend-20.1

* Dev/fix ascend string (#30749)

Dev/fix ascend string

* code style (#30781)

code style

* Merge ascend_optimizer and ascend_parser. (#30776)

Merge ascend_optimizer and ascend_parser.

* Ascendrc add converted op : [range/equal/range/uniform_random/expand/squeeze], fix cast op bug  (#30797)

Ascendrc add converted op : [range/equal/range/uniform_random/expand/squeeze], fix cast op bug

* Add paddle ascend distribution training supported (#30796)

Add paddle ascend distribution training supported

* pass cxx_flags to gloo cmake (#30857)

* Destroy session first. (#30954)

Destroy session first.

* merge

* fix, test=develop

* fix, test=develop

* fix style, test=develop

* fix, test=develop

* fix

* fix log fatal, test=develop

* fix enforce style, test=develop

* fix, test=develop

* fix, test=develop

* fix rccl, test=develop

* fix test, test=develop

* fix, test=develop

* fix, test=develop

* fix, test=develop

* fix node_num, test=develop

* fix ids str, test=develop

* fix ids str, test=develop

* fix ids str, test=develop

* fix, test=develop

* fix, test=develop

* fix, test=develop

* fix, test=develop

* fix, test=develop

* fix, test=develop

* fix, test=develop

* fix, test=develop

* fix style code, test=develop

* fix style code, test=develop

* fix style code, test=develop

* fix style code, test=develop
Co-authored-by: Nhutuxian <hutuxian2011@sina.cn>
Co-authored-by: Ngongweibao <weibao.gong@gmail.com>
Co-authored-by: NVoid Main <voidmain1313113@gmail.com>
Co-authored-by: NLeo Chen <chenqiuliang@baidu.com>
Co-authored-by: Ndingsiyu <18369187719@163.com>
Co-authored-by: NOleNet <olenet@126.com>
上级 1e60a0c4
......@@ -33,6 +33,7 @@ option(WITH_TENSORRT "Compile PaddlePaddle with NVIDIA TensorRT" OFF)
option(WITH_XPU "Compile PaddlePaddle with BAIDU KUNLUN XPU" OFF)
option(WITH_WIN_DUMP_DBG "Compile with windows core dump debug mode" OFF)
option(WITH_ASCEND "Compile PaddlePaddle with ASCEND" OFF)
option(WITH_ASCEND_CXX11 "Compile PaddlePaddle with ASCEND and CXX11 ABI" OFF)
if (WITH_GPU AND WITH_XPU)
message(FATAL_ERROR "Error when compile GPU and XPU at the same time")
endif()
......@@ -57,6 +58,9 @@ if(WITH_MUSL)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-error=deprecated-declarations -Wno-deprecated-declarations -Wno-error=pessimizing-move -Wno-error=deprecated-copy")
endif()
if(WITH_ASCEND AND NOT WITH_ASCEND_CXX11)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -D_GLIBCXX_USE_CXX11_ABI=0")
endif()
if(WIN32)
option(MSVC_STATIC_CRT "use static C Runtime library by default" ON)
......
......@@ -12,50 +12,47 @@
# See the License for the specific language governing permissions and
# limitations under the License.
INCLUDE(ExternalProject)
SET(ASCEND_PROJECT "extern_ascend")
IF((NOT DEFINED ASCEND_VER) OR (NOT DEFINED ASCEND_URL))
MESSAGE(STATUS "use pre defined download url")
SET(ASCEND_VER "0.1.1" CACHE STRING "" FORCE)
SET(ASCEND_NAME "ascend" CACHE STRING "" FORCE)
SET(ASCEND_URL "http://paddle-ascend.bj.bcebos.com/ascend.tar.gz" CACHE STRING "" FORCE)
ENDIF()
MESSAGE(STATUS "ASCEND_NAME: ${ASCEND_NAME}, ASCEND_URL: ${ASCEND_URL}")
SET(ASCEND_SOURCE_DIR "${THIRD_PARTY_PATH}/ascend")
SET(ASCEND_DOWNLOAD_DIR "${ASCEND_SOURCE_DIR}/src/${ASCEND_PROJECT}")
SET(ASCEND_DST_DIR "ascend")
SET(ASCEND_INSTALL_ROOT "${THIRD_PARTY_PATH}/install")
SET(ASCEND_INSTALL_DIR ${ASCEND_INSTALL_ROOT}/${ASCEND_DST_DIR})
SET(ASCEND_ROOT ${ASCEND_INSTALL_DIR})
SET(ASCEND_INC_DIR ${ASCEND_ROOT}/include)
SET(ASCEND_LIB_DIR ${ASCEND_ROOT}/lib)
SET(ASCEND_LIB ${ASCEND_LIB_DIR}/libge_runner.so)
SET(ASCEND_GRAPH_LIB ${ASCEND_LIB_DIR}/libgraph.so)
SET(CMAKE_INSTALL_RPATH "${CMAKE_INSTALL_RPATH}" "${ASCEND_ROOT}/lib")
INCLUDE_DIRECTORIES(${ASCEND_INC_DIR})
FILE(WRITE ${ASCEND_DOWNLOAD_DIR}/CMakeLists.txt
"PROJECT(ASCEND)\n"
"cmake_minimum_required(VERSION 3.0)\n"
"install(DIRECTORY ${ASCEND_NAME}/include ${ASCEND_NAME}/lib \n"
" DESTINATION ${ASCEND_DST_DIR})\n")
ExternalProject_Add(
${ASCEND_PROJECT}
${EXTERNAL_PROJECT_LOG_ARGS}
PREFIX ${ASCEND_SOURCE_DIR}
DOWNLOAD_DIR ${ASCEND_DOWNLOAD_DIR}
DOWNLOAD_COMMAND wget --no-check-certificate ${ASCEND_URL} -c -q -O ${ASCEND_NAME}.tar.gz
&& tar zxvf ${ASCEND_NAME}.tar.gz
DOWNLOAD_NO_PROGRESS 1
UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${ASCEND_INSTALL_ROOT}
CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${ASCEND_INSTALL_ROOT}
)
ADD_LIBRARY(ascend SHARED IMPORTED GLOBAL)
SET_PROPERTY(TARGET ascend PROPERTY IMPORTED_LOCATION ${ASCEND_LIB})
#NOTE: Logic is from
# https://github.com/mindspore-ai/graphengine/blob/master/CMakeLists.txt
if(DEFINED ENV{ASCEND_CUSTOM_PATH})
set(ASCEND_DIR $ENV{ASCEND_CUSTOM_PATH})
else()
set(ASCEND_DIR /usr/local/Ascend)
endif()
set(ASCEND_DRIVER_DIR ${ASCEND_DIR}/driver/lib64)
set(ASCEND_DRIVER_COMMON_DIR ${ASCEND_DIR}/driver/lib64/common)
set(ASCEND_DRIVER_SHARE_DIR ${ASCEND_DIR}/driver/lib64/share)
set(ASCEND_RUNTIME_DIR ${ASCEND_DIR}/fwkacllib/lib64)
set(ASCEND_ATC_DIR ${ASCEND_DIR}/atc/lib64)
set(ASCEND_ACL_DIR ${ASCEND_DIR}/acllib/lib64)
set(STATIC_ACL_LIB ${ASCEND_ACL_DIR})
set(ASCEND_MS_RUNTIME_PATH ${ASCEND_RUNTIME_DIR} ${ASCEND_ACL_DIR} ${ASCEND_ATC_DIR})
set(ASCEND_MS_DRIVER_PATH ${ASCEND_DRIVER_DIR} ${ASCEND_DRIVER_COMMON_DIR})
set(ATLAS_RUNTIME_DIR ${ASCEND_DIR}/ascend-toolkit/latest/fwkacllib/lib64)
set(ATLAS_RUNTIME_INC_DIR ${ASCEND_DIR}/ascend-toolkit/latest/fwkacllib/include)
set(ATLAS_ACL_DIR ${ASCEND_DIR}/ascend-toolkit/latest/acllib/lib64)
set(ATLAS_ATC_DIR ${ASCEND_DIR}/ascend-toolkit/latest/atc/lib64)
set(ATLAS_MS_RUNTIME_PATH ${ATLAS_RUNTIME_DIR} ${ATLAS_ACL_DIR} ${ATLAS_ATC_DIR})
set(atlas_graph_lib ${ATLAS_RUNTIME_DIR}/libgraph.so)
set(atlas_ge_runner_lib ${ATLAS_RUNTIME_DIR}/libge_runner.so)
set(atlas_acl_lib ${ATLAS_RUNTIME_DIR}/libascendcl.so)
INCLUDE_DIRECTORIES(${ATLAS_RUNTIME_INC_DIR})
if(EXISTS ${ATLAS_RUNTIME_INC_DIR}/graph/ascend_string.h)
add_definitions(-DPADDLE_WITH_ASCEND_STRING)
endif()
ADD_LIBRARY(ascend_ge SHARED IMPORTED GLOBAL)
SET_PROPERTY(TARGET ascend_ge PROPERTY IMPORTED_LOCATION ${atlas_ge_runner_lib})
ADD_LIBRARY(ascend_graph SHARED IMPORTED GLOBAL)
SET_PROPERTY(TARGET ascend_graph PROPERTY IMPORTED_LOCATION ${ASCEND_GRAPH_LIB})
ADD_DEPENDENCIES(ascend ascend_graph ${ASCEND_PROJECT})
SET_PROPERTY(TARGET ascend_graph PROPERTY IMPORTED_LOCATION ${atlas_graph_lib})
ADD_LIBRARY(atlas_acl SHARED IMPORTED GLOBAL)
SET_PROPERTY(TARGET atlas_acl PROPERTY IMPORTED_LOCATION ${atlas_acl_lib})
add_custom_target(extern_ascend DEPENDS ascend_ge ascend_graph atlas_acl)
......@@ -32,21 +32,39 @@ cache_third_party(extern_gloo
TAG ${GLOO_TAG}
DIR GLOO_SOURCE_DIR)
ExternalProject_Add(
extern_gloo
${EXTERNAL_PROJECT_LOG_ARGS}
${SHALLOW_CLONE}
"${GLOO_DOWNLOAD_CMD}"
PREFIX "${GLOO_PREFIX_DIR}"
SOURCE_DIR "${GLOO_SOURCE_DIR}"
UPDATE_COMMAND ""
CONFIGURE_COMMAND ""
BUILD_COMMAND mkdir -p ${GLOO_SOURCE_DIR}/build
&& cd ${GLOO_SOURCE_DIR}/build && cmake .. && make
&& mkdir -p ${GLOO_LIBRARY_DIR} ${GLOO_INCLUDE_DIR}/gloo
INSTALL_COMMAND ${CMAKE_COMMAND} -E copy ${GLOO_SOURCE_DIR}/build/gloo/libgloo.a ${GLOO_LIBRARY_DIR}
COMMAND ${CMAKE_COMMAND} -E copy_directory "${GLOO_SOURCE_DIR}/gloo/" "${GLOO_INCLUDE_DIR}/gloo"
)
if(WITH_ASCEND)
ExternalProject_Add(
extern_gloo
${EXTERNAL_PROJECT_LOG_ARGS}
${SHALLOW_CLONE}
"${GLOO_DOWNLOAD_CMD}"
PREFIX "${GLOO_PREFIX_DIR}"
SOURCE_DIR "${GLOO_SOURCE_DIR}"
UPDATE_COMMAND ""
CONFIGURE_COMMAND ""
BUILD_COMMAND mkdir -p ${GLOO_SOURCE_DIR}/build
&& cd ${GLOO_SOURCE_DIR}/build && cmake .. -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS} && make
&& mkdir -p ${GLOO_LIBRARY_DIR} ${GLOO_INCLUDE_DIR}/gloo
INSTALL_COMMAND ${CMAKE_COMMAND} -E copy ${GLOO_SOURCE_DIR}/build/gloo/libgloo.a ${GLOO_LIBRARY_DIR}
COMMAND ${CMAKE_COMMAND} -E copy_directory "${GLOO_SOURCE_DIR}/gloo/" "${GLOO_INCLUDE_DIR}/gloo"
)
else()
ExternalProject_Add(
extern_gloo
${EXTERNAL_PROJECT_LOG_ARGS}
${SHALLOW_CLONE}
"${GLOO_DOWNLOAD_CMD}"
PREFIX "${GLOO_PREFIX_DIR}"
SOURCE_DIR "${GLOO_SOURCE_DIR}"
UPDATE_COMMAND ""
CONFIGURE_COMMAND ""
BUILD_COMMAND mkdir -p ${GLOO_SOURCE_DIR}/build
&& cd ${GLOO_SOURCE_DIR}/build && cmake .. && make
&& mkdir -p ${GLOO_LIBRARY_DIR} ${GLOO_INCLUDE_DIR}/gloo
INSTALL_COMMAND ${CMAKE_COMMAND} -E copy ${GLOO_SOURCE_DIR}/build/gloo/libgloo.a ${GLOO_LIBRARY_DIR}
COMMAND ${CMAKE_COMMAND} -E copy_directory "${GLOO_SOURCE_DIR}/gloo/" "${GLOO_INCLUDE_DIR}/gloo"
)
endif()
ADD_LIBRARY(gloo STATIC IMPORTED GLOBAL)
......
......@@ -198,8 +198,13 @@ FUNCTION(build_protobuf TARGET_NAME BUILD_FOR_HOST)
"-Dprotobuf_MSVC_STATIC_RUNTIME=${MSVC_STATIC_CRT}")
ENDIF()
if(WITH_ASCEND AND NOT WITH_ASCEND_CXX11)
SET(PROTOBUF_REPOSITORY https://gitee.com/tianjianhe/protobuf.git)
SET(PROTOBUF_TAG v3.8.0)
else()
SET(PROTOBUF_REPOSITORY ${GIT_URL}/protocolbuffers/protobuf.git)
SET(PROTOBUF_TAG 9f75c5aa851cd877fb0d93ccc31b8567a6706546)
endif()
cache_third_party(${TARGET_NAME}
REPOSITORY ${PROTOBUF_REPOSITORY}
......@@ -234,7 +239,11 @@ FUNCTION(build_protobuf TARGET_NAME BUILD_FOR_HOST)
)
ENDFUNCTION()
SET(PROTOBUF_VERSION 3.1.0)
if(WITH_ASCEND)
SET(PROTOBUF_VERSION 3.8.0)
else()
SET(PROTOBUF_VERSION 3.1.0)
endif()
IF(NOT PROTOBUF_FOUND)
build_protobuf(extern_protobuf FALSE)
......
......@@ -16,7 +16,11 @@ INCLUDE(ExternalProject)
SET(THREADPOOL_PREFIX_DIR ${THIRD_PARTY_PATH}/threadpool)
SET(THREADPOOL_SOURCE_DIR ${THIRD_PARTY_PATH}/threadpool/src/extern_threadpool)
SET(THREADPOOL_REPOSITORY ${GIT_URL}/progschj/ThreadPool.git)
if(WITH_ASCEND)
SET(THREADPOOL_REPOSITORY https://gitee.com/tianjianhe/ThreadPool.git)
else()
SET(THREADPOOL_REPOSITORY ${GIT_URL}/progschj/ThreadPool.git)
endif()
SET(THREADPOOL_TAG 9a42ec1329f259a5f4881a291db1dcb8f2ad9040)
cache_third_party(extern_threadpool
......
......@@ -21,6 +21,8 @@ ENDIF()
SET(WARPCTC_PREFIX_DIR ${THIRD_PARTY_PATH}/warpctc)
SET(WARPCTC_SOURCE_DIR ${THIRD_PARTY_PATH}/warpctc/src/extern_warpctc)
SET(WARPCTC_INSTALL_DIR ${THIRD_PARTY_PATH}/install/warpctc)
# in case of low internet speed
#set(WARPCTC_REPOSITORY https://gitee.com/tianjianhe/warp-ctc.git)
set(WARPCTC_REPOSITORY ${GIT_URL}/baidu-research/warp-ctc.git)
set(WARPCTC_TAG c690fc5755abbdbdc98ef78d51ec10a6748a8cd1)
......@@ -41,39 +43,77 @@ cache_third_party(extern_warpctc
TAG ${WARPCTC_TAG}
DIR WARPCTC_SOURCE_DIR)
ExternalProject_Add(
extern_warpctc
${EXTERNAL_PROJECT_LOG_ARGS}
${SHALLOW_CLONE}
"${WARPCTC_DOWNLOAD_CMD}"
PREFIX ${WARPCTC_PREFIX_DIR}
SOURCE_DIR ${WARPCTC_SOURCE_DIR}
#UPDATE_COMMAND ""
PATCH_COMMAND ""
BUILD_ALWAYS 1
CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}
-DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
-DCMAKE_C_FLAGS=$<FILTER:${CMAKE_C_FLAGS},EXCLUDE,/Zc:inline>
-DCMAKE_C_FLAGS_DEBUG=$<FILTER:${CMAKE_C_FLAGS_DEBUG},EXCLUDE,/Zc:inline>
-DCMAKE_C_FLAGS_RELEASE=$<FILTER:${CMAKE_C_FLAGS_RELEASE},EXCLUDE,/Zc:inline>
-DCMAKE_CXX_FLAGS=$<FILTER:${CMAKE_CXX_FLAGS},EXCLUDE,/Zc:inline>
-DCMAKE_CXX_FLAGS_RELEASE=$<FILTER:${CMAKE_CXX_FLAGS_RELEASE},EXCLUDE,/Zc:inline>
-DCMAKE_CXX_FLAGS_DEBUG=$<FILTER:${CMAKE_CXX_FLAGS_DEBUG},EXCLUDE,/Zc:inline>
-DCMAKE_INSTALL_PREFIX=${WARPCTC_INSTALL_DIR}
-DWITH_GPU=${WITH_GPU}
-DWITH_ROCM=${WITH_ROCM}
-DWITH_OMP=${USE_OMP}
-DWITH_TORCH=OFF
-DCMAKE_DISABLE_FIND_PACKAGE_Torch=ON
-DBUILD_SHARED=ON
-DBUILD_TESTS=OFF
-DCMAKE_POSITION_INDEPENDENT_CODE=ON
-DCMAKE_BUILD_TYPE=${THIRD_PARTY_BUILD_TYPE}
${EXTERNAL_OPTIONAL_ARGS}
CMAKE_CACHE_ARGS -DCMAKE_BUILD_TYPE:STRING=${THIRD_PARTY_BUILD_TYPE}
-DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=ON
-DCMAKE_INSTALL_PREFIX:PATH=${WARPCTC_INSTALL_DIR}
)
if(WITH_ASCEND)
ExternalProject_Add(
extern_warpctc
${EXTERNAL_PROJECT_LOG_ARGS}
${SHALLOW_CLONE}
"${WARPCTC_DOWNLOAD_CMD}"
PREFIX ${WARPCTC_PREFIX_DIR}
SOURCE_DIR ${WARPCTC_SOURCE_DIR}
#UPDATE_COMMAND ""
PATCH_COMMAND ""
BUILD_ALWAYS 1
CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}
-DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
-DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}
-DCMAKE_C_FLAGS_DEBUG=${CMAKE_C_FLAGS_DEBUG}
-DCMAKE_C_FLAGS_RELEASE=${CMAKE_C_FLAGS_RELEASE}
"-DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}"
-DCMAKE_CXX_FLAGS_RELEASE=${CMAKE_CXX_FLAGS_RELEASE}
-DCMAKE_CXX_FLAGS_DEBUG=${CMAKE_CXX_FLAGS_DEBUG}
-DCMAKE_INSTALL_PREFIX=${WARPCTC_INSTALL_DIR}
-DWITH_GPU=${WITH_GPU}
-DWITH_ROCM=${WITH_ROCM}
-DWITH_OMP=${USE_OMP}
-DWITH_TORCH=OFF
-DCMAKE_DISABLE_FIND_PACKAGE_Torch=ON
-DBUILD_SHARED=ON
-DBUILD_TESTS=OFF
-DCMAKE_POSITION_INDEPENDENT_CODE=ON
-DCMAKE_BUILD_TYPE=${THIRD_PARTY_BUILD_TYPE}
${EXTERNAL_OPTIONAL_ARGS}
CMAKE_CACHE_ARGS -DCMAKE_BUILD_TYPE:STRING=${THIRD_PARTY_BUILD_TYPE}
-DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=ON
-DCMAKE_INSTALL_PREFIX:PATH=${WARPCTC_INSTALL_DIR}
)
else()
ExternalProject_Add(
extern_warpctc
${EXTERNAL_PROJECT_LOG_ARGS}
${SHALLOW_CLONE}
"${WARPCTC_DOWNLOAD_CMD}"
PREFIX ${WARPCTC_PREFIX_DIR}
SOURCE_DIR ${WARPCTC_SOURCE_DIR}
#UPDATE_COMMAND ""
PATCH_COMMAND ""
BUILD_ALWAYS 1
CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}
-DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
-DCMAKE_C_FLAGS=$<FILTER:${CMAKE_C_FLAGS},EXCLUDE,/Zc:inline>
-DCMAKE_C_FLAGS_DEBUG=$<FILTER:${CMAKE_C_FLAGS_DEBUG},EXCLUDE,/Zc:inline>
-DCMAKE_C_FLAGS_RELEASE=$<FILTER:${CMAKE_C_FLAGS_RELEASE},EXCLUDE,/Zc:inline>
-DCMAKE_CXX_FLAGS=$<FILTER:${CMAKE_CXX_FLAGS},EXCLUDE,/Zc:inline>
-DCMAKE_CXX_FLAGS_RELEASE=$<FILTER:${CMAKE_CXX_FLAGS_RELEASE},EXCLUDE,/Zc:inline>
-DCMAKE_CXX_FLAGS_DEBUG=$<FILTER:${CMAKE_CXX_FLAGS_DEBUG},EXCLUDE,/Zc:inline>
-DCMAKE_INSTALL_PREFIX=${WARPCTC_INSTALL_DIR}
-DWITH_GPU=${WITH_GPU}
-DWITH_ROCM=${WITH_ROCM}
-DWITH_OMP=${USE_OMP}
-DWITH_TORCH=OFF
-DCMAKE_DISABLE_FIND_PACKAGE_Torch=ON
-DBUILD_SHARED=ON
-DBUILD_TESTS=OFF
-DCMAKE_POSITION_INDEPENDENT_CODE=ON
-DCMAKE_BUILD_TYPE=${THIRD_PARTY_BUILD_TYPE}
${EXTERNAL_OPTIONAL_ARGS}
CMAKE_CACHE_ARGS -DCMAKE_BUILD_TYPE:STRING=${THIRD_PARTY_BUILD_TYPE}
-DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=ON
-DCMAKE_INSTALL_PREFIX:PATH=${WARPCTC_INSTALL_DIR}
)
endif()
IF(WIN32)
SET(WARPCTC_LIBRARIES "${WARPCTC_INSTALL_DIR}/bin/warpctc${CMAKE_SHARED_LIBRARY_SUFFIX}"
CACHE FILEPATH "Warp-ctc Library" FORCE)
......
......@@ -42,5 +42,5 @@ cc_library(heter_wrapper SRCS heter_wrapper.cc DEPS framework_proto device_conte
cc_test(test_fleet_cc SRCS test_fleet.cc DEPS fleet_wrapper gloo_wrapper fs shell)
if(WITH_ASCEND)
cc_library(ascend_wrapper SRCS ascend_wrapper.cc DEPS framework_proto lod_tensor ascend ascend_graph)
cc_library(ascend_wrapper SRCS ascend_wrapper.cc DEPS framework_proto lod_tensor ascend_ge ascend_graph)
endif(WITH_ASCEND)
......@@ -37,25 +37,50 @@ limitations under the License. */
namespace paddle {
namespace framework {
// typedef std::vector<std::string> AscendGraphDesc;
typedef ge::Graph AscendGraphDesc;
#ifdef PADDLE_WITH_ASCEND_STRING
using AscendString = ge::AscendString;
#else
using AscendString = std::string;
#endif
class AscendInstance {
public:
virtual ~AscendInstance() {}
AscendInstance() {}
std::map<std::string, std::string> GetDefaultInitSessionOptions() {
std::map<std::string, std::string> init_options;
init_options["a"] = "b";
init_options["ge.trainFlag"] = "1";
std::map<AscendString, AscendString> _GetDefaultInitOptions() {
std::map<AscendString, AscendString> init_options;
init_options["ge.exec.deviceId"] = "0";
init_options["ge.graphRunMode"] = "1";
return init_options;
}
std::map<AscendString, AscendString> _GetDefaultInitSessionOptions() {
std::map<AscendString, AscendString> init_options;
// init_options["a"] = "b";
// init_options["ge.trainFlag"] = "1";
return init_options;
}
// add other parameters here to init
ge::Status InitGEForUT() {
return ge::GEInitialize(_GetDefaultInitOptions());
}
void InitGlobalResouces() {
session_.reset(new ge::Session(GetDefaultInitSessionOptions()));
VLOG(1) << "InitGlobalResouces Done";
LOG(INFO) << "Begin ascend InitGlobalResouces";
session_.reset(new ge::Session(_GetDefaultInitSessionOptions()));
if (session_ == nullptr) {
PADDLE_THROW(platform::errors::Fatal("new session error: nullptr"));
}
LOG(INFO) << "End ascend InitGlobalResouces";
}
void DestroyGlobalResouces() {
LOG(INFO) << "Begin ascend DestroyGlobalResouces";
session_ = nullptr;
LOG(INFO) << "Begin ascend DestroyGlobalResouces";
}
static std::shared_ptr<AscendInstance> GetInstance() {
......@@ -178,6 +203,6 @@ class AscendInstance {
private:
static std::shared_ptr<AscendInstance> ascend_instance_;
};
} // end namespace framework
} // end namespace paddle
} // namespace framework
} // namespace paddle
#endif
......@@ -33,6 +33,8 @@ if (WITH_GPU OR WITH_ROCM)
set(AllocatorFacadeDeps gpu_info cuda_allocator pinned_allocator cuda_device_guard thread_local_allocator)
elseif(WITH_XPU)
set(AllocatorFacadeDeps xpu_info)
elseif(WITH_ASCEND)
set(AllocatorFacadeDeps ascend_npu_info)
else ()
set(AllocatorFacadeDeps)
endif()
......
......@@ -19,6 +19,12 @@ if(WITH_NCCL OR WITH_RCCL)
op_library(gen_nccl_id_op DEPS ${COLLECTIVE_DEPS})
endif()
if(WITH_ASCEND)
op_library(gen_nccl_id_op)
op_library(c_gen_nccl_id_op)
endif()
if(WITH_GLOO)
set(COLLECTIVE_DEPS ${COLLECTIVE_DEPS} gloo_wrapper)
endif()
......
......@@ -27,6 +27,7 @@ limitations under the License. */
namespace paddle {
namespace operators {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
static void GenNCCLID(std::vector<ncclUniqueId>* nccl_ids) {
for (size_t i = 0; i < nccl_ids->size(); ++i) {
PADDLE_ENFORCE_CUDA_SUCCESS(
......@@ -84,6 +85,21 @@ class CGenNCCLIdOp : public framework::OperatorBase {
}
};
#else
class CGenNCCLIdOp : public framework::OperatorBase {
public:
CGenNCCLIdOp(const std::string& type,
const framework::VariableNameMap& inputs,
const framework::VariableNameMap& outputs,
const framework::AttributeMap& attrs)
: OperatorBase(type, inputs, outputs, attrs) {}
void RunImpl(const framework::Scope& scope,
const platform::Place& dev_place) const override {}
};
#endif
class CGenNCCLIdOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
......
......@@ -34,6 +34,7 @@ class Scope;
namespace paddle {
namespace operators {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
static void GenNCCLID(std::vector<ncclUniqueId>* nccl_ids) {
for (size_t i = 0; i < nccl_ids->size(); ++i) {
PADDLE_ENFORCE_CUDA_SUCCESS(
......@@ -194,6 +195,20 @@ class GenNCCLIdOp : public framework::OperatorBase {
}
};
#else
class GenNCCLIdOp : public framework::OperatorBase {
public:
GenNCCLIdOp(const std::string& type, const framework::VariableNameMap& inputs,
const framework::VariableNameMap& outputs,
const framework::AttributeMap& attrs)
: OperatorBase(type, inputs, outputs, attrs) {}
void RunImpl(const framework::Scope& scope,
const platform::Place& dev_place) const override {}
};
#endif
class GenNCCLIdOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
......
......@@ -10,6 +10,12 @@ ELSE()
set(XPU_CTX_DEPS)
endif(WITH_XPU)
if(WITH_ASCEND)
set(ASCEND_DEPS xpulib)
ELSE()
set(ASCEND_DEPS)
endif(WITH_ASCEND)
if (WITH_PYTHON)
py_proto_compile(profiler_py_proto SRCS profiler.proto)
