Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
89a8989f
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
89a8989f
编写于
10月 29, 2021
作者:
N
niuliling123
提交者:
GitHub
10月 29, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add io api and compute api for XPU (#36423)
上级
92d6a048
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
891 addition
and
0 deletion
+891
-0
paddle/fluid/operators/kernel_primitives/compute_primitives_xpu2.h
...uid/operators