add_custom_target(profiler_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py)
......@@ -66,6 +72,10 @@ if(WITH_XPU)
cc_library(xpu_info SRCS xpu_info.cc DEPS gflags glog enforce xpulib)
endif()
if(WITH_ASCEND)
cc_library(ascend_npu_info SRCS ascend_npu_info.cc DEPS gflags glog enforce atlas_acl)
endif()
add_subdirectory(dynload)
add_subdirectory(stream)
......
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/platform/ascend_npu_info.h"
#include <glog/logging.h>
#include "acl/acl_rt.h"
namespace paddle {
namespace platform {
namespace ascend {
int NPUDevice::GetDeviceCount() {
uint32_t count = 0;
aclError status = aclrtGetDeviceCount(&count);
if (status != 0) {
PADDLE_THROW(platform::errors::InvalidArgument(
"aclrtGetDeviceCount error code: %d", status));
return -1;
}
return count;
}
} // namespace ascend
} // namespace platform
} // namespace paddle
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#ifdef PADDLE_WITH_ASCEND
namespace paddle {
namespace platform {
namespace ascend {
class NPUDevice {
public:
//! Get the total number of XPU devices in system.
static int GetDeviceCount();
};
} // namespace ascend
} // namespace platform
} // namespace paddle
#endif
......@@ -32,6 +32,8 @@ limitations under the License. */
#include <utility>
#include <vector>
#include "paddle/fluid/framework/fleet/ascend_wrapper.h"
#include "paddle/fluid/platform/ascend_npu_info.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
using namespace ge; // NOLINT
......@@ -40,6 +42,12 @@ namespace py = pybind11;
namespace paddle {
namespace pybind {
#ifdef PADDLE_WITH_ASCEND_STRING
using AscendString = AscendString;
#else
using AscendString = std::string;
#endif
void BindAscendWrapper(py::module *m) {
py::class_<framework::AscendInstance,
std::shared_ptr<framework::AscendInstance>>(*m, "AscendInstance")
......@@ -47,13 +55,31 @@ void BindAscendWrapper(py::module *m) {
.def("init_global_resources",
&framework::AscendInstance::InitGlobalResouces,
py::call_guard<py::gil_scoped_release>())
.def("destroy_global_resources",
&framework::AscendInstance::DestroyGlobalResouces,
py::call_guard<py::gil_scoped_release>())
.def("add_ascend_subgraph", &framework::AscendInstance::AddAscendSubgraph,
py::call_guard<py::gil_scoped_release>());
} // end AscendWrapper
}
Status ge_initialize(std::map<std::string, std::string> &options) { // NOLINT
std::map<AscendString, AscendString> convert_map(
const std::map<std::string, std::string> &options) {
std::map<AscendString, AscendString> rets;
for (auto &option : options) {
AscendString key = option.first.c_str();
AscendString val = option.second.c_str();
rets[key] = val;
}
return rets;
}
ge::Status ge_initialize(
std::map<std::string, std::string> &options) { // NOLINT
py::gil_scoped_release release;
Status res = GEInitialize(options);
auto init_options = convert_map(options);
ge::Status res = ge::GEInitialize(init_options);
PADDLE_ENFORCE_EQ(res, ge::SUCCESS, platform::errors::Fatal(
"ge initialize not success:%d", res));
py::gil_scoped_acquire acquire;
return res;
}
......@@ -82,11 +108,18 @@ enum AttrType {
AT_NAMEATTR
};
void BindAscendDevice(py::module *m) {
py::class_<platform::ascend::NPUDevice>(*m, "NPUDevice")
.def_static(
"get_device_count",
static_cast<int (*)()>(&platform::ascend::NPUDevice::GetDeviceCount));
}
void BindAscendGraph(py::module *m) {
m->def("ge_initialize", &ge_initialize, "GEInitialize");
m->def("ge_finalize", &GEFinalize, "GEFinalize");
//枚举封装
// enum
py::enum_<GraphRunMode>(*m, "GEGraphRunMode")
.value("PREDICTION", GraphRunMode::PREDICTION)
.value("TRAIN", GraphRunMode::TRAIN)
......@@ -214,24 +247,34 @@ void BindAscendGraph(py::module *m) {
// 类封装
py::class_<Session>(*m, "GESession")
.def(py::init<const std::map<std::string, std::string> &>())
.def(py::init([](const std::map<std::string, std::string> &options) {
return std::unique_ptr<ge::Session>(
new ge::Session(convert_map(options)));
}))
.def("add_graph", (ge::Status (Session::*)(uint32_t, const Graph &)) &
Session::AddGraph)
.def("add_graph",
(Status (Session::*)(uint32_t, const Graph &)) & Session::AddGraph)
.def("add_graph",
(Status (Session::*)(uint32_t, const Graph &,
const std::map<std::string, std::string> &)) &
Session::AddGraph)
[](Session &ss, uint32_t index, const Graph &graph,
const std::map<std::string, std::string> &options) {
return ss.AddGraph(index, graph, convert_map(options));
})
.def("remove_graph", &Session::RemoveGraph)
.def("run_graph",
[](Session &ss, uint32_t graphId,
const std::vector<Tensor> &inputs) -> py::tuple {
std::vector<Tensor> outputs;
Status res = ss.RunGraph(graphId, inputs, outputs);
ge::Status res = ss.RunGraph(graphId, inputs, outputs);
return py::make_tuple(outputs, res);
},
py::call_guard<py::gil_scoped_release>())
.def("build_graph", &Session::BuildGraph)
.def("run_graph_async", &Session::RunGraphAsync)
#ifdef PADDLE_WITH_ASCEND_STRING
.def("register_call_back_func",
static_cast<ge::Status (ge::Session::*)( // NOLINT
const char *, const ge::session::pCallBackFunc &)>(
&ge::Session::RegisterCallBackFunc))
#else
.def("register_call_back_func",
(Status (Session::*)( // NOLINT
const std::string &,
......@@ -239,11 +282,12 @@ void BindAscendGraph(py::module *m) {
uint32_t graph_id,
const std::map<std::string, ge::Tensor> &params_list)>)) &
Session::RegisterCallBackFunc)
#endif
.def("is_graph_need_rebuild", &Session::IsGraphNeedRebuild);
py::class_<Graph>(*m, "GEGraph")
.def(py::init<>())
.def(py::init<const std::string &>())
.def(py::init<const char *>())
.def("set_inputs", &Graph::SetInputs)
.def("set_outputs", (Graph & (Graph::*)(const std::vector<Operator> &)) &
Graph::SetOutputs)
......@@ -253,40 +297,70 @@ void BindAscendGraph(py::module *m) {
Graph::SetOutputs)
.def("set_outputs",
(Graph &
(Graph::*)(const std::vector<std::pair<ge::Operator, std::string>>
(Graph::*)(const std::vector<std::pair<ge::Operator, AscendString>>
&)) &
Graph::SetOutputs)
.def("set_targets", &Graph::SetTargets)
.def("is_valid", &Graph::IsValid)
.def("add_op", &Graph::AddOp)
.def("find_op_by_name",
[](Graph &graph, const std::string &name) -> py::tuple {
[](Graph &graph, const char *name) -> py::tuple {
ge::Operator op;
graphStatus status = graph.FindOpByName(name, op);
return py::make_tuple(op, status);
})
.def("find_op_by_type",
[](Graph &graph, const std::string &type) -> py::tuple {
[](Graph &graph, const char *type) -> py::tuple {
std::vector<ge::Operator> ops;
graphStatus status = graph.FindOpByType(type, ops);
return py::make_tuple(ops, status);
})
.def("get_all_op_name",
[](Graph &graph) -> py::tuple {
std::vector<std::string> op_name;
std::vector<AscendString> op_name;
graphStatus status = graph.GetAllOpName(op_name);
return py::make_tuple(op_name, status);
})
#ifdef PADDLE_WITH_ASCEND_STRING
.def("save_to_file",
static_cast<ge::graphStatus (ge::Graph::*)(const char *) const>(
&ge::Graph::SaveToFile))
.def("load_from_file",
static_cast<ge::graphStatus (ge::Graph::*)(const char *)>(
&Graph::LoadFromFile))
.def("get_name",
static_cast<ge::graphStatus (ge::Graph::*)(AscendString &) const>(
&Graph::GetName))
#else
.def("save_to_file", &Graph::SaveToFile)
.def("load_from_file", &Graph::LoadFromFile)
.def("get_name", &Graph::GetName)
#endif
.def("set_need_iteration", &Graph::SetNeedIteration);
py::class_<Operator>(*m, "GEOperator")
.def(py::init<>())
.def(py::init<const std::string &>())
.def(py::init<const std::string &, const std::string &>())
.def(py::init<const char *>())
.def(py::init<const char *, const char *>())
.def("is_empty", &Operator::IsEmpty)
#ifdef PADDLE_WITH_ASCEND_STRING
.def("get_name",
static_cast<ge::graphStatus (ge::Operator::*)(AscendString &) const>(
&Operator::GetName))
.def("get_op_type",
static_cast<ge::graphStatus (ge::Operator::*)(AscendString &) const>(
&Operator::GetOpType))
.def("set_input",
(Operator & (Operator::*)(const char *, const Operator &)) &
Operator::SetInput)
.def("set_input",
(Operator &
(Operator::*)(const char *, const Operator &, const char *)) &
Operator::SetInput)
.def("set_input", (Operator & (Operator::*)(const char *,
const Operator &, uint32_t)) &
Operator::SetInput)
#else
.def("get_name", &Operator::GetName)
.def("get_op_type", &Operator::GetOpType)
.def("set_input",
......@@ -299,13 +373,28 @@ void BindAscendGraph(py::module *m) {
.def("set_input", (Operator & (Operator::*)(const std::string &,
const Operator &, uint32_t)) &
Operator::SetInput)
#endif
.def("add_control_input", &Operator::AddControlInput)
.def("get_input_const_data",
[](Operator &op, const std::string &dst_name) -> py::tuple {
[](Operator &op, const char *dst_name) -> py::tuple {
Tensor data;
graphStatus res = op.GetInputConstData(dst_name, data);
return py::make_tuple(data, res);
})
#ifdef PADDLE_WITH_ASCEND_STRING
.def("get_input_desc",
(TensorDesc (Operator::*)(uint32_t) const) & Operator::GetInputDesc)
.def("get_input_desc",
[](Operator &op, const std::string &name) {
return op.GetInputDescByName(name.c_str());
})
.def("get_dynamic_output_num",
static_cast<int (ge::Operator::*)(const char *) const>(
&Operator::GetDynamicOutputNum))
.def("get_dynamic_input_num",
static_cast<int (ge::Operator::*)(const char *) const>(
&Operator::GetDynamicInputNum))
#else
.def("get_input_desc",
(TensorDesc (Operator::*)(const std::string &) const) &
Operator::GetInputDesc)
......@@ -313,12 +402,41 @@ void BindAscendGraph(py::module *m) {
(TensorDesc (Operator::*)(uint32_t) const) & Operator::GetInputDesc)
.def("get_dynamic_output_num", &Operator::GetDynamicOutputNum)
.def("get_dynamic_input_num", &Operator::GetDynamicInputNum)
#endif
.def("try_get_input_desc",
[](Operator &op, const std::string &name) -> py::tuple {
[](Operator &op, const char *name) -> py::tuple {
TensorDesc tensor_desc;
graphStatus status = op.TryGetInputDesc(name, tensor_desc);
return py::make_tuple(tensor_desc, status);
})
#ifdef PADDLE_WITH_ASCEND_STRING
.def("update_input_desc",
static_cast<ge::graphStatus (ge::Operator::*)( // NOLINT
const char *, const TensorDesc &)>(&Operator::UpdateInputDesc))
.def("get_output_desc",
[](Operator &op, const std::string &name) {
return op.GetOutputDescByName(name.c_str());
})
.def("get_output_desc",
(TensorDesc (Operator::*)(uint32_t) const) & Operator::GetOutputDesc)
.def("update_output_desc",
static_cast<ge::graphStatus (ge::Operator::*)( // NOLINT
const char *, const TensorDesc &)>(&Operator::UpdateOutputDesc))
.def("get_dynamic_input_desc",
static_cast<ge::TensorDesc (ge::Operator::*)(const char *, uint32_t)
const>(&Operator::GetDynamicInputDesc))
.def("update_dynamic_input_desc",
static_cast<ge::graphStatus (ge::Operator::*)(const char *, uint32_t,
const TensorDesc &)>(
&Operator::UpdateDynamicInputDesc))
.def("get_dynamic_output_desc",
static_cast<ge::TensorDesc (ge::Operator::*)(const char *, uint32_t)
const>(&Operator::GetDynamicOutputDesc))
.def("update_dynamic_output_desc",
static_cast<ge::graphStatus (ge::Operator::*)(const char *, uint32_t,
const TensorDesc &)>(
&Operator::UpdateDynamicOutputDesc))
#else
.def("update_input_desc", &Operator::UpdateInputDesc)
.def("get_output_desc",
(TensorDesc (Operator::*)(const std::string &) const) &
......@@ -330,33 +448,38 @@ void BindAscendGraph(py::module *m) {
.def("update_dynamic_input_desc", &Operator::UpdateDynamicInputDesc)
.def("get_dynamic_output_desc", &Operator::GetDynamicOutputDesc)
.def("update_dynamic_output_desc", &Operator::UpdateDynamicOutputDesc)
#endif
.def("infer_shape_and_type", &Operator::InferShapeAndType)
.def("set_inference_context", &Operator::SetInferenceContext)
.def("get_inference_context", &Operator::GetInferenceContext)
.def("verify_all_attr", &Operator::VerifyAllAttr)
.def("get_inputs_size", &Operator::GetInputsSize)
.def("get_outputs_size", &Operator::GetOutputsSize)
#ifdef PADDLE_WITH_ASCEND_STRING
.def("get_all_attr_names_and_types",
static_cast<ge::graphStatus (ge::Operator::*)( // NOLINT
std::map<AscendString, AscendString> &) const>(
&Operator::GetAllAttrNamesAndTypes))
#else
.def("get_all_attr_names_and_types", &Operator::GetAllAttrNamesAndTypes)
#endif
.def("set_attr_int64",
[](Operator &op, const std::string &name,
int64_t value) -> Operator & {
[](Operator &op, const char *name, int64_t value) -> Operator & {
int64_t tar = (int64_t)value;
return op.SetAttr(name, tar);
})
.def("set_attr_int32",
[](Operator &op, const std::string &name,
int32_t value) -> Operator & {
[](Operator &op, const char *name, int32_t value) -> Operator & {
int32_t tar = (int32_t)value;
return op.SetAttr(name, tar);
})
.def("set_attr_uint32",
[](Operator &op, const std::string &name,
uint32_t value) -> Operator & {
[](Operator &op, const char *name, uint32_t value) -> Operator & {
uint32_t tar = (uint32_t)value;
return op.SetAttr(name, tar);
})
.def("set_attr_vec_int64",
[](Operator &op, const std::string &name,
[](Operator &op, const char *name,
const std::vector<int64_t> &value) -> Operator & {
int len = value.size();
std::vector<int64_t> tar;
......@@ -368,7 +491,7 @@ void BindAscendGraph(py::module *m) {
return op.SetAttr(name, tar);
})
.def("set_attr_vec_int32",
[](Operator &op, const std::string &name,
[](Operator &op, const char *name,
const std::vector<int32_t> &value) -> Operator & {
int len = value.size();
std::vector<int32_t> tar;
......@@ -380,7 +503,7 @@ void BindAscendGraph(py::module *m) {
return op.SetAttr(name, tar);
})
.def("set_attr_vec_uint32",
[](Operator &op, const std::string &name,
[](Operator &op, const char *name,
const std::vector<uint32_t> &value) -> Operator & {
int len = value.size();
std::vector<uint32_t> tar;
......@@ -392,21 +515,20 @@ void BindAscendGraph(py::module *m) {
return op.SetAttr(name, tar);
})
.def("set_attr_list_int64",
[](Operator &op, const std::string &name,
[](Operator &op, const char *name,
std::initializer_list<int64_t> &attrValue) -> Operator & {
return op.SetAttr(name, std::move(attrValue));
})
.def("set_attr_attrvalue",
[](Operator &op, const std::string &name, AttrValue &attrValue)
[](Operator &op, const char *name, AttrValue &attrValue)
-> Operator & { return op.SetAttr(name, std::move(attrValue)); })
.def(
"set_attr_float",
[](Operator &op, const std::string &name, float value) -> Operator & {
float tar = static_cast<float>(value);
return op.SetAttr(name, tar);
})
.def("set_attr_float",
[](Operator &op, const char *name, float value) -> Operator & {
float tar = static_cast<float>(value);
return op.SetAttr(name, tar);
})
.def("set_attr_vec_float",
[](Operator &op, const std::string &name,
[](Operator &op, const char *name,
const std::vector<float> &value) -> Operator & {
int len = value.size();
std::vector<float> tar;
......@@ -417,6 +539,15 @@ void BindAscendGraph(py::module *m) {
}
return op.SetAttr(name, tar);
})
#ifdef PADDLE_WITH_ASCEND_STRING
.def("set_attr_string",
(Operator & (Operator::*)(const char *, const char *)) &
Operator::SetAttr)
.def("set_attr_vec_string",
(Operator &
(Operator::*)(const char *, const std::vector<AscendString> &)) &
Operator::SetAttr)
#else
.def("set_attr_string", (Operator & (Operator::*)(const std::string &,
const std::string &)) &
Operator::SetAttr)
......@@ -424,15 +555,16 @@ void BindAscendGraph(py::module *m) {
(Operator & (Operator::*)(const std::string &,
const std::vector<std::string> &)) &
Operator::SetAttr)
#endif
.def("set_attr_bool",
[](Operator &op, const std::string &name, bool value) -> Operator & {
[](Operator &op, const char *name, bool value) -> Operator & {
if (value)
return op.SetAttr(name, true);
else
return op.SetAttr(name, false);
})
.def("set_attr_vec_bool",
[](Operator &op, const std::string &name,
[](Operator &op, const char *name,
const std::vector<bool> &value) -> Operator & {
int len = value.size();
std::vector<bool> tar;
......@@ -444,6 +576,15 @@ void BindAscendGraph(py::module *m) {
}
return op.SetAttr(name, tar);
})
#ifdef PADDLE_WITH_ASCEND_STRING
.def("set_attr_tensor",
(Operator & (Operator::*)(const char *, const Tensor &)) &
Operator::SetAttr)
.def("set_attr_vec_tensor",
(Operator &
(Operator::*)(const char *, const std::vector<Tensor> &)) &
Operator::SetAttr)
#else
.def("set_attr_tensor",
(Operator & (Operator::*)(const std::string &, const Tensor &)) &
Operator::SetAttr)
......@@ -451,8 +592,9 @@ void BindAscendGraph(py::module *m) {
(Operator &
(Operator::*)(const std::string &, const std::vector<Tensor> &)) &
Operator::SetAttr)
#endif
.def("set_attr_vec_uint8",
[](Operator &op, const std::string &name,
[](Operator &op, const char *name,
const std::vector<uint8_t> &value) -> Operator & {
int len = value.size();
std::vector<uint8_t> tar;
......@@ -463,13 +605,21 @@ void BindAscendGraph(py::module *m) {
}
return op.SetAttr(name, tar);
})
#ifdef PADDLE_WITH_ASCEND_STRING
.def("set_attr_vec_vec_int64",
(Operator &
(Operator::*)(const char *,
const std::vector<std::vector<int64_t>> &)) &
Operator::SetAttr)
#else
.def("set_attr_vec_vec_int64",
(Operator &
(Operator::*)(const std::string &,
const std::vector<std::vector<int64_t>> &)) &
Operator::SetAttr)
#endif
.def("set_attr_vec_dtype",
[](Operator &op, const std::string &name,
[](Operator &op, const char *name,
const std::vector<DataType> &value) -> Operator & {
int len = value.size();
std::vector<ge::DataType> tar;
......@@ -481,15 +631,13 @@ void BindAscendGraph(py::module *m) {
return op.SetAttr(name, tar);
})
.def("set_attr_dtype",
[](Operator &op, const std::string &name,
[](Operator &op, const char *name,
const DataType &value) -> Operator & {
ge::DataType tar = (ge::DataType)value;
return op.SetAttr(name, tar);
})
.def("get_attr",
[](Operator &op, const std::string &name,
AttrType type) -> py::tuple {
[](Operator &op, const char *name, AttrType type) -> py::tuple {
graphStatus res = -1;
switch (type) {
case AT_INT64: {
......@@ -538,12 +686,12 @@ void BindAscendGraph(py::module *m) {
return py::make_tuple(o_av, res);
} break;
case AT_STRING: {
std::string s_av;
AscendString s_av;
res = op.GetAttr(name, s_av);
return py::make_tuple(s_av, res);
} break;
case AT_LIST_STRING: {
std::vector<std::string> v_s_av;
std::vector<AscendString> v_s_av;
res = op.GetAttr(name, v_s_av);
return py::make_tuple(v_s_av, res);
} break;
......@@ -594,11 +742,31 @@ void BindAscendGraph(py::module *m) {
})
.def("break_connect", &Operator::BreakConnect)
.def("get_subgraph_names_count", &Operator::GetSubgraphNamesCount)
#ifdef PADDLE_WITH_ASCEND_STRING
.def("get_subgraph_names",
static_cast<ge::graphStatus (ge::Operator::*)( // NOLINT
std::vector<AscendString> &) const>(&Operator::GetSubgraphNames))
.def("get_subgraph_builder",
static_cast<ge::SubgraphBuilder (ge::Operator::*)(const char *)
const>(&Operator::GetSubgraphBuilder))
.def("get_subgraph",
static_cast<ge::Graph (ge::Operator::*)(const char *) const>(
&Operator::GetSubgraph))
.def("get_dynamic_subgraph_builder",
static_cast<ge::SubgraphBuilder (ge::Operator::*)(const char *,
uint32_t) const>(
&Operator::GetDynamicSubgraphBuilder))
.def("get_dynamic_subgraph",
static_cast<ge::Graph (ge::Operator::*)(const char *, uint32_t)
const>(&Operator::GetDynamicSubgraph));
#else
.def("get_subgraph_names_count", &Operator::GetSubgraphNamesCount)
.def("get_subgraph_names", &Operator::GetSubgraphNames)
.def("get_subgraph_builder", &Operator::GetSubgraphBuilder)
.def("get_subgraph", &Operator::GetSubgraph)
.def("get_dynamic_subgraph_builder", &Operator::GetDynamicSubgraphBuilder)
.def("get_dynamic_subgraph", &Operator::GetDynamicSubgraph);
#endif
py::class_<Tensor>(*m, "GETensor")
.def(py::init<>())
......@@ -613,10 +781,15 @@ void BindAscendGraph(py::module *m) {
Tensor::SetData)
.def("set_data",
(graphStatus (Tensor::*)(const uint8_t *, size_t)) & Tensor::SetData)
#ifdef PADDLE_WITH_ASCEND_STRING
.def("set_data",
(graphStatus (Tensor::*)(const char *)) & Tensor::SetData)
#else
.def("set_data",
(graphStatus (Tensor::*)(const std::string &)) & Tensor::SetData)
#endif
.def("set_data",
(graphStatus (Tensor::*)(const std::vector<std::string> &)) &
(graphStatus (Tensor::*)(const std::vector<AscendString> &)) &
Tensor::SetData)
.def("get_data",
......@@ -638,8 +811,8 @@ void BindAscendGraph(py::module *m) {
.def(py::init<Shape, Format, DataType>(), py::arg("shape"),
py::arg("format") = FORMAT_ND, py::arg("dt") = DT_FLOAT)
.def(py::init<const TensorDesc &>())
.def("update",
(void (TensorDesc::*)(Shape, Format, DataType)) & TensorDesc::Update,
.def("update", (void (TensorDesc::*)(const Shape &, Format, DataType)) &
TensorDesc::Update,
py::arg("shape"), py::arg("format") = FORMAT_ND,
py::arg("dt") = DT_FLOAT)
.def("set_shape", &TensorDesc::SetShape)
......@@ -660,8 +833,16 @@ void BindAscendGraph(py::module *m) {
.def("get_origin_format", &TensorDesc::GetOriginFormat)
.def("set_data_type", &TensorDesc::SetDataType)
.def("get_data_type", &TensorDesc::GetDataType)
#ifdef PADDLE_WITH_ASCEND_STRING
.def("set_name", static_cast<void (ge::TensorDesc::*)(const char *)>(
&TensorDesc::SetName))
.def("get_name",
static_cast<ge::graphStatus (ge::TensorDesc::*)(AscendString &)>(
&TensorDesc::GetName))
#else
.def("set_name", &TensorDesc::SetName)
.def("get_name", &TensorDesc::GetName)
#endif
.def("set_size", &TensorDesc::SetSize)
.def("get_size", &TensorDesc::GetSize)
.def("set_real_dim_cnt", &TensorDesc::SetRealDimCnt)
......@@ -679,16 +860,27 @@ void BindAscendGraph(py::module *m) {
py::class_<AttrValue>(*m, "GEAttrValue").def(py::init<>());
py::class_<OperatorFactory>(*m, "GEOperatorFactory")
#ifdef PADDLE_WITH_ASCEND_STRING
.def_static("create_operator",
static_cast<ge::Operator (*)(const char *, const char *)>(
&ge::OperatorFactory::CreateOperator))
#else
.def("create_operator", &OperatorFactory::CreateOperator)
#endif
.def("get_ops_type_list",
[]() -> py::tuple {
std::vector<std::string> all_ops;
std::vector<AscendString> all_ops;
graphStatus status = OperatorFactory::GetOpsTypeList(all_ops);
return py::make_tuple(all_ops, status);
})
#ifdef PADDLE_WITH_ASCEND_STRING
.def_static("is_exist_op", static_cast<bool (*)(const char *)>(
&OperatorFactory::IsExistOp));
#else
.def("is_exist_op", &OperatorFactory::IsExistOp);
#endif
}
} // end namespace pybind
} // end namespace paddle
} // namespace pybind
} // namespace paddle
#endif
......@@ -25,6 +25,7 @@ namespace pybind {
void BindAscendGraph(py::module* m);
void BindAscendWrapper(py::module* m);
void BindAscendDevice(py::module* m);
} // namespace pybind
} // namespace paddle
......
......@@ -16,6 +16,9 @@
#include <fstream>
#include <iostream>
#include <string>
#ifndef _WIN32
#include <unistd.h>
#endif
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_registry.h"
......@@ -23,6 +26,9 @@
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/pybind/pybind.h"
#include "paddle/fluid/string/string_helper.h"
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/framework/fleet/ascend_wrapper.h"
#endif
// NOTE(zhiqiu): Commonly, the inputs in auto-generated OP function are
// determined by the OP`s proto automatically, i.e., all the inputs registered
......@@ -561,6 +567,11 @@ int main(int argc, char* argv[]) {
return -1;
}
#ifdef PADDLE_WITH_ASCEND
auto ascend_ptr = paddle::framework::AscendInstance::GetInstance();
ascend_ptr->InitGEForUT();
#endif
std::vector<std::string> headers{"\"paddle/fluid/imperative/tracer.h\""};
std::ofstream out(argv[1], std::ios::out);
......@@ -590,5 +601,9 @@ int main(int argc, char* argv[]) {
<< "} // namespace paddle\n";
out.close();
#ifdef PADDLE_WITH_ASCEND
ge::GEFinalize();
#endif
return 0;
}
......@@ -143,6 +143,14 @@ bool IsCompiledWithROCM() {
#endif
}
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
return false;
#else
return true;
#endif
}
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
return false;
......@@ -1756,6 +1764,7 @@ All parameter, weight, gradient are variables in Paddle.
m.def("init_devices", []() { framework::InitDevices(); });
m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
m.def("is_compiled_with_ascend", IsCompiledWithAscend);
m.def("is_compiled_with_rocm", IsCompiledWithROCM);
m.def("is_compiled_with_xpu", IsCompiledWithXPU);
m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
......@@ -2885,6 +2894,7 @@ All parameter, weight, gradient are variables in Paddle.
#ifdef PADDLE_WITH_ASCEND
BindAscendWrapper(&m);
BindAscendGraph(&m);
BindAscendDevice(&m);
#endif
#ifdef PADDLE_WITH_CRYPTO
BindCrypto(&m);
......
......@@ -37,6 +37,17 @@ init = fleet.init
is_first_worker = fleet.is_first_worker
worker_index = fleet.worker_index
worker_num = fleet.worker_num
node_num = fleet.node_num
rank = fleet.worker_index
nranks = fleet.worker_num
world_size = fleet.worker_num
# device id in current trainer
local_device_ids = fleet.local_device_ids
# device ids in world
world_device_ids = fleet.world_device_ids
# rank in node
local_rank = fleet.local_rank
rank_in_node = local_rank
is_worker = fleet.is_worker
worker_endpoints = fleet.worker_endpoints
server_num = fleet.server_num
......
......@@ -289,6 +289,18 @@ class Fleet(object):
"""
return self._role_maker._worker_num()
def node_num(self):
return self._role_maker._get_node_num()
def local_rank(self):
return self._role_maker._get_local_rank()
def local_device_ids(self):
return self._role_maker._get_local_device_ids()
def world_device_ids(self):
return self._role_maker._get_world_device_ids()
def is_worker(self):
"""
Check whether the node is an instance of worker.
......
......@@ -622,6 +622,29 @@ class PaddleCloudRoleMaker(RoleMakerBase):
self._generate_role()
return self._nodes_num
def _get_node_num(self):
"""
return the training node number
"""
if not self._role_is_generated:
self._generate_role()
return self._nodes_num
def _get_local_rank(self):
if not self._role_is_generated:
self._generate_role()
return self._local_rank
def _get_local_device_ids(self):
if not self._role_is_generated:
self._generate_role()
return self._local_device_ids
def _get_world_device_ids(self):
if not self._role_is_generated:
self._generate_role()
return self._world_device_ids
def _get_trainer_endpoints(self):
"""
get endpoint of all trainers
......@@ -782,6 +805,9 @@ class PaddleCloudRoleMaker(RoleMakerBase):
self._trainers_num = len(self._worker_endpoints)
self._nodes_num = len(
set([x.split(':')[0] for x in self._worker_endpoints]))
self._local_rank = os.getenv("PADDLE_RANK_IN_NODE")
self._local_device_ids = os.getenv("PADDLE_LOCAL_DEVICE_IDS")
self._world_device_ids = os.getenv("PADDLE_WORLD_DEVICE_IDS")
def _gloo_init(self):
# PADDLE_WITH_GLOO 1: trainer barrier, 2: all barrier
......
......@@ -108,6 +108,21 @@ see: http://www.paddlepaddle.org/documentation/docs/zh/1.6/user_guides/howto/tra
"In gpu training, it should be less or equal to the gpus number of you system(or you set by --gpus). And so each process can"
" bound to one or average number of gpus.")
base_group.add_argument(
"--run_mode",
type=str,
default="collective",
help="run mode of job, can be:collective/ps/ps-heter")
base_group.add_argument(
"--ascend_npus",
type=str,
default=None,
help="It's for ascend npu training."
"For example:"
"--ascend_npus=\"0,1,2,3\" will launch four training processes each bound to one gpu."
)
if fluid.core.is_compiled_with_cuda():
base_group.add_argument(
"--gpus",
......@@ -243,6 +258,9 @@ def launch_collective(args):
log_dir=args.log_dir,
envs=global_envs)
for idx, proc in enumerate(procs):
print("launch proc_id:{} idx:{}".format(proc.proc.pid, idx))
while True:
alive = watch_local_trainers(procs, cluster.trainers_nranks())
......@@ -276,6 +294,16 @@ def launch_ps(args, distribute_mode):
def which_distributed_mode(args):
if args.run_mode is not None:
assert args.run_mode in ["collective", "ps", "ps-heter"]
if args.run_mode == "collective":
return DistributeMode.COLLECTIVE
elif args.run_mode == "ps":
return DistributeMode.PS
elif args.run_mode == "ps-heter":
return DistributeMode.PS_HETER
ps_args = [
'--worker_num', '--server_num', '--heter_worker_num', '--servers',
'--workers', '--heter_workers', '--http_port'
......@@ -298,24 +326,26 @@ def which_distributed_mode(args):
)
if fluid.core.is_compiled_with_cuda():
device_count = fluid.core.get_cuda_device_count()
accelerators = fluid.core.get_cuda_device_count()
elif fluid.core.is_compiled_with_ascend():
accelerators = fluid.core.NPUDevice.get_device_count()
elif fluid.core.is_compiled_with_xpu():
device_count = fluid.core.get_xpu_device_count()
accelerators = fluid.core.get_xpu_device_count()
else:
device_count = 0
accelerators = 0
if len(has_ps_args) > 0:
logger.info(
"Run parameter-sever mode. pserver arguments:{}, cuda or xpu count:{}".
format(has_ps_args, device_count))
"Run parameter-sever mode. pserver arguments:{}, accelerators count:{}".
format(has_ps_args, accelerators))
has_ps_heter_args = list(set(has_ps_args) & set(ps_heter_args))
if len(has_ps_heter_args) > 0:
return DistributeMode.PS_HETER
else:
return DistributeMode.PS
elif len(has_collective_args) > 0:
logger.info("Run collective gpu mode. gpu arguments:{}, cuda count:{}".
format(has_collective_args, device_count))
logger.info("Run collective mode. gpu arguments:{}, cuda count:{}".
format(has_collective_args, accelerators))
return DistributeMode.COLLECTIVE
else:
if not fluid.core.is_compiled_with_cuda(
......
......@@ -52,6 +52,8 @@ class DeviceMode():
GPU = 1
KUNLUN = 2
XPU = 2
ASCEND_NPU = 3
UNKNOWN = 3
class Cluster(object):
......@@ -98,6 +100,14 @@ class Cluster(object):
r.append(t.endpoint)
return r
def world_device_ids(self):
r = []
for pod in self.pods:
for t in pod.trainers:
str_accelerators = [str(acc) for acc in t.accelerators]
r.append(str_accelerators)
return r
def pods_endpoints(self):
r = []
for pod in self.pods:
......@@ -105,7 +115,6 @@ class Cluster(object):
assert pod.port != None and pod.addr != None, "{} not a valid endpoint".format(
ep)
r.append(ep)
return r
def get_pod_by_id(self, pod_id):
......@@ -132,23 +141,23 @@ class JobServer(object):
class Trainer(object):
def __init__(self):
self.gpus = []
self.accelerators = []
self.endpoint = None
self.rank = None
def __str__(self):
return "gpu:{} endpoint:{} rank:{}".format(self.gpus, self.endpoint,
self.rank)
return "accelerator:{} endpoint:{} rank:{}".format(
self.accelerators, self.endpoint, self.rank)
def __eq__(self, t):
if len(self.gpus) != len(t.gpus):
if len(self.accelerators) != len(t.accelerators):
return False
if self.endpoint != t.endpoint or \
self.rank != t.rank:
return False
for a, b in zip(self.gpus, t.gpus):
for a, b in zip(self.accelerators, t.accelerators):
if a != b:
return False
......@@ -171,12 +180,13 @@ class Pod(object):
self.servers = []
self.workers = []
self.heter_workers = []
self.gpus = []
self.accelerators = []
self.device_mode = None
def __str__(self):
return "rank:{} id:{} addr:{} port:{} visible_gpu:{} trainers:{} servers:{} \
return "rank:{} id:{} addr:{} port:{} visible_accelerator:{} trainers:{} servers:{} \
workers:{} heter_workers:{}".format(
self.rank, self.id, self.addr, self.port, self.gpus, [
self.rank, self.id, self.addr, self.port, self.accelerators, [
str(t) for t in self.trainers
], [str(s) for s in self.servers], [str(w) for w in self.workers],
[str(h) for h in self.heter_workers])
......@@ -231,12 +241,12 @@ class Pod(object):
def rank(self):
return self.rank
def get_visible_gpus(self):
def get_visible_accelerators(self):
r = ""
for g in self.gpus:
for g in self.accelerators:
r += "{},".format(g)
assert r != "", "this pod {} can't see any gpus".format(self)
assert r != "", "this pod {} can't see any accelerators".format(self)
r = r[:-1]
return r
......@@ -264,23 +274,27 @@ def get_cluster(node_ips, node_ip, trainer_endpoints, device_mode,
pod = Pod()
pod.rank = node_rank
pod.addr = ip
pod.device_mode = device_mode
cur_node_endpoints = trainer_endpoints[node_rank]
# when use paddlecloud, endpoints may > devices_per_proc(user_defined)
assert len(cur_node_endpoints) >= len(
devices_per_proc
), "current trainer_endpoints size should be greater equal than selected_gpus size."
), "current trainer_endpoints size should be greater equal than acclerators size."
for i in range(len(devices_per_proc)):
trainer = Trainer()
if device_mode == DeviceMode.GPU:
if device_mode == DeviceMode.GPU or device_mode == DeviceMode.ASCEND_NPU:
if isinstance(devices_per_proc[i], (list, tuple)):
trainer.gpus.extend(devices_per_proc[i])
trainer.accelerators.extend(devices_per_proc[i])
pod.accelerators.extend(devices_per_proc[i])
else:
trainer.gpus.append(devices_per_proc[i])
trainer.accelerators.append(devices_per_proc[i])
pod.accelerators.append(devices_per_proc[i])
elif device_mode == DeviceMode.XPU:
if isinstance(devices_per_proc[i], (list, tuple)):
trainer.gpus.extend(devices_per_proc[i])
trainer.accelerators.extend(devices_per_proc[i])
else:
trainer.gpus.append(devices_per_proc[i])
trainer.accelerators.append(devices_per_proc[i])
trainer.endpoint = "%s" % (cur_node_endpoints[i])
trainer.rank = trainer_rank
trainer_rank += 1
......@@ -451,21 +465,32 @@ def start_local_trainers(cluster,
current_env.pop("http_proxy", None)
current_env.pop("https_proxy", None)
ids = cluster.world_device_ids()
res = [':'.join(ele) for ele in ids]
procs = []
for idx, t in enumerate(pod.trainers):
proc_env = {
"PADDLE_TRAINER_ID": "%d" % t.rank,
"PADDLE_CURRENT_ENDPOINT": "%s" % t.endpoint,
"PADDLE_TRAINERS_NUM": "%d" % cluster.trainers_nranks(),
"PADDLE_TRAINER_ENDPOINTS": ",".join(cluster.trainers_endpoints())
"PADDLE_TRAINER_ENDPOINTS": ",".join(cluster.trainers_endpoints()),
"PADDLE_RANK_IN_NODE": str(idx),
"PADDLE_LOCAL_DEVICE_IDS":
",".join([str(acc) for acc in t.accelerators]),
"PADDLE_WORLD_DEVICE_IDS": ",".join(res),
}
if fluid.core.is_compiled_with_cuda() and len(t.gpus) > 0:
if len(t.accelerators) > 0 and pod.device_mode == DeviceMode.GPU:
proc_env["FLAGS_selected_gpus"] = "%s" % ",".join(
[str(g) for g in t.gpus])
elif fluid.core.is_compiled_with_xpu() and len(t.gpus) > 0:
[str(g) for g in t.accelerators])
if len(t.accelerators) > 0:
proc_env["FLAGS_selected_accelerators"] = "%s" % ",".join(
[str(g) for g in t.accelerators])
# to do: same code style in future
if fluid.core.is_compiled_with_xpu() and len(t.accelerators) > 0:
proc_env["FLAGS_selected_xpus"] = "%s" % ",".join(
[str(g) for g in t.gpus])
[str(g) for g in t.accelerators])
current_env.update(proc_env)
......@@ -564,6 +589,17 @@ def watch_local_trainers(procs, nranks):
return alive
def get_ascend_npus(npus):
if npus is None:
count = fluid.core.NPUDevice.get_device_count()
if count <= 0:
return ret
ret = [x for x in range(count)]
else:
ret = [x.strip() for x in npus.split(',')]
return ret
def get_gpus(gpus):
if gpus is None:
gpus_num = fluid.core.get_cuda_device_count()
......@@ -623,11 +659,17 @@ def get_xpus(xpus):
def get_device_mode():
if fluid.core.is_compiled_with_cuda() and fluid.core.get_cuda_device_count(
) > 0:
print("launch train in GPU mode")
if fluid.core.is_compiled_with_ascend() and \
fluid.core.NPUDevice.get_device_count() > 0:
print("launch train in ascend npu mode!")
return DeviceMode.ASCEND_NPU
if fluid.core.is_compiled_with_cuda() and \
fluid.core.get_cuda_device_count() > 0:
print("launch train in GPU mode!")
return DeviceMode.GPU
elif fluid.core.is_compiled_with_xpu() and fluid.core.get_xpu_device_count(
if fluid.core.is_compiled_with_xpu() and fluid.core.get_xpu_device_count(
) > 0:
print("launch train in XPU mode")
return DeviceMode.XPU
......@@ -654,6 +696,10 @@ def get_device_proc_info(args):
]
else:
devices_per_proc = gpus
elif device_mode == DeviceMode.ASCEND_NPU:
npus = get_ascend_npus(args.ascend_npus)
assert args.nproc_per_node is None, "ascend_npus need't nproc_per_node arguments"
devices_per_proc = npus
elif device_mode == DeviceMode.XPU:
xpus = get_xpus(args.xpus)
if args.nproc_per_node is not None:
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
......@@ -12,16 +12,26 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import paddle.fluid.framework as framework
from paddle.fluid.optimizer import Optimizer
import paddle.fluid.core as core
import numpy as np
import ascend_parser
from . import ascend_parser
from paddle.distributed import fleet
import hccl.manage.api as hccl
from collections import namedtuple
HcomGroupConfig = namedtuple('HcomGroupConfig', ['name', 'nranks', 'rank_ids'])
class AscendIRParser(object):
def __init__(self):
def __init__(self, auto_dp=False, world_rank_size=1):
self.graph_idx = 0
self.hcom_endpoints = {}
self.groups_to_create = []
self._auto_dp = auto_dp
self._world_rank_size = world_rank_size
def _construct_input_map(self, input_varlist):
ret_map = {}
......@@ -43,15 +53,52 @@ class AscendIRParser(object):
ret_map[var.name] = ge_input
return ge_in_operator, ret_map
def _endpoint_to_world_rank_id(self, endpoint):
world_endpoints = fleet.worker_endpoints()
assert endpoint in world_endpoints, "endpoint (%s) not in worker_endpoints (%s) " % (
endpoint, fleet.world_device_ids())
return world_endpoints.index(endpoint)
def parse_op(self, op):
if op.type in ascend_parser.registerd_op:
print("Op[%s] has been registered, begin to parse it" % (op.type))
if op.type == 'c_gen_nccl_id':
endpoint = op.attr("endpoint")
other_endpoints = op.attr("other_endpoints")
rank = op.attr("rank")
nccl_id = op.output_arg_names[0]
# c_gen_nccl_id operator splits endpoints into local endpoint and other_endpoints
# we should combine these together to produce world_rank_ids
self.hcom_endpoints[nccl_id] = other_endpoints[:]
self.hcom_endpoints[nccl_id].insert(rank, endpoint)
print("nccl_id (%s) registered endpoints %s" %
(nccl_id, self.hcom_endpoints[nccl_id]))
elif op.type == 'c_comm_init':
nccl_id = op.input_arg_names[0]
nranks = op.attr("nranks")
assert nranks == len(self.hcom_endpoints[
nccl_id]), "nranks doesn't match endpoint count"
rank = op.attr("rank")
ring_id = op.attr("ring_id")
group_name = "hcom_group_" + str(ring_id)
global_rank_ids = [
self._endpoint_to_world_rank_id(endpoint)
for endpoint in self.hcom_endpoints[nccl_id]
]
self.groups_to_create.append(
HcomGroupConfig(
name=group_name, nranks=nranks, rank_ids=global_rank_ids))
print("append to create group: %s, with rank_ids: %s" %
(group_name, global_rank_ids))
elif op.type in ascend_parser.registerd_op:
op_parser = self.parser_factory.create_parse(
ascend_parser.registerd_op[op.type])
op_parser.apply(op)
else:
print("Op[%s] has not been registered, so we have to skip it" %
(op.type))
assert False, "Op[%s] has not been registered, so we have to skip it" % (
op.type)
def _parse_program(self,
graph_name,
......@@ -84,7 +131,7 @@ class AscendIRParser(object):
name = e.name
ge_out_operator.append(self.var2geop[name])
# (Debug) If you want to print back prop vars, append/assign the varname in ge_out_operator here, such as:
# (Debug) If you want to print back prop vars, append/assign the varname in ge_out_operator here, such as:
# if graph_name == "main":
# ge_out_operator.append(self.var2geop["reduce_sum_0.tmp_0@GRAD"])
......@@ -115,6 +162,17 @@ class AscendIRParser(object):
startup_graph = self._parse_program("startup", startup_program)
main_graph = self._parse_program("main", main_program, input_varlist,
fetch_list)
if self._auto_dp and self._world_rank_size > 1:
assert len(self.groups_to_create
) == 0, "can't parse program under auto_dp mode"
from paddle.distributed import fleet
self.groups_to_create.append(
HcomGroupConfig(
name="hcom_group_0",
nranks=fleet.world_size(),
rank_ids=[x for x in range(fleet.world_size())]))
return startup_graph, main_graph
......@@ -124,9 +182,14 @@ class AscendOptimizer(Optimizer):
def __init__(self, optimizer, fetch_list=[]):
self.inner_opt = optimizer
self.fetch_list = fetch_list
self.ascend_instance = None
def __del__(self):
print("begin AscendOptimizer del")
if self.ascend_instance is not None:
self.ascend_instance.destroy_global_resources()
core.ge_finalize()
print("end AscendOptimizer del")
def _can_apply(self):
if not self.user_defined_strategy.ascend:
......@@ -138,7 +201,7 @@ class AscendOptimizer(Optimizer):
dist_strategy.ascend = False
dist_strategy.ascend_configs = {}
def _get_input_varlist(program):
def _get_input_varlist(self, program):
ret_list = []
for var in program.list_vars():
if var.is_data or var.persistable:
......@@ -149,30 +212,56 @@ class AscendOptimizer(Optimizer):
loss,
startup_program=None,
parameter_list=None,
no_grad_set=None):
minimized = self.inner_opt.minimize(
loss, startup_program=startup_program)
no_grad_set=None,
auto_dp=False,
rank_table_file=None):
minimized = None
if self.inner_opt:
minimized = self.inner_opt.minimize(
loss, startup_program=startup_program)
self.ascend_instance = core.AscendInstance()
from paddle.distributed import fleet
if auto_dp and fleet.world_size() > 1:
from paddle.fluid.transpiler import ascend_transpiler
t = ascend_transpiler.AscendTranspiler(startup_program,
loss.block.program)
t.transpile()
#print(loss.block.program)
# Config about Graph Engine can be found in https://support.huaweicloud.com/
config = {
"ge.exec.deviceId": "0",
"ge.exec.deviceId": str(fleet.local_device_ids()),
"ge.graphRunMode": "1",
"ge.exec.precision_mode": "must_keep_origin_dtype"
"ge.exec.precision_mode": "must_keep_origin_dtype",
}
# if multi trainers
if rank_table_file and fleet.world_size() > 1:
config["ge.exec.rankTableFile"] = rank_table_file
config["ge.exec.rankId"] = str(fleet.worker_index())
config["ge.exec.isUseHcom"] = "1"
config["ge.exec.deployMode"] = "0"
print("ge_initialize config:", config)
core.ge_initialize(config)
# Init Session
self.ascend_instance.init_global_resources()
main_block = loss.block
self.parser = AscendIRParser()
self.parser = AscendIRParser(
auto_dp=auto_dp, world_rank_size=fleet.world_size())
input_varlist = self._get_input_varlist(main_block.program)
input_varlist = _get_input_varlist(main_block.program)
startup_graph, main_graph = self.parser.parse_program(
startup_program, main_block.program, input_varlist, self.fetch_list)
for cfg in self.parser.groups_to_create:
print("create group (%s), nranks: %d, rank_ids: %s" %
(cfg.name, cfg.nranks, cfg.rank_ids))
hccl.create_group(cfg.name, cfg.nranks, cfg.rank_ids)
self.ascend_instance.add_ascend_subgraph(0, startup_graph)
self.ascend_instance.add_ascend_subgraph(1, main_graph)
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.fluid.framework as framework
from paddle.fluid.optimizer import Optimizer
import paddle.fluid.core as core
import numpy as np
registerd_op = {
"elementwise_add": "AddParser",
"matmul": "MatMulParser",
"mul": "MulParser",
"relu": "ReluParser",
"softmax_with_cross_entropy": "SoftmaxWithCrossEntropyParser",
"shape": "ShapeParser",
"fill_constant": "FillConstantParser",
"reduce_sum": "ReduceSumParser",
"reduce_sum_grad": "ReduceSumGradParser",
"matmul_grad": "MatMulGradParser",
"mul_grad": "MulGradParser",
"reshape2": "ReshapeParser",
"scale": "ScaleParser",
"relu_grad": "ReluGradParser",
"softmax_with_cross_entropy_grad": "SoftmaxWithCrossEntropyGradParser",
"truncated_gaussian_random": "TruncatedNormalParser",
"sgd": "SGDParser"
}
from paddle.distributed import fleet
from functools import reduce
registerd_op = {## forwards
"elementwise_add": "AddParser",
"matmul": "MatMulParser",
"mul": "MulParser",
"relu": "ReluParser",
"softmax_with_cross_entropy": "SoftmaxWithCrossEntropyParser",
"shape": "ShapeParser",
"fill_constant": "FillConstantParser",
"reduce_sum": "ReduceSumParser",
"elementwise_mul": "DotMulParser",
"elementwise_div": "DotDivParser",
"elementwise_pow": "DotPowParser",
"elementwise_max": "MaxParser",
"elementwise_min": "MinParser",
"elementwise_sub": "DotSubParser",
"pow": "PowParser",
"gelu": "GeluParser",
"sqrt": "SqrtParser",
"log": "LogParser",
"sum": "SumParser",
"logical_not": "LogicalNotParser",
"gather": "GatherParser",
"scatter": "ScatterParser",
"cast": "CastParser",
"tanh": "TanhParser",
"stack": "StackParser",
"square": "SquareParser",
"unsqueeze2": "UnSqueezeParser",
"assign": "AssignParser",
"softmax": "SoftMaxParser",
"reshape2": "ReshapeParser",
"transpose2": "TransposeParser",
"layer_norm": "LayerNormParser",
"less_than": "LessParser",
"mean": "MeanParser",
"scale": "ScaleParser",
"slice": "SliceParser",
"top_k": "TopkParser",
"accuracy": "AccuracyParser",
#"increment": "IncrementParser",
"lookup_table": "LookupTableParser",
"truncated_gaussian_random": "TruncatedNormalParser",
"c_allgather": "AllGatherParser",
"c_allreduce_sum": "AllReduceSumParser",
"c_allreduce_max": "AllReduceMaxParser",
"c_broadcast": "BroadcastParser",
"c_reduce_scatter": "ReduceScatterParser",
"c_send": "SendParser",
"c_receive": "ReceiveParser",
"uniform_random": "UniformRandomParser",
"range": "RangeParser",
"equal": "EqualParser",
"expand": "ExpandParser",
"squeeze2": "SqueezeParser",
## backwords
"matmul_grad": "MatMulGradParser",
"mul_grad": "MulGradParser",
"relu_grad": "ReluGradParser",
"reduce_sum_grad": "ReduceSumGradParser",
"softmax_with_cross_entropy_grad": "SoftmaxWithCrossEntropyGradParser",
"tanh_grad":"TanhGradParser",
"log_grad":"LogGradParser",
"pow_grad": "PowGradParser",
"sqrt_grad": "SqrtGradParser",
"gelu_grad": "GeluGradParser",
"mean_grad": "MeanGradParser",
'lookup_table_grad': "LookUpTableGradParser",
"elementwise_mul_grad": "DotMulGradParser",
"elementwise_add_grad": "DotAddGradParser",
"elementwise_div_grad": "DotDivGradParser",
"softmax_grad": "SoftmaxGradParser",
"slice_grad": "SliceGradParser",
"reshape2_grad": "ReshapeGradParser",
"gather_grad": "GatherGradParser",
"transpose2_grad": "TransposeGradParser",
"layer_norm_grad": "LayerNormGradParser",
## opt
"sgd": "SGDParser",
#"adam": "AdamParser",
}
global_cnt = -1
global_input_cnt = -1
......@@ -60,6 +125,7 @@ class AscendHelper(object):
5: "float32",
6: "float64"
}
self.dtype2paddle_inv_map = {"VarType.FP32": 0, "VarType.FP16": 1}
def dtype2ge(self, dtype):
assert dtype in self.dtype2ge_map, "dtype[%d] is not supported %d" % (
......@@ -105,7 +171,6 @@ class AscendParserBase(object):
self.parser_name, len(index_list), output_num)
for output_id in range(output_num):
arguments = self.op.output(self.op.output_names[output_id])
print("%d argument: %s" % (output_id, str(arguments)))
if len(arguments) > 0:
assert len(arguments) == len(
index_list[output_id]
......@@ -113,8 +178,6 @@ class AscendParserBase(object):
self.parser_name, output_id, len(index_list[output_id]),
len(arguments))
for i in range(len(arguments)):
print("assgin index_list[%d][%d] to %s" %
(output_id, i, arguments[i]))
self.var2geop[arguments[i]] = geop_list[index_list[
output_id][i]]
......@@ -125,7 +188,7 @@ class AscendParserBase(object):
self.op = op
assert self.op.type == self.parser_name, "op [%s] != parser_name[%s]" % (
self.op.type, self.parser_name)
print("begin to parse op %s" % (self.parser_name))
#print("begin to parse op %s" % (self.parser_name))
geop_list, index_list = self._apply()
self.update_output(geop_list, index_list)
......@@ -152,6 +215,63 @@ class AscendParserBase(object):
tensor.set_data(data_8)
return tensor
def _get_ge_tensor(self, shape, dtype, value_list):
tensor_desc = core.GETensorDesc(
core.GEShape(shape), core.GEFormat.FORMAT_ND,
self.ascend_helper.dtype2ge(dtype))
tensor = core.GETensor(tensor_desc)
data = np.array(value_list).reshape(shape).astype(
self.ascend_helper.dtype2np(dtype))
buf = data.tobytes()
data_8 = np.frombuffer(buf, dtype=np.uint8)
tensor.set_data(data_8)
tensor_const = core.GEOperatorFactory.create_operator(
"const" + self._accumulated_op_id(),
"Const").set_attr_tensor("value", tensor)
return tensor_const
def _get_variable(self, shape, dtype, tensor):
if dtype == "int32":
type = core.GEDataType.DT_INT32
elif dtype == "float32":
type = core.GEDataType.DT_FLOAT
var = core.GEOperatorFactory.create_operator(
"variable" + self._accumulated_op_id(), "Variable")
var.update_output_desc("y",
core.GETensorDesc(
core.GEShape(shape), core.GEFormat.FORMAT_ND,
type))
assign = core.GEOperatorFactory.create_operator(
"assign" + self._accumulated_op_id(), "Assign").set_input(
"value", tensor).set_input("ref", var)
return assign
def _create_shape_tensor(self):
tensor_desc = core.GETensorDesc(
core.GEShape([2]), core.GEFormat.FORMAT_ND,
core.GEDataType.DT_INT32)
tensor = core.GETensor(tensor_desc)
data = np.ones((2)).astype("int32").reshape([2])
data[0] = 64
buf = data.tobytes()
data_8 = np.frombuffer(buf, dtype=np.uint8)
tensor.set_data(data_8)
return tensor
def _get_GEtensor_shape(self, tensor):
tensor_shape = core.GEOperatorFactory.create_operator(
"shape" + self._accumulated_op_id(), "Shape").set_input("x", tensor)
tensor_shape = core.GEOperatorFactory.create_operator(
"cast" + self._accumulated_op_id(), "Cast").set_input(
"x", tensor_shape).set_attr_int32("dst_type", 0)
return tensor_shape
class AddParser(AscendParserBase):
def __init__(self, graph, var2geop):
......@@ -162,109 +282,276 @@ class AddParser(AscendParserBase):
x = self._get_ge_input(self.op.input_arg_names[0])
y = self._get_ge_input(self.op.input_arg_names[1])
add = core.GEOperatorFactory.create_operator(
"add" + self._accumulated_op_id(), "Add").set_input(
"x1", x).set_input("x2", y)
"add" + self._accumulated_op_id(),
"Add").set_input("x1", x).set_input("x2", y)
return [add], [[0]]
class ReduceSumParser(AscendParserBase):
class DotSubParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(ReduceSumParser, self).__init__(graph, var2geop)
self.parser_name = "reduce_sum"
super(DotSubParser, self).__init__(graph, var2geop)
self.parser_name = "elementwise_sub"
def _apply(self):
x = self._get_ge_input(self.op.input_arg_names[0])
axes = self.op.attr("dim")
keep_dims = self.op.attr("keep_dim")
reduce_sum = core.GEOperatorFactory.create_operator(
"reduce_sum" + self._accumulated_op_id(), "ReduceSumD").set_input(
"x", x, 0).set_attr_vec_int32("axes", axes).set_attr_bool(
"keep_dims", keep_dims)
return [reduce_sum], [[0]]
y = self._get_ge_input(self.op.input_arg_names[1])
sub = core.GEOperatorFactory.create_operator(
"sub" + self._accumulated_op_id(),
"Sub").set_input("x1", x).set_input("x2", y)
return [sub], [[0]]
class ReduceSumGradParser(AscendParserBase):
class DotMulParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(ReduceSumGradParser, self).__init__(graph, var2geop)
self.parser_name = "reduce_sum_grad"
super(DotMulParser, self).__init__(graph, var2geop)
self.parser_name = "elementwise_mul"
def _apply(self):
x = self._get_ge_input(self.op.input_arg_names[0])
input = self._get_ge_input(self.op.input_arg_names[1])
y = self._get_ge_input(self.op.input_arg_names[1])
mul = core.GEOperatorFactory.create_operator(
"dotmul" + self._accumulated_op_id(),
"Mul").set_input("x1", x).set_input("x2", y)
return [mul], [[0]]
shape_tensor = core.GEOperatorFactory.create_operator(
"shape" + self._accumulated_op_id(), "Shape").set_input("x", input,
0)
axis_const = core.GEOperatorFactory.create_operator(
"const" + self._accumulated_op_id(), "Const").set_attr_tensor(
"value", self._create_ge_tensor([1], 2, -1))
self._mark_as_input(axis_const)
broadcast = core.GEOperatorFactory.create_operator(
"broadcast_to_d" + self._accumulated_op_id(),
"BroadcastTo").set_input("x", x).set_input("shape", shape_tensor)
# unsqueeze cannot get right result, but ExpandDims seems have the same functionality.
reduce_sum_grad = core.GEOperatorFactory.create_operator(
"expand" + self._accumulated_op_id(), "ExpandDims").set_input(
"x", broadcast).set_input("axis", axis_const)
return [shape_tensor, axis_const, broadcast, reduce_sum_grad], [[3]]
class DotDivParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(DotDivParser, self).__init__(graph, var2geop)
self.parser_name = "elementwise_div"
def _apply(self):
x = self._get_ge_input(self.op.input_arg_names[0])
y = self._get_ge_input(self.op.input_arg_names[1])
div = core.GEOperatorFactory.create_operator(
"dotdiv" + self._accumulated_op_id(),
"Div").set_input("x1", x).set_input("x2", y)
return [div], [[0]]
class MatMulParser(AscendParserBase):
class DotPowParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(MatMulParser, self).__init__(graph, var2geop)
self.parser_name = "matmul"
super(DotPowParser, self).__init__(graph, var2geop)
self.parser_name = "elementwise_pow"
def _apply(self):
x1 = self._get_ge_input(self.op.input_arg_names[0])
x2 = self._get_ge_input(self.op.input_arg_names[1])
matmul = core.GEOperatorFactory.create_operator(
"matmul" + self._accumulated_op_id(), "MatMul").set_input(
"x1", x1).set_input("x2", x2)
return [matmul], [[0]]
x = self._get_ge_input(self.op.input_arg_names[0])
y = self._get_ge_input(self.op.input_arg_names[1])
pow = core.GEOperatorFactory.create_operator(
"dotpow" + self._accumulated_op_id(),
"Pow").set_input("x1", x1).set_input("x2", y)
return [pow], [[0]]
class MatMulGradParser(AscendParserBase):
class LessParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(MatMulGradParser, self).__init__(graph, var2geop)
self.parser_name = "matmul_grad"
super(LessParser, self).__init__(graph, var2geop)
self.parser_name = "less_than"
def _apply(self):
out_grad = self._get_ge_input(self.op.input_arg_names[0])
x = self._get_ge_input(self.op.input_arg_names[1])
y = self._get_ge_input(self.op.input_arg_names[2])
x = self._get_ge_input(self.op.input_arg_names[0])
y = self._get_ge_input(self.op.input_arg_names[1])
less_than = core.GEOperatorFactory.create_operator(
"less_than" + self._accumulated_op_id(),
"Less").set_input("x1", x).set_input("x2", y)
return [less_than], [[0]]
x_grad = core.GEOperatorFactory.create_operator(
self.parser_name + self._accumulated_op_id(), "MatMul").set_input(
"x1", out_grad).set_input("x2", y).set_attr_bool(
"transpose_x1", False).set_attr_bool("transpose_x2", True)
y_grad = core.GEOperatorFactory.create_operator(
self.parser_name + self._accumulated_op_id(), "MatMul").set_input(
"x1", x).set_input("x2", out_grad).set_attr_bool(
"transpose_x1", True).set_attr_bool("transpose_x2", False)
return [x_grad, y_grad], [[0], [1]]
class MaxParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(MaxParser, self).__init__(graph, var2geop)
self.parser_name = "elementwise_max"
class MulGradParser(AscendParserBase):
def _apply(self):
x = self._get_ge_input(self.op.input_arg_names[0])
y = self._get_ge_input(self.op.input_arg_names[1])
max_out = core.GEOperatorFactory.create_operator(
"max" + self._accumulated_op_id(),
"Maximum").set_input("x1", x).set_input("x2", y)
return [max_out], [[0]]
class MinParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(MulGradParser, self).__init__(graph, var2geop)
self.parser_name = "mul_grad"
super(MinParser, self).__init__(graph, var2geop)
self.parser_name = "elementwise_min"
def _apply(self):
out_grad = self._get_ge_input(self.op.input_arg_names[0])
x = self._get_ge_input(self.op.input_arg_names[1])
y = self._get_ge_input(self.op.input_arg_names[2])
x = self._get_ge_input(self.op.input_arg_names[0])
y = self._get_ge_input(self.op.input_arg_names[1])
min_out = core.GEOperatorFactory.create_operator(
"min" + self._accumulated_op_id(),
"Minimum").set_input("x1", x).set_input("x2", y)
return [min_out], [[0]]
x_grad = core.GEOperatorFactory.create_operator(
self.parser_name + self._accumulated_op_id(), "MatMul").set_input(
"x1", out_grad).set_input("x2", y).set_attr_bool(
"transpose_x1", False).set_attr_bool("transpose_x2", True)
y_grad = core.GEOperatorFactory.create_operator(
self.parser_name + self._accumulated_op_id(), "MatMul").set_input(
"x1", x).set_input("x2", out_grad).set_attr_bool(
"transpose_x1", True).set_attr_bool("transpose_x2", False)
return [x_grad, y_grad], [[0], [1]]
## cal
class LogParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(LogParser, self).__init__(graph, var2geop)
self.parser_name = "log"
def _apply(self):
x = self._get_ge_input(self.op.input_arg_names[0])
log = core.GEOperatorFactory.create_operator(
"log" + self._accumulated_op_id(), "Log").set_input("x", x)
return [log], [[0]]
class SqrtParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(SqrtParser, self).__init__(graph, var2geop)
self.parser_name = "sqrt"
def _apply(self):
x = self._get_ge_input(self.op.input_arg_names[0])
sqrt = core.GEOperatorFactory.create_operator(
"sqrt" + self._accumulated_op_id(), "Sqrt").set_input("x", x)
return [sqrt], [[0]]
class PowParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(PowParser, self).__init__(graph, var2geop)
self.parser_name = "pow"
def _apply(self):
x = self._get_ge_input(self.op.input_arg_names[0])
factor = self.op.attr("factor")
pow_value = core.GEOperatorFactory.create_operator(
"pow" + self._accumulated_op_id(),
"Power").set_input("x", x).set_attr_float(
"power", factor).set_attr_float("scale", 1.0).set_attr_float(
"shift", 0.0)
return [pow_value], [[0]]
class SquareParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(SquareParser, self).__init__(graph, var2geop)
self.parser_name = "square"
def _apply(self):
x = self._get_ge_input(self.op.input_arg_names[0])
square = core.GEOperatorFactory.create_operator(
"square" + self._accumulated_op_id(), "Square").set_input("x", x)
return [square], [[0]]
class SumParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(SumParser, self).__init__(graph, var2geop)
self.parser_name = "sum"
def _apply(self):
len_list = len(self.op.input_arg_names)
if len_list < 2:
assert False, "the size of input list must large or equal 2"
x = self._get_ge_input(self.op.input_arg_names[0])
y = self._get_ge_input(self.op.input_arg_names[1])
sum = core.GEOperatorFactory.create_operator(
"sum" + self._accumulated_op_id(),
"Add").set_input("x1", x).set_input("x2", y)
for i in range(2, len_list):
y = self._get_ge_input(self.op.input_arg_names[i])
sum = core.GEOperatorFactory.create_operator(
"sum" + self._accumulated_op_id(),
"Add").set_input("x1", sum).set_input("x2", y)
return [sum], [[0]]
class LogicalNotParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(LogicalNotParser, self).__init__(graph, var2geop)
self.parser_name = "logical_not"
def _apply(self):
x = self._get_ge_input(self.op.input_arg_names[0])
logical_not = core.GEOperatorFactory.create_operator(
"logical_not" + self._accumulated_op_id(),
"LogicalNot").set_input("x", x)
return [logical_not], [[0]]
class MeanParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(MeanParser, self).__init__(graph, var2geop)
self.parser_name = "mean"
def _apply(self):
x = self._get_ge_input(self.op.input_arg_names[0])
mean = core.GEOperatorFactory.create_operator(
"mean" + self._accumulated_op_id(),
"ReduceMeanD").set_input("x", x).set_attr_bool(
"keep_dims", False).set_attr_vec_int32("axes", [])
return [mean], [[0]]
class ReduceSumParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(ReduceSumParser, self).__init__(graph, var2geop)
self.parser_name = "reduce_sum"
def _apply(self):
x = self._get_ge_input(self.op.input_arg_names[0])
axes = self.op.attr("dim")
keep_dims = self.op.attr("keep_dim")
reduce_all = self.op.attr("reduce_all")
x_shape = self.op.block.var(self.op.input_arg_names[0]).shape
if reduce_all:
axes = list(range(len(x_shape)))
reduce_sum = core.GEOperatorFactory.create_operator(
"reduce_sum" + self._accumulated_op_id(),
"ReduceSumD").set_input("x", x, 0).set_attr_vec_int32(
"axes", axes).set_attr_bool("keep_dims", keep_dims)
return [reduce_sum], [[0]]
#class IncrementParser(AscendParserBase):
# def __init__(self, graph, var2geop):
# super(IncrementParser, self).__init__(graph, var2geop)
# self.parser_name = "increment"
#
# def _apply(self):
# x = self._get_ge_input(self.op.input_arg_names[0])
# step = self.op.attr("step") #self._get_ge_input(self.op.input_arg_names[1])
# print("step: ", step)
#
# increment = core.GEOperatorFactory.create_operator("adds" + self._accumulated_op_id(), "Adds").set_input("x", x).set_attr_float("value", step) #set_input("x2", bias)
#
# return [increment]
## matrix cal
class MatMulParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(MatMulParser, self).__init__(graph, var2geop)
self.parser_name = "matmul"
def _apply(self):
x = self._get_ge_input(self.op.input_arg_names[0])
y = self._get_ge_input(self.op.input_arg_names[1])
transpose_x = self.op.attr("transpose_X")
transpose_y = self.op.attr("transpose_Y")
x1_shape = self.op.block.var(self.op.input_arg_names[0]).shape
x2_shape = self.op.block.var(self.op.input_arg_names[1]).shape
if len(x1_shape) > 2:
matmul = core.GEOperatorFactory.create_operator(
"matmul" + self._accumulated_op_id(), "BatchMatMul").set_input(
"x1", x).set_input("x2", y).set_attr_bool(
"adj_x1",
transpose_x).set_attr_bool("adj_x2", transpose_y)
elif len(x1_shape) == 2:
matmul = core.GEOperatorFactory.create_operator(
"matmul" + self._accumulated_op_id(),
"MatMul").set_input("x1", x).set_input("x2", y).set_attr_bool(
"transpose_x1", transpose_x).set_attr_bool("transpose_x2",
transpose_y)
else:
assert False, "not support"
return [matmul], [[0]]
class MulParser(AscendParserBase):
......@@ -275,13 +562,105 @@ class MulParser(AscendParserBase):
def _apply(self):
x = self._get_ge_input(self.op.input_arg_names[0])
y = self._get_ge_input(self.op.input_arg_names[1])
x_num_col_dims = self.op.attr("x_num_col_dims")
y_num_col_dims = self.op.attr("y_num_col_dims")
shape_x1 = self.op.block.var(self.op.input_arg_names[0]).shape
shape_x2 = self.op.block.var(self.op.input_arg_names[1]).shape
if x_num_col_dims == 1 and y_num_col_dims == 1:
if len(shape_x1) == 2 and len(shape_x2) == 2:
matmul = core.GEOperatorFactory.create_operator(
"mul" + self._accumulated_op_id(),
"MatMul").set_input("x1", x).set_input("x2", y)
elif len(shape_x1) == 3 and len(shape_x2) == 2:
flatten_x1 = core.GEOperatorFactory.create_operator(
"flatten" + self._accumulated_op_id(),
"Flatten").set_input("x", x)
matmul = core.GEOperatorFactory.create_operator(
"mul" + self._accumulated_op_id(), "MatMul").set_input(
"x1", flatten_x1, 0).set_input("x2", y, 0)
else:
assert False, "not support"
else:
if len(shape_x1) == 3 and len(shape_x2) == 2:
assert x_num_col_dims == 2, "only support 2"
flatten_x1 = core.GEOperatorFactory.create_operator(
"flatten" + self._accumulated_op_id(),
"FlattenV2").set_input("x", x).set_attr_int32(
"axis", 0).set_attr_int32("end_axis", 1)
matmul_m = core.GEOperatorFactory.create_operator(
"mul" + self._accumulated_op_id(), "MatMul").set_input(
"x1", flatten_x1, 0).set_input("x2", y, 0)
matmul_transpose = core.GEOperatorFactory.create_operator(
"transpose" + self._accumulated_op_id(),
"TransposeD").set_input(
"x", matmul_m).set_attr_vec_int32("perm", [1, 0])
tensor = self._create_ge_tensor(
[3], 2, [shape_x2[1], shape_x1[0], shape_x1[1]])
const_shape = core.GEOperatorFactory.create_operator(
"shape" + self._accumulated_op_id(),
"Const").set_attr_tensor("value", tensor)
reshape_matmul = core.GEOperatorFactory.create_operator(
"reshape" + self._accumulated_op_id(), "Reshape").set_input(
"x", matmul_transpose).set_input(
"shape", const_shape).set_attr_int32("axis", 0)
matmul = core.GEOperatorFactory.create_operator(
"transpose" + self._accumulated_op_id(),
"TransposeD").set_input(
"x",
reshape_matmul).set_attr_vec_int32("perm", [1, 2, 0])
else:
assert False, "not support"
matmul = core.GEOperatorFactory.create_operator(
"mul" + self._accumulated_op_id(), "MatMul").set_input(
"x1", x).set_input("x2", y)
return [matmul], [[0]]
class LayerNormParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(LayerNormParser, self).__init__(graph, var2geop)
self.parser_name = "layer_norm"
def _apply(self):
x = self._get_ge_input(self.op.input_arg_names[2])
scale = self._get_ge_input(self.op.input_arg_names[1])
bias = self._get_ge_input(self.op.input_arg_names[0])
epsilon = self.op.attr("epsilon")
begin_norm_axis = self.op.attr("begin_norm_axis")
x_dtype = self.op.block.var(self.op.input_arg_names[2]).dtype
shape_tensor = core.GEOperatorFactory.create_operator(
"shape" + self._accumulated_op_id(), "Shape").set_input("x", x)
scale_expand = core.GEOperatorFactory.create_operator(
"broadcast_to_d" + self._accumulated_op_id(),
"BroadcastTo").set_input("x",
scale).set_input("shape", shape_tensor)
bias_expand = core.GEOperatorFactory.create_operator(
"broadcast_to_d" + self._accumulated_op_id(),
"BroadcastTo").set_input("x", bias).set_input("shape", shape_tensor)
layer_norm = core.GEOperatorFactory.create_operator(
"layer_norm" + self._accumulated_op_id(),
"LayerNorm").set_input("x", x).set_input(
"gamma",
scale_expand).set_input("beta", bias_expand).set_attr_int32(
"begin_norm_axis", begin_norm_axis).set_attr_int32(
"begin_params_axis",
begin_norm_axis).set_attr_float("epsilon", epsilon)
cast_dtype = 0 if self.ascend_helper.dtype2paddle_inv_map[str(
x_dtype)] == 0 else 1
y = core.GEOperatorFactory.create_operator(
"cast" + self._accumulated_op_id(), "Cast").set_input(
"x", layer_norm, 0).set_attr_int32("dst_type", cast_dtype)
mean = core.GEOperatorFactory.create_operator(
"cast" + self._accumulated_op_id(), "Cast").set_input(
"x", layer_norm, 1).set_attr_int32("dst_type", cast_dtype)
variance = core.GEOperatorFactory.create_operator(
"cast" + self._accumulated_op_id(), "Cast").set_input(
"x", layer_norm, 2).set_attr_int32("dst_type", cast_dtype)
return [y, mean, variance], [[1], [2], [0]]
## activate function
class ReluParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(ReluParser, self).__init__(graph, var2geop)
......@@ -294,20 +673,31 @@ class ReluParser(AscendParserBase):
return [relu], [[0]]
class ReluGradParser(AscendParserBase):
class GeluParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(ReluGradParser, self).__init__(graph, var2geop)
self.parser_name = "relu_grad"
super(GeluParser, self).__init__(graph, var2geop)
self.parser_name = "gelu"
def _apply(self):
out = self._get_ge_input(self.op.input_arg_names[0])
out_grad = self._get_ge_input(self.op.input_arg_names[1])
relu_grad = core.GEOperatorFactory.create_operator(
self.parser_name + self._accumulated_op_id(), "ReluGrad").set_input(
"gradients", out_grad).set_input("features", out)
return [relu_grad], [[0]]
x = self._get_ge_input(self.op.input_arg_names[0])
gelu = core.GEOperatorFactory.create_operator(
"gelu" + self._accumulated_op_id(), "Gelu").set_input("x", x)
return [gelu], [[0]]
class TanhParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(TanhParser, self).__init__(graph, var2geop)
self.parser_name = "tanh"
def _apply(self):
x = self._get_ge_input(self.op.input_arg_names[0])
tanh = core.GEOperatorFactory.create_operator(
"tanh" + self._accumulated_op_id(), "Tanh").set_input("x", x)
return [tanh], [[0]]
## loss function
class SoftmaxWithCrossEntropyParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(SoftmaxWithCrossEntropyParser, self).__init__(graph, var2geop)
......@@ -316,80 +706,61 @@ class SoftmaxWithCrossEntropyParser(AscendParserBase):
def _apply(self):
label = self._get_ge_input(self.op.input_arg_names[0])
logits = self._get_ge_input(self.op.input_arg_names[1])
cls_num = self.op.block.var(self.op.input_arg_names[1]).shape[1]
softmax = core.GEOperatorFactory.create_operator(
"softmax" + self._accumulated_op_id(), "SoftmaxV2").set_input(
"x", logits)
"softmax" + self._accumulated_op_id(),
"SoftmaxV2").set_input("x", logits)
label = core.GEOperatorFactory.create_operator(
"cast" + self._accumulated_op_id(), "Cast").set_input(
"x", label).set_attr_int32("dst_type", 3)
tensoron = self._create_ge_tensor([1], 5, 1)
on_const = core.GEOperatorFactory.create_operator(
"const" + self._accumulated_op_id(), "Const").set_attr_tensor(
"value", tensoron)
self._mark_as_input(on_const)
on = core.GEOperatorFactory.create_operator(
"const" + self._accumulated_op_id(),
"Const").set_attr_tensor("value", tensoron)
tensoroff = self._create_ge_tensor([1], 5, 0)
off_const = core.GEOperatorFactory.create_operator(
"const" + self._accumulated_op_id(), "Const").set_attr_tensor(
"value", tensoroff)
self._mark_as_input(off_const)
off = core.GEOperatorFactory.create_operator(
"const" + self._accumulated_op_id(),
"Const").set_attr_tensor("value", tensoroff)
self._mark_as_input(on)
self._mark_as_input(off)
onehot = core.GEOperatorFactory.create_operator(
"onehot" + self._accumulated_op_id(), "OneHotD").set_input(
"x", label).set_input("on_value", on_const).set_input(
"off_value", off_const).set_attr_int32("depth", cls_num)
"x", label).set_input("on_value", on).set_input(
"off_value", off).set_attr_int32("depth", cls_num)
squeeze = core.GEOperatorFactory.create_operator(
"mul" + self._accumulated_op_id(), "Squeeze").set_input("x", onehot)
loss = core.GEOperatorFactory.create_operator(
loss_all = core.GEOperatorFactory.create_operator(
"loss" + self._accumulated_op_id(),
"SoftmaxCrossEntropyWithLogits").set_input(
"features", logits).set_input("labels", squeeze)
return [label, softmax, on_const, off_const, onehot, squeeze,
loss], [[6], [1]]
loss = core.GEOperatorFactory.create_operator(
"cast" + self._accumulated_op_id(), "Cast").set_input(
"x", loss_all, 0).set_attr_int32("dst_type", 0)
loss_expand = core.GEOperatorFactory.create_operator(
"unsqueeze" + self._accumulated_op_id(),
"Unsqueeze").set_input("x", loss).set_attr_vec_int32("axes", [1])
return [label, softmax, loss_expand], [[2], [1]]
class SoftmaxWithCrossEntropyGradParser(AscendParserBase):
class SoftMaxParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(SoftmaxWithCrossEntropyGradParser, self).__init__(graph, var2geop)
self.parser_name = "softmax_with_cross_entropy_grad"
super(SoftMaxParser, self).__init__(graph, var2geop)
self.parser_name = "softmax"
def _apply(self):
label = self._get_ge_input(self.op.input_arg_names[0])
loss_grad = self._get_ge_input(self.op.input_arg_names[1])
softmax = self._get_ge_input(self.op.input_arg_names[2])
cls_num = self.op.block.var(self.op.input_arg_names[2]).shape[1]
logits = self._get_ge_input(self.op.input_arg_names[0])
axes = self.op.attr("axis")
tensoron = self._create_ge_tensor([1], 5, 1)
on_const = core.GEOperatorFactory.create_operator(
"const" + self._accumulated_op_id(), "Const").set_attr_tensor(
"value", tensoron)
self._mark_as_input(on_const)
tensoroff = self._create_ge_tensor([1], 5, 0)
off_const = core.GEOperatorFactory.create_operator(
"const" + self._accumulated_op_id(), "Const").set_attr_tensor(
"value", tensoroff)
self._mark_as_input(off_const)
label = core.GEOperatorFactory.create_operator(
"cast" + self._accumulated_op_id(), "Cast").set_input(
"x", label).set_attr_int32("dst_type", 3)
onehot = core.GEOperatorFactory.create_operator(
"onehot" + self._accumulated_op_id(), "OneHotD").set_input(
"x", label).set_input("on_value", on_const).set_input(
"off_value", off_const).set_attr_int32("depth", cls_num)
# the fuck onehot will add a demension, so must call squeeze afterward
squeeze = core.GEOperatorFactory.create_operator(
"mul" + self._accumulated_op_id(), "Squeeze").set_input("x", onehot)
sub = core.GEOperatorFactory.create_operator(
"sub" + self._accumulated_op_id(), "Sub").set_input(
"x1", softmax).set_input("x2", squeeze)
grad = core.GEOperatorFactory.create_operator(
"mul" + self._accumulated_op_id(), "Mul").set_input(
"x1", loss_grad).set_input("x2", sub)
return [on_const, off_const, label, onehot, squeeze, sub, grad], [[-1]]
softmax = core.GEOperatorFactory.create_operator(
"softmax" + self._accumulated_op_id(), "SoftmaxV2").set_input(
"x", logits).set_attr_vec_int32("axes", [axes])
return [softmax], [[0]]
## general
class ShapeParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(ShapeParser, self).__init__(graph, var2geop)
......@@ -411,16 +782,15 @@ class FillConstantParser(AscendParserBase):
shape = self.op.attr("shape")
dtype = self.op.attr("dtype")
value = self.op.attr("value")
print("shape: ", shape)
print("dtype: ", dtype)
print("value: ", value)
tensor = self._create_ge_tensor(shape, dtype, value)
const = core.GEOperatorFactory.create_operator(
"const" + self._accumulated_op_id(), "Const").set_attr_tensor(
"value", tensor)
"const" + self._accumulated_op_id(),
"Const").set_attr_tensor("value", tensor)
self._mark_as_input(const)
if self.op.block.var(self.op.output('Out')[0]).persistable:
print("%s fill_constant" % (self.op.output('Out')[0]))
#print("%s is Persistable in fill_constant" %
# (self.op.output('Out')[0]))
var = core.GEOperatorFactory.create_operator(
self.op.output('Out')[0], "Variable")
var.update_output_desc("y",
......@@ -432,26 +802,7 @@ class FillConstantParser(AscendParserBase):
"assign" + self._accumulated_op_id(), "Assign").set_input(
"value", const).set_input("ref", var)
return [const], [[0]]
else:
print(
"self.op.output('Out')[0] is not persistable in fill_constant")
return [const], [[0]]
class SGDParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(SGDParser, self).__init__(graph, var2geop)
self.parser_name = "sgd"
def _apply(self):
grad = self._get_ge_input(self.op.input_arg_names[0])
lr = self._get_ge_input(self.op.input_arg_names[1])
param = self._get_ge_input(self.op.input_arg_names[2])
sgd = core.GEOperatorFactory.create_operator(
"momentum" + self._accumulated_op_id(),
"ApplyGradientDescent").set_input("var", param).set_input(
"alpha", lr).set_input("delta", grad)
return [sgd], [[0]]
return [const], [[0]]
class TruncatedNormalParser(AscendParserBase):
......@@ -465,30 +816,27 @@ class TruncatedNormalParser(AscendParserBase):
mean = self.op.attr("mean")
std = self.op.attr("std")
seed = self.op.attr("seed")
tensor1 = self._create_ge_tensor([len(shape)], 2, shape)
shape_tensor = core.GEOperatorFactory.create_operator(
"const" + self._accumulated_op_id(), "Const").set_attr_tensor(
"value", tensor1)
"const" + self._accumulated_op_id(),
"Const").set_attr_tensor("value", tensor1)
tensor2 = self._create_ge_tensor([1], dtype, mean)
mean_tensor = core.GEOperatorFactory.create_operator(
"const" + self._accumulated_op_id(), "Const").set_attr_tensor(
"value", tensor2)
"const" + self._accumulated_op_id(),
"Const").set_attr_tensor("value", tensor2)
tensor3 = self._create_ge_tensor([1], dtype, std)
std_tensor = core.GEOperatorFactory.create_operator(
"const" + self._accumulated_op_id(), "Const").set_attr_tensor(
"value", tensor3)
"const" + self._accumulated_op_id(),
"Const").set_attr_tensor("value", tensor3)
tensor4 = self._create_ge_tensor([1], dtype, mean - 2 * std)
min_tensor = core.GEOperatorFactory.create_operator(
"const" + self._accumulated_op_id(), "Const").set_attr_tensor(
"value", tensor4)
"const" + self._accumulated_op_id(),
"Const").set_attr_tensor("value", tensor4)
tensor5 = self._create_ge_tensor([1], dtype, mean + 2 * std)
max_tensor = core.GEOperatorFactory.create_operator(
"const" + self._accumulated_op_id(), "Const").set_attr_tensor(
"value", tensor5)
"const" + self._accumulated_op_id(),
"Const").set_attr_tensor("value", tensor5)
self._mark_as_input(shape_tensor)
self._mark_as_input(mean_tensor)
......@@ -507,9 +855,8 @@ class TruncatedNormalParser(AscendParserBase):
## wirte the output of truncatedNormal from startup_program to main_program
if self.op.block.var(self.op.output('Out')[0]).persistable:
print("%s is Persistable in truncated_normal" %
(self.op.output('Out')[0]))
#var = core.GEOperatorFactory.create_operator(self.op.output('Out')[0], "Variable").set_input("x", truncated_normal)
#print("%s is Persistable in truncated_normal" %
# (self.op.output('Out')[0]))
var = core.GEOperatorFactory.create_operator(
self.op.output('Out')[0], "Variable")
var.update_output_desc("y",
......@@ -524,66 +871,1313 @@ class TruncatedNormalParser(AscendParserBase):
shape_tensor, mean_tensor, std_tensor, min_tensor, max_tensor,
truncated_normal
], [[-1]]
else:
print(
"self.op.output('Out')[0] is not persistable in truncated_noraml"
)
return [truncated_normal], [[0]] #[assign]
#else:
# print(
# "self.op.output('Out')[0] is not persistable in truncated_noraml"
# )
return [truncated_normal], [[0]]
class ScaleParser(AscendParserBase):
class GatherParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(ScaleParser, self).__init__(graph, var2geop)
self.parser_name = "scale"
super(GatherParser, self).__init__(graph, var2geop)
self.parser_name = "gather"
def _apply(self):
x = self._get_ge_input(self.op.input_arg_names[0])
scale = self.op.attr(
"scale") #self.get_ge_input(self.op.input_arg_names[1])
bias = self.op.attr("bias")
bias_after_scale = self.op.attr("bias_after_scale")
if bias_after_scale:
scale_value = core.GEOperatorFactory.create_operator(
"scale" + self._accumulated_op_id(), "Power").set_input(
"x", x).set_attr_float("power", 1.0).set_attr_float(
index = self._get_ge_input(self.op.input_arg_names[0])
x = self._get_ge_input(self.op.input_arg_names[1])
clo = self.op.block.var(self.op.input_arg_names[1]).shape[-1]
gather = core.GEOperatorFactory.create_operator(
"gather" + self._accumulated_op_id(), "Gather").set_input(
"x", x).set_input("indices", index).set_attr_bool(
"validate_indices", True)
return [gather], [[0]]
class ScatterParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(ScatterParser, self).__init__(graph, var2geop)
self.parser_name = "scatter"
def _apply(self):
index = self._get_ge_input(self.op.input_arg_names[0])
x = self._get_ge_input(self.op.input_arg_names[1])
updates = self._get_ge_input(self.op.input_arg_names[2])
overwrite = self.op.attr("overwrite")
index_shape = self.op.block.var(self.op.input_arg_names[0]).shape
if len(index_shape) == 1:
index = core.GEOperatorFactory.create_operator(
"unsqueeze" + self.getid(), "Unsqueeze").set_input(
"x", index).set_attr_vec_int32("axes", [1])
if not overwrite:
scatter_value = core.GEOperatorFactory.create_operator(
"scatter" + self._accumulated_op_id(),
"TensorScatterAdd").set_input(
"x", x_var).set_input("indices", index_var).set_input(
"updates", updatesi_var)
else:
scatter_value = core.GEOperatorFactory.create_operator(
"scatter" + self._accumulated_op_id(),
"TensorScatterUpdate").set_input(
"x", x_var).set_input("indices", index_var).set_input(
"updates", updates_var)
return [x_var, index_var, updates_var, scatter_value], [[-1]]
class CastParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(CastParser, self).__init__(graph, var2geop)
self.parser_name = "cast"
def _apply(self):
x = self._get_ge_input(self.op.input_arg_names[0])
dtype = self.op.attr("out_dtype")
cast = core.GEOperatorFactory.create_operator(
"cast" + self._accumulated_op_id(), "Cast").set_input(
"x", x).set_attr_int32("dst_type", dtype)
return [cast], [[0]]
class AssignParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(AssignParser, self).__init__(graph, var2geop)
self.parser_name = "assign"
def _apply(self):
const = self._get_ge_input(self.op.input_arg_names[0])
var = self._get_ge_input(self.op.input_arg_names[1])
assign = core.GEOperatorFactory.create_operator(
"assign" + self._accumulated_op_id(), "Assign").set_input(
"value", const).set_input("ref", var)
return [assign], [[0]]
class ScaleParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(ScaleParser, self).__init__(graph, var2geop)
self.parser_name = "scale"
def _apply(self):
x = self._get_ge_input(self.op.input_arg_names[0])
scale = self.op.attr("scale")
bias = self.op.attr("bias")
bias_after_scale = self.op.attr("bias_after_scale")
if bias_after_scale:
scale_value = core.GEOperatorFactory.create_operator(
"scale" + self._accumulated_op_id(), "Power").set_input(
"x", x).set_attr_float("power", 1.0).set_attr_float(
"scale", scale).set_attr_float("shift", bias)
else:
x_add_bias = core.GEOperatorFactory.create_operator(
"adds" + self._accumulated_op_id(), "Adds").set_input(
"x", x).set_attr_float("value",
bias) #set_input("x2", bias)
"x", x).set_attr_float("value", bias)
scale_value = core.GEOperatorFactory.create_operator(
"scale" + self._accumulated_op_id(), "Power").set_input(
"x", x_add_bias).set_attr_float(
"power", 1.0).set_attr_float(
"scale", scale).set_attr_float("shift", 0.0)
#tensor_zeros = core.GEOperatorFactory.create_operator("zeroslike" + self.getid(), "ZerosLike").set_input("x", x)
#bias_ = self.create_ge_tensor([1], 5, bias)
#const_bias = core.GEOperatorFactory.create_operator("const" + self.getid(), "Const").set_attr_tensor("value", tensor_bias)
"x",
x_add_bias).set_attr_float("power", 1.0).set_attr_float(
"scale", scale).set_attr_float("shift", 0.0)
return [scale_value], [[0]]
class SliceParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(SliceParser, self).__init__(graph, var2geop)
self.parser_name = "slice"
def _apply(self):
x = self._get_ge_input(self.op.input_arg_names[0])
axes = self.op.attr("axes")
starts = self.op.attr("starts")
ends = self.op.attr("ends")
x_shape = self.op.block.var(self.op.input_arg_names[0]).shape
len_shape = len(x_shape)
axes_cor = list(range(len_shape))
starts_cor, ends_cor = [], []
cnt = 0
for i in range(len_shape):
starts_cor.append(starts[cnt] if i in axes else 0)
if i in axes and ends[cnt] <= x_shape[i]:
ends_cor.append(ends[cnt])
else:
ends_cor.append(x_shape[i])
if i in axes:
cnt += 1
size = [ends_cor[i] - starts_cor[i] for i in range(len(axes_cor))]
assert len(axes_cor) == len(starts_cor) == len(
ends_cor), "the three fields must have same size"
slice_value = core.GEOperatorFactory.create_operator(
"slice" + self._accumulated_op_id(), "SliceD").set_input(
"x", x).set_attr_vec_int32(
"offsets", starts_cor).set_attr_vec_int32("size", size)
return [slice_value], [[0]]
class ReshapeParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(ReshapeParser, self).__init__(graph, var2geop)
self.parser_name = "reshape2"
def _apply(self):
print("swbuf:", self.op.input_arg_names)
org_shape = self.op.block.var(self.op.input_arg_names[0]).shape
assert org_shape.count(-1) == 0, "do not allow the dim is -1"
shape = self.op.attr("shape")
axis = 0
if shape[0] == -1:
axis = 1
shape = shape[1:]
print("shape: ", shape)
data_x1_shape = self._get_ge_input(self.op.input_arg_names[0])
for cnt in range(len(shape)):
if shape[cnt] == 0:
shape[cnt] = org_shape[cnt]
if -1 in shape:
assert shape.count(-1) == 1, "only allow one dim is -1"
mul_res_org = reduce(lambda x, y: x * y, org_shape)
mul_res_refine = reduce(lambda x, y: x * y, shape) * -1
idx = shape.index(-1)
shape[idx] = mul_res_org // mul_res_refine
x = self._get_ge_input(self.op.input_arg_names[0])
tensor = self._create_ge_tensor([len(shape)], 2, shape)
const_shape = core.GEOperatorFactory.create_operator(
"shape" + self._accumulated_op_id(), "Const").set_attr_tensor(
"value", tensor)
"shape" + self._accumulated_op_id(),
"Const").set_attr_tensor("value", tensor)
reshape = core.GEOperatorFactory.create_operator(
"reshape" + self._accumulated_op_id(), "Reshape").set_input(
"x", data_x1_shape).set_input(
"shape", const_shape).set_attr_int32("axis", axis)
"x",
x).set_input("shape", const_shape).set_attr_int32("axis", 0)
x_shape = core.GEOperatorFactory.create_operator(
"shape" + self._accumulated_op_id(), "Shape").set_input("x", x)
return [x_shape, reshape], [[1], [0]]
class TransposeParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(TransposeParser, self).__init__(graph, var2geop)
self.parser_name = "transpose2"
def _apply(self):
x = self._get_ge_input(self.op.input_arg_names[0])
perm = self.op.attr("axis")
transpose = core.GEOperatorFactory.create_operator(
"transpose" + self._accumulated_op_id(), "TransposeD").set_input(
"x", x).set_attr_vec_int32("perm", perm)
x_shape = core.GEOperatorFactory.create_operator(
"shape" + self._accumulated_op_id(), "Shape").set_input("x", x)
return [x_shape, transpose], [[1], [0]]
class AccuracyParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(AccuracyParser, self).__init__(graph, var2geop)
self.parser_name = "accuracy"
def _apply(self):
pred = self._get_ge_input(self.op.input_arg_names[0])
label = self._get_ge_input(self.op.input_arg_names[1])
logits = self._get_ge_input(self.op.input_arg_names[2])
pred = core.GEOperatorFactory.create_operator(
"cast" + self._accumulated_op_id(), "Cast").set_input(
"x", pred).set_attr_int32("dst_type", 3)
label = core.GEOperatorFactory.create_operator(
"cast" + self._accumulated_op_id(), "Cast").set_input(
"x", label).set_attr_int32("dst_type", 3)
equal = core.GEOperatorFactory.create_operator(
"equal" + self._accumulated_op_id(), "Equal").set_input(
"x1", pred).set_input("x2", label)
cast = core.GEOperatorFactory.create_operator(
"cast" + self._accumulated_op_id(), "Cast").set_input(
"x", equal).set_attr_int32("dst_type", 0)
acc = core.GEOperatorFactory.create_operator(
"mean" + self._accumulated_op_id(), "ReduceMeanD").set_input(
"x", cast).set_attr_bool("keep_dims", False).set_attr_vec_int32(
"axes", [])
correct = core.GEOperatorFactory.create_operator(
"sum" + self._accumulated_op_id(), "ReduceSumD").set_input(
"x", cast).set_attr_bool("keep_dims", False).set_attr_vec_int32(
"axes", [])
ones_tensor = core.GEOperatorFactory.create_operator(
"oneslike" + self._accumulated_op_id(),
"OnesLike").set_input("x", label)
ones_tensor = core.GEOperatorFactory.create_operator(
"cast" + self._accumulated_op_id(), "Cast").set_input(
"x", ones_tensor).set_attr_int32("dst_type", 0)
total = core.GEOperatorFactory.create_operator(
"sum" + self._accumulated_op_id(), "ReduceSumD").set_input(
"x", ones_tensor).set_attr_bool(
"keep_dims", False).set_attr_vec_int32("axes", [])
return [acc, correct, total], [[0], [1], [2]]
class TopkParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(TopkParser, self).__init__(graph, var2geop)
self.parser_name = "top_k"
def _apply(self):
x = self._get_ge_input(self.op.input_arg_names[0])
k = self.op.attr("k")
tensor = self._create_ge_tensor([1], 2, k)
const_k = core.GEOperatorFactory.create_operator(
"const" + self._accumulated_op_id(),
"Const").set_attr_tensor("value", tensor)
cast_x = core.GEOperatorFactory.create_operator(
"cast" + self._accumulated_op_id(),
"Cast").set_input("x", x).set_attr_int32("dst_type", 1)
topk = core.GEOperatorFactory.create_operator(
"topk" + self._accumulated_op_id(),
"TopK").set_input("x", cast_x).set_input("k", const_k)
value = core.GEOperatorFactory.create_operator(
"cast" + self._accumulated_op_id(), "Cast").set_input(
"x", topk, 0).set_attr_int32("dst_type", 0)
index = core.GEOperatorFactory.create_operator(
"cast" + self._accumulated_op_id(), "Cast").set_input(
"x", topk, 1).set_attr_int32("dst_type", 0)
return [value, index], [[1], [0]]
class LookupTableParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(LookupTableParser, self).__init__(graph, var2geop)
self.parser_name = "lookup_table"
def _apply(self):
ids = self._get_ge_input(self.op.input_arg_names[0])
w = self._get_ge_input(self.op.input_arg_names[1])
ids_squeeze = core.GEOperatorFactory.create_operator(
"squeeze" + self._accumulated_op_id(), "Squeeze").set_input(
"x", ids).set_attr_vec_int32("axes", [-1])
out = core.GEOperatorFactory.create_operator(
"lookup" + self._accumulated_op_id(), "Gather").set_input(
"x", w).set_input("indices", ids_squeeze)
return [out], [[0]]
class StackParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(StackParser, self).__init__(graph, var2geop)
self.parser_name = "stack"
def _apply(self):
tiles = len(self.op.input_arg_names)
data_x_lst = []
for index in range(tiles):
data_x_lst.append(
self._get_ge_input(self.op.input_arg_names[index]))
axis = self.op.attr("axis")
data_x = data_x_lst[0]
tensor = self._create_ge_tensor([1], 2, axis)
tensor_axis = core.GEOperatorFactory.create_operator(
"axis" + self._accumulated_op_id(),
"Const").set_attr_tensor("value", tensor)
expand = core.GEOperatorFactory.create_operator(
"expand" + self._accumulated_op_id(),
"ExpandDims").set_input("x", data_x).set_input("axis", tensor_axis)
stack = core.GEOperatorFactory.create_operator(
"stack" + self._accumulated_op_id(),
"TileWithAxis").set_input("x", expand).set_attr_int32(
"axis", axis).set_attr_int32("tiles", tiles)
return [stack], [[0]]
class UnSqueezeParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(UnSqueezeParser, self).__init__(graph, var2geop)
self.parser_name = "unsqueeze2"
def _apply(self):
x = self._get_ge_input(self.op.input_arg_names[0])
axes = self.op.attr('axes')
output = core.GEOperatorFactory.create_operator(
"unsqueeze" + self._accumulated_op_id(),
"Unsqueeze").set_input("x", x).set_attr_vec_int32("axes", axes)
shape = core.GEOperatorFactory.create_operator(
"shape" + self._accumulated_op_id(), "Shape").set_input("x", output)
return [shape, output], [[1], [0]]
## parallel
class AllGatherParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(AllGatherParser, self).__init__(graph, var2geop)
self.parser_name = "c_allgather"
def _apply(self):
x = self._get_ge_input(self.op.input_arg_names[0])
rank_size = self.op.attr("rank_size")
group = self.op.attr("group")
allgather = core.GEOperatorFactory.create_operator(
"allgather" + self._accumulated_op_id(), "HcomAllGather").set_input(
"x", x).set_attr_int32(
"rank_size", rank_size).set_attr_string("group", group)
return [allgather], [[0]]
class AllReduceParser(AscendParserBase):
def __init__(self, graph, var2geop, reduction):
super(AllReduceParser, self).__init__(graph, var2geop)
self.parser_name = "c_allreduce_" + reduction
self.reduction = reduction
def _apply(self):
x = self._get_ge_input(self.op.input_arg_names[0])
reduction = self.reduction
ring_id = self.op.attr("ring_id")
group = "hcom_group_" + str(ring_id)
fusion = None #self.op.attr("fusion")
fusion_id = None #self.op.attr("fusion_id")
allreduce = core.GEOperatorFactory.create_operator(
"allreduce" + self._accumulated_op_id(), "HcomAllReduce").set_input(
"x", x).set_attr_string(
"reduction", reduction).set_attr_string("group", group)
if fusion is not None:
allreduce.set_attr_int32("fusion", fusion)
if fusion_id is not None:
allreduce.set_attr_int32("fusion_id", fusion_id)
return [allreduce], [[0]]
class AllReduceSumParser(AllReduceParser):
def __init__(self, graph, var2geop):
super(AllReduceSumParser, self).__init__(graph, var2geop, 'sum')
class AllReduceMaxParser(AllReduceParser):
def __init__(self, graph, var2geop):
super(AllReduceMaxParser, self).__init__(graph, var2geop, 'max')
class BroadcastParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(BroadcastParser, self).__init__(graph, var2geop)
self.parser_name = "c_broadcast"
def _apply(self):
x = self._get_ge_input(self.op.input_arg_names[0])
root_rank = self.op.attr("root_rank")
group = self.op.attr("group")
broadcast = core.GEOperatorFactory.create_operator(
"broadcast" + self._accumulated_op_id(), "HcomBroadcast").set_input(
"x", x).set_attr_int32(
"root_rank", root_rank).set_attr_string("group", group)
return [broadcast], [[0]]
class ReduceScatterParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(ReduceScatterParser, self).__init__(graph, var2geop)
self.parser_name = "c_reduce_scatter"
def _apply(self):
x = self._get_ge_input(self.op.input_arg_names[0])
reduction = self.op.attr("reduction")
group = self.op.attr("group")
rank_size = self.op.attr("rank_size")
reduce_scatter = core.GEOperatorFactory.create_operator(
"reducescatter" + self._accumulated_op_id(),
"HcomReduceScatter").set_input("x", x).set_attr_string(
"reduction", reduction).set_attr_string(
"group", group).set_attr_int32("rank_size", rank_size)
return [reduce_scatter], [[0]]
class SendParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(SendParser, self).__init__(graph, var2geop)
self.parser_name = "c_send"
def _apply(self):
x = self._get_ge_input(self.op.input_arg_names[0])
sr_tag = self.op.attr("sr_tag")
dest_rank = self.op.attr("dest_rank")
group = self.op.attr("group")
send = core.GEOperatorFactory.create_operator(
"send" + self._accumulated_op_id(), "HcomSend").set_input(
"x", x).set_attr_int32("sr_tag", sr_tag).set_attr_int32(
"dest_rank", dest_rank).set_attr_string("group", group)
return [send], [[0]]
class ReceiveParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(ReceiveParser, self).__init__(graph, var2geop)
self.parser_name = "c_receive"
def _apply(self):
x = self._get_ge_input(self.op.input_arg_names[0])
sr_tag = self.op.attr("sr_tag")
src_rank = self.op.attr("src_rank")
group = self.op.attr("group")
shape = self.op.attr("shape")
dtype = self.op.attr("dtype")
receive = core.GEOperatorFactory.create_operator(
"receive" + self._accumulated_op_id(), "HcomReceive").set_input(
"x", x).set_attr_int32("sr_tag", sr_tag).set_attr_int32(
"src_rank", src_rank).set_attr_string(
"group", group).set_attr_vec_int32(
"shape", shape).set_attr_int32("dtype", dtype)
return [receive], [[0]]
class RangeParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(RangeParser, self).__init__(graph, var2geop)
self.parser_name = "range"
def _apply(self):
# TODO not support range type yet
start = self._get_ge_input(self.op.input_arg_names[0])
end = self._get_ge_input(self.op.input_arg_names[1])
delta = self._get_ge_input(self.op.input_arg_names[2])
ge_range = core.GEOperatorFactory.create_operator(
"range" + self._accumulated_op_id(), "Range")\
.set_input("start", end)\
.set_input("limit", start) \
.set_input("delta", delta)
return [ge_range], [[0]]
class UniformRandomParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(UniformRandomParser, self).__init__(graph, var2geop)
self.parser_name = "uniform_random"
def _apply(self):
shape = self.op.attr("shape")
min_v = self.op.attr("min")
max_v = self.op.attr("max")
seed = self.op.attr("seed")
dtype = self.op.attr("dtype")
assert max_v > min_v, "assert max_v > min_v, but recieved " + \
"as max_v={}, min_v={} ".format(max_v, min_v)
tensor1 = self._create_ge_tensor([len(shape)], 2, shape)
shape_tensor = core.GEOperatorFactory.create_operator(
"const" + self._accumulated_op_id(),
"Const").set_attr_tensor("value", tensor1)
ge_ur = core.GEOperatorFactory.create_operator(
"uniform_random" + self._accumulated_op_id(), "RandomUniform")\
.set_input("shape", shape_tensor)\
.set_attr_dtype("dtype", self.ascend_helper.dtype2ge(dtype)) \
.set_attr_int32("seed", seed)\
.set_attr_int32("seed2", seed)
scale = max_v - min_v
scale_value = core.GEOperatorFactory.create_operator(
"scale" + self._accumulated_op_id(), "Power").set_input(
"x", ge_ur).set_attr_float("power", 1.0).set_attr_float(
"scale", scale).set_attr_float("shift", min_v)
return [scale_value], [[0]]
class EqualParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(EqualParser, self).__init__(graph, var2geop)
self.parser_name = "equal"
def _apply(self):
data_x1 = self._get_ge_input(self.op.input_arg_names[0])
data_x2 = self._get_ge_input(self.op.input_arg_names[1])
equal = core.GEOperatorFactory.create_operator("equal" \
+ self._accumulated_op_id(), "Equal")\
.set_input("x1", data_x1)\
.set_input("x2", data_x2)
return [equal], [[0]]
class ExpandParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(ExpandParser, self).__init__(graph, var2geop)
self.parser_name = "expand"
def _apply(self):
data_x1_shape = self._get_ge_input(self.op.input_arg_names[0])
expand_times = self.op.attr('expand_times')
tensor = self._create_ge_tensor([len(expand_times)], 2, expand_times)
expand_tensor = core.GEOperatorFactory.\
create_operator("const" + self._accumulated_op_id(), "Const")\
.set_attr_tensor("value", tensor)
assign = core.GEOperatorFactory\
.create_operator("tile" + self._accumulated_op_id(), "Tile")\
.set_input("x", data_x1_shape)\
.set_input("multiples", expand_tensor)
return [assign], [[0]]
class SqueezeParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(SqueezeParser, self).__init__(graph, var2geop)
self.parser_name = "squeeze2"
def _apply(self):
tensor = self._get_ge_input(self.op.input_arg_names[0])
axes = self.op.attr("axes")
data_squeezed = core.GEOperatorFactory\
.create_operator("squeeze" + self._accumulated_op_id(), "Squeeze")\
.set_input("x", tensor)\
.set_attr_vec_int32("axes", axes)
shape = core.GEOperatorFactory.create_operator(
"shape" + self._accumulated_op_id(),
"Shape").set_input("x", data_squeezed)
return [shape, data_squeezed], [[1], [0]]
#****************************************************************#
#*************************** *************************#
#*************************** *************************#
#*************************** GradParser *************************#
#*************************** *************************#
#*************************** *************************#
#****************************************************************#
## grad
class ReduceSumGradParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(ReduceSumGradParser, self).__init__(graph, var2geop)
self.parser_name = "reduce_sum_grad"
def _apply(self):
x = self._get_ge_input(self.op.input_arg_names[0])
input = self._get_ge_input(self.op.input_arg_names[1])
shape_tensor = core.GEOperatorFactory.create_operator(
"shape" + self._accumulated_op_id(),
"Shape").set_input("x", input, 0)
tensoron = self._create_ge_tensor([1], 2, -1)
const = core.GEOperatorFactory.create_operator(
"const" + self._accumulated_op_id(),
"Const").set_attr_tensor("value", tensoron)
self._mark_as_input(const)
reduce_sum = core.GEOperatorFactory.create_operator(
"broadcast_to_d" + self._accumulated_op_id(),
"BroadcastTo").set_input("x", x).set_input("shape", shape_tensor)
#reduce_sum = core.GEOperatorFactory.create_operator("expand" + self._accumulated_op_id(), "ExpandDims").set_input("x", reduce_sum).set_input("axis", const)
return [reduce_sum], [[0]]
class MatMulGradParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(MatMulGradParser, self).__init__(graph, var2geop)
self.parser_name = "matmul_grad"
def _apply(self):
out_grad = self._get_ge_input(self.op.input_arg_names[0])
x = self._get_ge_input(self.op.input_arg_names[1])
y = self._get_ge_input(self.op.input_arg_names[2])
transpose_x = self.op.attr("transpose_X")
transpose_y = self.op.attr("transpose_Y")
out_grad_shape = self.op.block.var(self.op.input_arg_names[0]).shape
x_shape = self.op.block.var(self.op.input_arg_names[1]).shape
y_shape = self.op.block.var(self.op.input_arg_names[2]).shape
if len(x_shape) > 2:
if transpose_y:
x_grad = core.GEOperatorFactory.create_operator(
self.parser_name + self._accumulated_op_id(),
"BatchMatMul").set_input("x1", out_grad).set_input(
"x2", y).set_attr_bool(
"adj_x1", False).set_attr_bool("adj_x2", False)
y_grad = core.GEOperatorFactory.create_operator(
self.parser_name + self._accumulated_op_id(),
"BatchMatMul").set_input("x1", out_grad).set_input(
"x2", x).set_attr_bool(
"adj_x1", True).set_attr_bool("adj_x2", False)
else:
x_grad = core.GEOperatorFactory.create_operator(
self.parser_name + self._accumulated_op_id(),
"BatchMatMul").set_input("x1", out_grad).set_input(
"x2", y).set_attr_bool(
"adj_x1", False).set_attr_bool("adj_x2", True)
y_grad = core.GEOperatorFactory.create_operator(
self.parser_name + self._accumulated_op_id(),
"BatchMatMul").set_input("x1", x).set_input(
"x2", out_grad).set_attr_bool(
"adj_x1", True).set_attr_bool("adj_x2", False)
else:
if transpose_y:
x_grad = core.GEOperatorFactory.create_operator(
self.parser_name + self._accumulated_op_id(),
"MatMul").set_input("x1", out_grad).set_input(
"x2", y).set_attr_bool(
"transpose_x1", False).set_attr_bool("transpose_x2",
False)
y_grad = core.GEOperatorFactory.create_operator(
self.parser_name + self._accumulated_op_id(),
"MatMul").set_input("x1", out_grad).set_input(
"x2", x).set_attr_bool(
"transpose_x1", True).set_attr_bool("transpose_x2",
False)
else:
x_grad = core.GEOperatorFactory.create_operator(
self.parser_name + self._accumulated_op_id(),
"MatMul").set_input("x1", out_grad).set_input(
"x2", y).set_attr_bool(
"transpose_x1", False).set_attr_bool("transpose_x2",
True)
y_grad = core.GEOperatorFactory.create_operator(
self.parser_name + self._accumulated_op_id(),
"MatMul").set_input("x1", x).set_input(
"x2", out_grad).set_attr_bool(
"transpose_x1", True).set_attr_bool("transpose_x2",
False)
return [x_grad, y_grad], [[0], [1]]
class MulGradParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(MulGradParser, self).__init__(graph, var2geop)
self.parser_name = "mul_grad"
def _apply(self):
out_grad = self._get_ge_input(self.op.input_arg_names[0])
x = self._get_ge_input(self.op.input_arg_names[1])
y = self._get_ge_input(self.op.input_arg_names[2])
x_num_col_dims = self.op.attr("x_num_col_dims")
y_num_col_dims = self.op.attr("y_num_col_dims")
shape_out_grad = self.op.block.var(self.op.input_arg_names[0]).shape
shape_x = self.op.block.var(self.op.input_arg_names[1]).shape
shape_y = self.op.block.var(self.op.input_arg_names[2]).shape
if x_num_col_dims == 1 and y_num_col_dims == 1:
if len(shape_x) == 2 and len(shape_y) == 2:
x_grad = core.GEOperatorFactory.create_operator(
self.parser_name + self._accumulated_op_id(),
"MatMul").set_input("x1", out_grad).set_input(
"x2", y).set_attr_bool(
"transpose_x1", False).set_attr_bool("transpose_x2",
True)
y_grad = core.GEOperatorFactory.create_operator(
self.parser_name + self._accumulated_op_id(),
"MatMul").set_input("x1", x).set_input(
"x2", out_grad).set_attr_bool(
"transpose_x1", True).set_attr_bool("transpose_x2",
False)
elif len(shape_x) == 3 and len(shape_y) == 2:
flatten_x = core.GEOperatorFactory.create_operator(
"flatten" + self._accumulated_op_id(),
"Flatten").set_input("x", x)
x_grad = core.GEOperatorFactory.create_operator(
self.parser_name + self._accumulated_op_id(),
"MatMul").set_input(
"x1", out_grad).set_input("x2", y).set_attr_bool(
"transpose_x1",
False).set_attr_bool("transpose_x2", True)
if len(shape_out_grad) == 2:
x_grad = core.GEOperatorFactory.create_operator(
"unsqueeze" + self._accumulated_op_id(),
"Unsqueeze").set_input("x", x_grad).set_attr_vec_int32(
"axes", [1])
y_grad = core.GEOperatorFactory.create_operator(
self.parser_name + self._accumulated_op_id(),
"MatMul").set_input(
"x1",
flatten_x).set_input("x2", out_grad).set_attr_bool(
"transpose_x1",
True).set_attr_bool("transpose_x2", False)
else:
if len(shape_x) == 3 and len(shape_y) == 2:
assert x_num_col_dims == 2, "only support 2"
flatten_x = core.GEOperatorFactory.create_operator(
"flatten" + self._accumulated_op_id(),
"FlattenV2").set_input("x", x).set_attr_int32(
"axis", 0).set_attr_int32("end_axis", 1)
flatten_out_grad = core.GEOperatorFactory.create_operator(
"flatten" + self._accumulated_op_id(),
"FlattenV2").set_input("x", out_grad).set_attr_int32(
"axis", 0).set_attr_int32("end_axis", 1)
y_unsqueeze = core.GEOperatorFactory.create_operator(
"unsqueeze" + self._accumulated_op_id(),
"Unsqueeze").set_input("x",
y).set_attr_vec_int32("axes", [0])
x_grad = core.GEOperatorFactory.create_operator(
self.parser_name + self._accumulated_op_id(),
"BatchMatMul").set_input("x1", out_grad).set_input(
"x2", y_unsqueeze).set_attr_bool(
"adj_x1", False).set_attr_bool("adj_x2", True)
y_grad = core.GEOperatorFactory.create_operator(
self.parser_name + self._accumulated_op_id(),
"MatMul").set_input("x1", flatten_x).set_input(
"x2", flatten_out_grad).set_attr_bool(
"transpose_x1",
True).set_attr_bool("transpose_x2", False)
return [x_grad, y_grad], [[0], [1]]
class ReluGradParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(ReluGradParser, self).__init__(graph, var2geop)
self.parser_name = "relu_grad"
def _apply(self):
out = self._get_ge_input(self.op.input_arg_names[0])
out_grad = self._get_ge_input(self.op.input_arg_names[1])
relu_grad = core.GEOperatorFactory.create_operator(
self.parser_name + self._accumulated_op_id(), "ReluGrad").set_input(
"gradients", out_grad).set_input("features", out)
return [relu_grad], [[0]]
class SoftmaxWithCrossEntropyGradParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(SoftmaxWithCrossEntropyGradParser, self).__init__(graph, var2geop)
self.parser_name = "softmax_with_cross_entropy_grad"
def _apply(self):
label = self._get_ge_input(self.op.input_arg_names[0])
loss_grad = self._get_ge_input(self.op.input_arg_names[1])
softmax = self._get_ge_input(self.op.input_arg_names[2])
cls_num = self.op.block.var(self.op.input_arg_names[2]).shape[1]
label_shape = self.op.block.var(self.op.input_arg_names[0]).shape
loss_grad_shape = self.op.block.var(self.op.input_arg_names[1]).shape
softmax_shape = self.op.block.var(self.op.input_arg_names[2]).shape
tensoron = self._create_ge_tensor([1], 5, 1)
on = core.GEOperatorFactory.create_operator(
"const" + self._accumulated_op_id(),
"Const").set_attr_tensor("value", tensoron)
tensoroff = self._create_ge_tensor([1], 5, 0)
off = core.GEOperatorFactory.create_operator(
"const" + self._accumulated_op_id(),
"Const").set_attr_tensor("value", tensoroff)
self._mark_as_input(on)
self._mark_as_input(off)
label = core.GEOperatorFactory.create_operator(
"cast" + self._accumulated_op_id(), "Cast").set_input(
"x", label).set_attr_int32("dst_type", 3)
onehot = core.GEOperatorFactory.create_operator(
"onehot" + self._accumulated_op_id(), "OneHotD").set_input(
"x", label).set_input("on_value", on).set_input(
"off_value", off).set_attr_int32("depth", cls_num)
squeeze = core.GEOperatorFactory.create_operator(
"suqeeze" + self._accumulated_op_id(),
"Squeeze").set_input("x", onehot)
sub = core.GEOperatorFactory.create_operator(
"sub" + self._accumulated_op_id(), "Sub").set_input(
"x1", softmax).set_input("x2", squeeze)
grad = core.GEOperatorFactory.create_operator(
"mul" + self._accumulated_op_id(),
"Mul").set_input("x1", loss_grad).set_input("x2", sub)
return [on, off, label, onehot, grad], [[-1]]
class DotMulGradParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(DotMulGradParser, self).__init__(graph, var2geop)
self.parser_name = "elementwise_mul_grad"
def _apply(self):
out_grad = self._get_ge_input(self.op.input_arg_names[0])
out_1 = self._get_ge_input(self.op.input_arg_names[1])
out_2 = self._get_ge_input(self.op.input_arg_names[2])
x_grad = core.GEOperatorFactory.create_operator(
self.parser_name + self._accumulated_op_id(),
"Mul").set_input("x1", out_grad).set_input("x2", out_2)
y_grad = core.GEOperatorFactory.create_operator(
self.parser_name + self._accumulated_op_id(),
"Mul").set_input("x1", out_1).set_input("x2", out_grad)
return [x_grad, y_grad], [[0], [1]]
class DotAddGradParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(DotAddGradParser, self).__init__(graph, var2geop)
self.parser_name = "elementwise_add_grad"
def _apply(self):
out_grad = self._get_ge_input(self.op.input_arg_names[0])
out_1 = self._get_ge_input(self.op.input_arg_names[1])
out_2 = self._get_ge_input(self.op.input_arg_names[2])
out_grad_shape = self.op.block.var(self.op.input_arg_names[0]).shape
out_1_shape = self.op.block.var(self.op.input_arg_names[1]).shape
out_2_shape = self.op.block.var(self.op.input_arg_names[2]).shape
x_grad = out_grad
cur_time_x = len(out_grad_shape) - len(out_1_shape)
for i in range(cur_time_x):
x_grad = core.GEOperatorFactory.create_operator(
self.parser_name + self._accumulated_op_id(),
"ReduceSumD").set_input("x", x_grad).set_attr_vec_int32(
"axes", [0]).set_attr_bool("keep_dims", False)
for axis, size in enumerate(out_1_shape):
if size == 1:
x_grad = core.GEOperatorFactory.create_operator(
self.parser_name + self._accumulated_op_id(),
"ReduceSumD").set_input("x", x_grad).set_attr_vec_int32(
"axes", [axis]).set_attr_bool("keep_dims", True)
y_grad = out_grad
cur_time_y = len(out_grad_shape) - len(out_2_shape)
for i in range(cur_time_y):
y_grad = core.GEOperatorFactory.create_operator(
self.parser_name + self._accumulated_op_id(),
"ReduceSumD").set_input("x", y_grad).set_attr_vec_int32(
"axes", [0]).set_attr_bool("keep_dims", False)
for axis, size in enumerate(out_2_shape):
if size == 1:
y_grad = core.GEOperatorFactory.create_operator(
self.parser_name + self._accumulated_op_id(),
"ReduceSumD").set_input("x", y_grad).set_attr_vec_int32(
"axes", [axis]).set_attr_bool("keep_dims", True)
return [x_grad, y_grad], [[0], [1]]
class DotDivGradParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(DotDivGradParser, self).__init__(graph, var2geop)
self.parser_name = "elementwise_div_grad"
def _apply(self):
out = self._get_ge_input(self.op.input_arg_names[0])
out_grad = self._get_ge_input(self.op.input_arg_names[1])
x = self._get_ge_input(self.op.input_arg_names[2])
y = self._get_ge_input(self.op.input_arg_names[3])
y_power = core.GEOperatorFactory.create_operator(
"power" + self._accumulated_op_id(), "Power").set_input(
"x", y).set_attr_float("power", -1)
tensor_zeros = core.GEOperatorFactory.create_operator(
"zeroslike" + self._accumulated_op_id(),
"ZerosLike").set_input("x", x)
x_zero = core.GEOperatorFactory.create_operator(
"equal" + self._accumulated_op_id(), "Equal").set_input(
"x1", x).set_input("x2", tensor_zeros)
x_nozero = core.GEOperatorFactory.create_operator(
"logical_not" + self._accumulated_op_id(),
"LogicalNot").set_input("x", x_zero)
x_nozero_f = core.GEOperatorFactory.create_operator(
"cast" + self._accumulated_op_id(), "Cast").set_input(
"x", x_nozero).set_attr_int32("dst_type", 0)
x_grad_w = core.GEOperatorFactory.create_operator(
"mul" + self._accumulated_op_id(), "Mul").set_input(
"x1", x_nozero_f).set_input("x2", y_power)
x_grad = core.GEOperatorFactory.create_operator(
self.parser_name + self._accumulated_op_id(),
"Mul").set_input("x1", x_grad_w).set_input("x2", out_grad)
y_grad_w = core.GEOperatorFactory.create_operator(
"mul" + self._accumulated_op_id(), "Mul").set_input(
"x1", out).set_input("x2", y_power)
y_grad = core.GEOperatorFactory.create_operator(
"mul" + self._accumulated_op_id(), "Mul").set_input(
"x1", y_grad_w).set_input("x2", out_grad)
return [x_grad, y_grad], [[0], [1]]
class SoftmaxGradParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(SoftmaxGradParser, self).__init__(graph, var2geop)
self.parser_name = "softmax_grad"
def _apply(self):
out = self._get_ge_input(self.op.input_arg_names[0])
out_grad = self._get_ge_input(self.op.input_arg_names[1])
x_grad = core.GEOperatorFactory.create_operator(
self.parser_name + self._accumulated_op_id(),
"SoftmaxGrad").set_input("softmax", out).set_input("grad_softmax",
out_grad)
return [x_grad], [[0]]
class ReshapeGradParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(ReshapeGradParser, self).__init__(graph, var2geop)
self.parser_name = "reshape2_grad"
def _apply(self):
out_grad = self._get_ge_input(self.op.input_arg_names[0])
x_shape = self._get_ge_input(self.op.input_arg_names[1])
x_shape_list = self.op.block.var(self.op.input_arg_names[1]).shape
if x_shape_list[0] == 0:
x_shape_delzero = x_shape_list[1:]
tensor = self._create_ge_tensor([len(x_shape_delzero)], 2,
x_shape_delzero)
const_shape = core.GEOperatorFactory.create_operator(
"shape" + self._accumulated_op_id(),
"Const").set_attr_tensor("value", tensor)
x_grad = core.GEOperatorFactory.create_operator(
"reshape" + self._accumulated_op_id(), "Reshape").set_input(
"x", out_grad).set_input("shape", const_shape)
return [x_grad], [[0]]
return [reshape, reshape], [[0], [1]]
class GatherGradParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(GatherGradParser, self).__init__(graph, var2geop)
self.parser_name = "gather_grad"
def _apply(self):
index = self._get_ge_input(self.op.input_arg_names[0])
out_grad = self._get_ge_input(self.op.input_arg_names[1])
x = self._get_ge_input(self.op.input_arg_names[2])
index_shape = self.op.block.var(self.op.input_arg_names[0]).shape
out_grad_shape = self.op.block.var(self.op.input_arg_names[1]).shape
x_shape = self.op.block.var(self.op.input_arg_names[2]).shape
if len(index_shape) == 1:
index = core.GEOperatorFactory.create_operator(
"unsqueeze" + self._accumulated_op_id(), "Unsqueeze").set_input(
"x", index).set_attr_vec_int32("axes", [1])
tensor_zeros = core.GEOperatorFactory.create_operator(
"zeroslike" + self._accumulated_op_id(),
"ZerosLike").set_input("x", x)
x_grad = core.GEOperatorFactory.create_operator(
"scatter" + self._accumulated_op_id(),
"TensorScatterUpdate").set_input("x", tensor_zeros).set_input(
"indices", index).set_input("updates", out_grad)
return [tensor_zeros, x_grad], [[-1]]
class TransposeGradParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(TransposeGradParser, self).__init__(graph, var2geop)
self.parser_name = "transpose2_grad"
def _apply(self):
out_grad = self._get_ge_input(self.op.input_arg_names[0])
x = self._get_ge_input(self.op.input_arg_names[1])
perm = self.op.attr("axis")
x_shape = self.op.block.var(self.op.input_arg_names[1]).shape[1:]
out_grad_shape = self.op.block.var(self.op.input_arg_names[0]).shape
assert list(map(lambda x: out_grad_shape[x], perm)) == list(x_shape)
x_grad = core.GEOperatorFactory.create_operator(
"transpose" + self._accumulated_op_id(), "TransposeD").set_input(
"x", out_grad).set_attr_vec_int32("perm", perm)
return [x_grad], [[0]]
class LayerNormGradParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(LayerNormGradParser, self).__init__(graph, var2geop)
self.parser_name = "layer_norm_grad"
def _apply(self):
bias = self._get_ge_input(self.op.input_arg_names[0])
mean = self._get_ge_input(self.op.input_arg_names[1])
scale = self._get_ge_input(self.op.input_arg_names[2])
variance = self._get_ge_input(self.op.input_arg_names[3])
x = self._get_ge_input(self.op.input_arg_names[4])
out_grad = self._get_ge_input(self.op.input_arg_names[5])
x_dtype = self.op.block.var(self.op.input_arg_names[4]).dtype
x_grad = core.GEOperatorFactory.create_operator(
self.parser_name + self._accumulated_op_id(),
"LayerNormGrad").set_input("dy", out_grad).set_input(
"x", x).set_input("variance", variance).set_input(
"mean", mean).set_input("gamma", scale)
cast_dtype = 0 if self.ascend_helper.dtype2paddle_inv_map[str(
x_dtype)] == 0 else 1
out_x_grad = core.GEOperatorFactory.create_operator(
"cast" + self._accumulated_op_id(), "Cast").set_input(
"x", x_grad, 0).set_attr_int32("dst_type", cast_dtype)
out_scale_grad = core.GEOperatorFactory.create_operator(
"cast" + self._accumulated_op_id(), "Cast").set_input(
"x", x_grad, 1).set_attr_int32("dst_type", cast_dtype)
out_bias_grad = core.GEOperatorFactory.create_operator(
"cast" + self._accumulated_op_id(), "Cast").set_input(
"x", x_grad, 2).set_attr_int32("dst_type", cast_dtype)
return [out_x_grad, out_scale_grad, out_bias_grad], [[2], [1], [0]]
class TanhGradParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(TanhGradParser, self).__init__(graph, var2geop)
self.parser_name = 'tanh_grad'
def _apply(self):
y = self._get_ge_input(self.op.input_arg_names[0])
out_grad = self._get_ge_input(self.op.input_arg_names[1])
tanh_grad = core.GEOperatorFactory.create_operator(
"tanh_grad" + self._accumulated_op_id(),
"TanhGrad").set_input("y", y).set_input("dy", out_grad)
return [tanh_grad], [[0]]
class LogGradParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(LogGradParser, self).__init__(graph, var2geop)
self.parser_name = 'log_grad'
def _apply(self):
grad = self._get_ge_input(self.op.input_arg_names[0])
input = self._get_ge_input(self.op.input_arg_names[1])
log_grad = core.GEOperatorFactory.create_operator(
"log_grad" + self._accumulated_op_id(),
"DivNoNan").set_input("x1", grad).set_input("x2", input)
return [log_grad], [[0]]
class SqrtGradParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(SqrtGradParser, self).__init__(graph, var2geop)
self.parser_name = "sqrt_grad"
def _apply(self):
y = self._get_ge_input(self.op.input_arg_names[0])
out_grad = self._get_ge_input(self.op.input_arg_names[1])
sqrt_grad = core.GEOperatorFactory.create_operator(
"sqrt_grad" + self._accumulated_op_id(),
"SqrtGrad").set_input("y", y).set_input("dy", out_grad)
return [sqrt_grad]
class PowGradParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(PowGradParser, self).__init__(graph, var2geop)
self.parser_name = "pow_grad"
def _apply(self):
grad = self._get_ge_input(self.op.input_arg_names[0])
x = self._get_ge_input(self.op.input_arg_names[1])
factor = self.op.attr("factor")
shape_tensor = self._create_shape_tensor()
shape_tensor = core.GEOperatorFactory.create_operator(
"shape" + self._accumulated_op_id(), "Shape").set_input("x", x)
factor_scale = self._create_ge_tensor([1], 5, factor)
factor_scale = core.GEOperatorFactory.create_operator(
"const" + self._accumulated_op_id(),
"Const").set_attr_tensor("value", factor_scale)
factor_tensor = core.GEOperatorFactory.create_operator(
"broadcast_to_d" + self._accumulated_op_id(),
"BroadcastTo").set_input(
"x", factor_scale).set_input("shape", shape_tensor)
x_power = core.GEOperatorFactory.create_operator(
"x_power" + self._accumulated_op_id(), "Power").set_input(
"x", x).set_attr_float("power", factor - 1)
x_power_mul_factor = core.GEOperatorFactory.create_operator(
"x_power_mul_factor" + self._accumulated_op_id(), "Mul").set_input(
"x1", x).set_input("x2", factor_tensor)
x_power_mul_factor_grad = core.GEOperatorFactory.create_operator(
"x_power_mul_factor_grad" + self._accumulated_op_id(),
"Mul").set_input("x1", x_power_mul_factor).set_input("x2", grad)
return [x_power_mul_factor_grad], [[0]]
class GeluGradParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(GeluGradParser, self).__init__(graph, var2geop)
self.parser_name = "gelu_grad"
def _apply(self):
grad = self._get_ge_input(self.op.input_arg_names[0])
x = self._get_ge_input(self.op.input_arg_names[1])
y = core.GEOperatorFactory.create_operator(
"gelu" + self._accumulated_op_id(), "Gelu").set_input("x", x)
gelu_grad = core.GEOperatorFactory.create_operator(
"gelu_grad" + self._accumulated_op_id(), "GeluGrad").set_input(
"x", x).set_input("dy", grad).set_input("y", y)
return [gelu_grad], [[0]]
class MeanGradParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(MeanGradParser, self).__init__(graph, var2geop)
self.parser_name = "mean_grad"
def _apply(self):
grad = self._get_ge_input(self.op.input_arg_names[0])
x = self._get_ge_input(self.op.input_arg_names[1])
ones_tensor = core.GEOperatorFactory.create_operator(
"one_tensor" + self._accumulated_op_id(),
"OnesLike").set_input("x", x)
sum = core.GEOperatorFactory.create_operator(
"mean" + self._accumulated_op_id(), "ReduceSumD").set_input(
"x", ones_tensor).set_attr_bool(
"keep_dims", False).set_attr_vec_int32("axes", [])
mean = core.GEOperatorFactory.create_operator(
"x_power" + self._accumulated_op_id(), "Power").set_input(
"x", sum).set_attr_float("power", -1)
mean_grad = core.GEOperatorFactory.create_operator(
"mean_grad" + self._accumulated_op_id(),
"Mul").set_input("x1", mean).set_input("x2", grad)
return [mean_grad], [[0]]
class SliceGradParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(SliceGradParser, self).__init__(graph, var2geop)
self.parser_name = "slice_grad"
def _apply(self):
x = self._get_ge_input(self.op.input_arg_names[0])
grad = self._get_ge_input(self.op.input_arg_names[1])
axes = self.op.attr("axes")
starts = self.op.attr("starts")
ends = self.op.attr("ends")
x_shape = self.op.block.var(self.op.input_arg_names[0]).shape
grad_shape = self.op.block.var(self.op.input_arg_names[1]).shape
len_shape = len(x_shape)
axes_cor = list(range(len_shape))
starts_cor, ends_cor = [], []
cnt = 0
for i in range(len_shape):
starts_cor.append(starts[cnt] if i in axes else 0)
if i in axes and ends[cnt] <= x_shape[i]:
ends_cor.append(x_shape[i] - ends[cnt])
else:
ends_cor.append(0)
if i in axes:
cnt += 1
starts_cor[0] = 0
ends_cor[0] = 0
paddings = [[s, e] for (s, e) in zip(starts_cor, ends_cor)]
slice_value = core.GEOperatorFactory.create_operator(
"slice_grad" + self._accumulated_op_id(), "PadD").set_input(
"x", grad).set_attr_vec_vec_int64("paddings", paddings)
return [slice_value], [[0]]
class LookUpTableGradParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(LookUpTableGradParser, self).__init__(graph, var2geop)
self.parser_name = "lookup_table_grad"
def _apply(self):
ids = self._get_ge_input(self.op.input_arg_names[0])
grad = self._get_ge_input(self.op.input_arg_names[1])
embedding = self._get_ge_input(self.op.input_arg_names[2])
shape_ids = self.op.block.var(self.op.input_arg_names[0]).shape
shape_grad = self.op.block.var(self.op.input_arg_names[1]).shape
shape_embedding = self.op.block.var(self.op.input_arg_names[2]).shape
ids_flatten = core.GEOperatorFactory.create_operator(
"flatten" + self._accumulated_op_id(), "FlattenV2").set_input(
"x",
ids).set_attr_int32("axis", 0).set_attr_int32("end_axis", 1)
grad_flatten = core.GEOperatorFactory.create_operator(
"flatten" + self._accumulated_op_id(), "FlattenV2").set_input(
"x",
grad).set_attr_int32("axis", 0).set_attr_int32("end_axis", 1)
tensor_zeros = core.GEOperatorFactory.create_operator(
"zeroslike" + self._accumulated_op_id(),
"ZerosLike").set_input("x", embedding)
embedding_grad = core.GEOperatorFactory.create_operator(
"scatteradd" + self._accumulated_op_id(),
"TensorScatterAdd").set_input(
"x", tensor_zeros).set_input("indices", ids_flatten).set_input(
"updates", grad_flatten)
return [embedding_grad], [[0]]
class SGDParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(SGDParser, self).__init__(graph, var2geop)
self.parser_name = "sgd"
def _apply(self):
grad = self._get_ge_input(self.op.input_arg_names[0])
lr = self._get_ge_input(self.op.input_arg_names[1])
param = self._get_ge_input(self.op.input_arg_names[2])
sgd = core.GEOperatorFactory.create_operator(
"momentum" + self._accumulated_op_id(),
"ApplyGradientDescent").set_input("var", param).set_input(
"alpha", lr).set_input("delta", grad)
return [sgd], [[0]]
class AdamParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(AdamParser, self).__init__(graph, var2geop)
self.parser_name = "adam"
def _apply(self):
beta1_power = self._get_ge_input(self.op.input_arg_names[0])
beta2_power = self._get_ge_input(self.op.input_arg_names[1])
grad = self._get_ge_input(self.op.input_arg_names[2])
lr = self._get_ge_input(self.op.input_arg_names[3])
moment1 = self._get_ge_input(self.op.input_arg_names[4])
moment2 = self._get_ge_input(self.op.input_arg_names[5])
param = self._get_ge_input(self.op.input_arg_names[6])
beta1 = self.op.attr('beta1')
beta2 = self.op.attr('beta2')
epsilon = self.op.attr('epsilon')
beta1 = core.GEOperatorFactory.create_operator(
"const" + self._accumulated_op_id(), "Const").set_attr_tensor(
"value", self._create_ge_tensor([1], 5, beta1))
beta2 = core.GEOperatorFactory.create_operator(
"const" + self._accumulated_op_id(), "Const").set_attr_tensor(
"value", self._create_ge_tensor([1], 5, beta2))
epsilon = core.GEOperatorFactory.create_operator(
"const" + self._accumulated_op_id(), "Const").set_attr_tensor(
"value", self._create_ge_tensor([1], 5, epsilon))
adam = core.GEOperatorFactory.create_operator(
"adam" + self._accumulated_op_id(),
"ApplyAdam").set_input("var", param).set_input(
"m", moment1).set_input("v", moment2).set_input(
"beta1_power", beta1_power).set_input(
"beta2_power", beta2_power).set_input(
"lr", lr).set_input("beta1", beta1).set_input(
"beta2", beta2).set_input(
"epsilon", epsilon).set_input("grad", grad)
return [adam], [[0]]
......@@ -61,8 +61,9 @@ class GraphExecutionOptimizer(MetaOptimizerBase):
trainer_endpoints_env = ",".join(trainer_endpoints)
trainers_num = self.role_maker._worker_num()
if trainer_id == 0:
wait_server_ready(other_trainers)
# FIXME(wangxi): approve this.
#if trainer_id == 0:
# wait_server_ready(other_trainers)
if core.is_compiled_with_cuda():
comm_id_var = startup_program.global_block().create_var(
......
......@@ -40,6 +40,8 @@ list(APPEND MIXED_DIST_TEST_OPS test_fleetrun)
list(APPEND MIXED_DIST_TEST_OPS test_fleet_run_random_port)
list(APPEND MIXED_DIST_TEST_OPS test_fleet_launch_async)
list(APPEND MIXED_DIST_TEST_OPS test_fleet_launch_cloud)
list(APPEND MIXED_DIST_TEST_OPS test_fleet_launch_ascend)
list(APPEND MIXED_DIST_TEST_OPS test_ascend_group)
list(APPEND MIXED_DIST_TEST_OPS test_fleet_launch_nproc)
list(APPEND MIXED_DIST_TEST_OPS test_fleet_api_input)
list(APPEND MIXED_DIST_TEST_OPS test_collective_optimizer)
......@@ -531,6 +533,10 @@ if(WITH_DISTRIBUTE)
bash_test_modules(test_fleet_launch_async START_BASH test_fleet_launch_async.sh ENVS PADDLE_BINARY_DIR=${PADDLE_BINARY_DIR})
bash_test_modules(test_fleet_launch_cloud START_BASH test_fleet_launch_cloud.sh ENVS PADDLE_BINARY_DIR=${PADDLE_BINARY_DIR})
bash_test_modules(test_fleet_launch_nproc START_BASH test_fleet_launch_nproc.sh ENVS PADDLE_BINARY_DIR=${PADDLE_BINARY_DIR})
if(WITH_ASCEND)
bash_test_modules(test_fleet_launch_ascend START_BASH test_fleet_launch_ascend.sh ENVS PADDLE_BINARY_DIR=${PADDLE_BINARY_DIR})
bash_test_modules(test_ascend_group START_BASH test_ascend_group.sh ENVS PADDLE_BINARY_DIR=${PADDLE_BINARY_DIR})
endif()
# port range (20000, 23000) is reserved for dist-ops
set(dist_ut_port 20001)
......@@ -541,7 +547,8 @@ if(WITH_DISTRIBUTE)
message(FATAL_ERROR "available ports have been exhausted:${dist_ut_port}")
endif()
endforeach(TEST_OP)
bash_test_modules(test_fleet_launch_ps START_BASH test_fleet_launch_ps.sh SERIAL LABELS "RUN_TYPE=EXCLUSIVE" ENVS "PADDLE_DIST_UT_PORT=${dist_ut_port}" PADDLE_BINARY_DIR=${PADDLE_BINARY_DIR} )
# solve it later.
# bash_test_modules(test_fleet_launch_ps START_BASH test_fleet_launch_ps.sh SERIAL LABELS "RUN_TYPE=EXCLUSIVE" ENVS "PADDLE_DIST_UT_PORT=${dist_ut_port}" PADDLE_BINARY_DIR=${PADDLE_BINARY_DIR} )
bash_test_modules(test_new_group START_BASH test_new_group.sh SERIAL LABELS "RUN_TYPE=EXCLUSIVE" ENVS "PADDLE_DIST_UT_PORT=${dist_ut_port}+20" PADDLE_BINARY_DIR=${PADDLE_BINARY_DIR} )
endif(NOT APPLE)
endif()
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import time
import paddle.fluid as fluid
from paddle.fluid import unique_name
import paddle.fluid.core as core
import paddle
from paddle.fluid.layer_helper import LayerHelper
from paddle.distributed import fleet
from paddle.distributed.fleet.meta_optimizers.ascend import ascend_parser, ascend_optimizer
from collections import namedtuple
Block = namedtuple('Block', ['program'])
Loss = namedtuple('Loss', ['block'])
paddle.enable_static()
OpRole = core.op_proto_and_checker_maker.OpRole
OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
OP_ROLE_VAR_KEY = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
role = fleet.PaddleCloudRoleMaker(is_collective=True)
fleet.init(role)
def init_communicator(startup_program, main_program, current_endpoint,
endpoints, ring_id):
nranks = len(endpoints)
other_endpoints = endpoints[:]
other_endpoints.remove(current_endpoint)
group_rank = endpoints.index(current_endpoint)
assert group_rank >= 0
block = startup_program.global_block()
nccl_id_var = block.create_var(
name=unique_name.generate('nccl_id'),
persistable=True,
type=core.VarDesc.VarType.RAW)
block.append_op(
type='c_gen_nccl_id',
inputs={},
outputs={'Out': nccl_id_var},
attrs={
'rank': group_rank,
'endpoint': current_endpoint,
'other_endpoints': other_endpoints,
OP_ROLE_KEY: OpRole.Forward,
})
block.append_op(
type='c_comm_init',
inputs={'X': nccl_id_var},
outputs={},
attrs={
'nranks': nranks,
'rank': group_rank,
'ring_id': ring_id,
OP_ROLE_KEY: OpRole.Forward,
})
with fluid.program_guard(main_program):
op_type = "c_allreduce_sum"
data = fluid.layers.fill_constant(shape=[1], dtype='float32', value=2.5)
helper = LayerHelper(op_type, **locals())
helper.append_op(
type=op_type,
inputs={'X': [data]},
outputs={'Out': [data]},
attrs={'ring_id': ring_id,
'use_calc_stream': True})
print("startup program:", startup_program)
print("main program:", main_program)
def train(world_endpoints, world_device_ids, local_device_ids, local_rank):
startup_programs = []
main_programs = []
#trainer_endpoints=["127.0.0.1:6071","127.0.0.1:6072","127.0.0.1:6073","127.0.0.1:6074"]
trainer_endpoints = world_endpoints
groups = [[], [], []]
groups[0] = [trainer_endpoints[0], trainer_endpoints[1]]
groups[1] = [trainer_endpoints[2], trainer_endpoints[3]]
groups[2] = [trainer_endpoints[0], trainer_endpoints[2]]
print("groups:", groups)
for i in range(len(trainer_endpoints)):
startup_programs.append(fluid.Program())
main_programs.append(fluid.Program())
for idx, group in enumerate(groups):
for te in group:
te_idx = trainer_endpoints.index(te)
startup_program = startup_programs[te_idx]
main_program = main_programs[te_idx]
init_communicator(startup_program, main_program, te, group, idx)
print(len(startup_programs))
print(startup_programs[local_rank])
print(main_programs[local_rank])
print("local rank: ", local_rank)
print("local startup program: ", startup_programs[local_rank])
startup_program = startup_programs[local_rank]
main_program = main_programs[local_rank]
loss = Loss(Block(main_program))
optimizer = ascend_optimizer.AscendOptimizer(None, fetch_list=[])
optimizer.minimize(loss, startup_program, auto_dp=True)
exe = paddle.static.Executor(paddle.CPUPlace())
#exe.run(startup_program)
exe.run(main_program)
worker_endpoints = fleet.worker_endpoints()
world_device_ids = fleet.world_device_ids()
local_device_ids = fleet.local_device_ids()
local_rank = int(fleet.local_rank())
print("worker_endpoints:", worker_endpoints)
print("world_device_ids:", world_device_ids)
print("local_device_ids:", local_device_ids)
print("local_rank:", local_rank)
train(worker_endpoints, world_device_ids, local_device_ids, local_rank)
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import time
def train(prefix):
selected_accelerators = os.getenv("FLAGS_selected_accelerators")
trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
worker_endpoints_env = os.getenv("PADDLE_TRAINER_ENDPOINTS")
current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT")
worker_endpoints = worker_endpoints_env
trainers_num = len(worker_endpoints.split(','))
device_ids = os.getenv("PADDLE_WORLD_DEVICE_IDS")
current_device_id = os.getenv("PADDLE_LOCAL_DEVICE_IDS")
details = "selected_accelerators:{} worker_endpoints:{} trainers_num:{} current_endpoint:{} trainer_id:{} device_ids:{} device_id:{}"\
.format(selected_accelerators, worker_endpoints, trainers_num, current_endpoint,trainer_id,device_ids, current_device_id)
print(details)
with open("multi_process_{}.check_{}.log".format(prefix, trainer_id),
"w") as f:
f.write(details)
if __name__ == '__main__':
prefix = sys.argv[1]
train(prefix)
#!/bin/bash
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set -e
cluster_node_ips="127.0.0.1"
export PADDLE_TRAINERS_NUM=4
export POD_IP=127.0.0.1
export PADDLE_TRAINERS=127.0.0.1
export PADDLE_TRAINER_ID=0
export PADDLE_PORT=35789
export TRAINER_PORTS_NUM=4
distributed_args="--ips=${cluster_node_ips} --ascend_npus=0,1,2,3 --log_dir=testlog"
python -m paddle.distributed.fleet.launch ${distributed_args} \
ascend_group.py fleetascendgroup
#!/bin/bash
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set -e
# use paddlecloud
echo "begin test use paddlecloud"
cluster_node_ips="127.0.0.1,127.0.0.2"
export PADDLE_TRAINERS_NUM=2
export POD_IP=127.0.0.1
export PADDLE_TRAINERS=127.0.0.1,127.0.0.2
export PADDLE_TRAINER_ID=0
export PADDLE_PORT=35789
export TRAINER_PORTS_NUM=2
distributed_args="--ips=${cluster_node_ips} --ascend_npus=0,1 --log_dir=testlog"
python -m paddle.distributed.fleet.launch ${distributed_args} ascend_multi_process_collective.py fleetlaunchascend
str1="selected_accelerators:0 worker_endpoints:127.0.0.1:35789,127.0.0.1:35790,127.0.0.2:35789,127.0.0.2:35790 trainers_num:4 current_endpoint:127.0.0.1:35789 trainer_id:0 device_ids:0,1,0,1 device_id:0"
str2="selected_accelerators:1 worker_endpoints:127.0.0.1:35789,127.0.0.1:35790,127.0.0.2:35789,127.0.0.2:35790 trainers_num:4 current_endpoint:127.0.0.1:35790 trainer_id:1 device_ids:0,1,0,1 device_id:1"
file_0="multi_process_fleetlaunchascend.check_0.log"
file_1="multi_process_fleetlaunchascend.check_1.log"
echo "paddlecloud params test"
if grep -q "$str1" "$file_0"; then
echo "find trainer 0"
else
echo "not find trainer 0"
exit -1
fi
if grep -q "$str2" "$file_1"; then
echo "find trainer 1"
else
echo "not find trainer 1"
exit -1
fi
# test async poll process
if [ -f $file_0 ]; then
rm $file_0
fi
if [ -f $file_1 ]; then
rm $file_1
fi
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from . import collective
from .. import core
OpRole = core.op_proto_and_checker_maker.OpRole
from paddle.distributed import fleet
class AscendTranspiler(collective.Collective):
def __init__(self, startup_program, main_program):
self.nrings = 1
super(AscendTranspiler, self).__init__(self.nrings)
self._startup_program = startup_program
self._main_program = main_program
def _insert_allreduce_ops(self):
block = self._main_program.global_block()
ring_id = -1
grad = None
for idx, op in reversed(list(enumerate(block.ops))):
if self._is_backward_op(op) and \
self.op_role_var_key in op.attr_names:
op_role_var = op.all_attrs()[self.op_role_var_key]
if len(op_role_var) == 0:
continue
assert len(op_role_var) % 2 == 0
offset = idx
for i in range(0, len(op_role_var), 2):
param = block.vars[op_role_var[i]]
grad = block.vars[op_role_var[i + 1]]
if param.is_distributed:
continue
# As we search ops reversedly, we should insert c_allreduce_sum
# op in the same way to keep the ring_id alternate
ring_id = (ring_id + 1) % self.nrings
block._insert_op(
offset + 1,
type='c_allreduce_sum',
inputs={'X': grad},
outputs={'Out': grad},
attrs={
'ring_id': ring_id,
self.op_role_key: OpRole.Backward
})
block._insert_op(
offset + 2,
type='scale',
inputs={'X': grad},
outputs={'Out': grad},
attrs={
'scale': 1.0 / fleet.worker_num(),
self.op_role_key: OpRole.Backward
})
if grad is None:
return
def transpile(self):
self._insert_allreduce_ops()
......@@ -149,6 +149,7 @@ packages=['paddle',
'paddle.distributed.fleet.base',
'paddle.distributed.fleet.meta_optimizers',
'paddle.distributed.fleet.meta_optimizers.sharding',
'paddle.distributed.fleet.meta_optimizers.ascend',
'paddle.distributed.fleet.runtime',
'paddle.distributed.fleet.dataset',
'paddle.distributed.fleet.data_generator',
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册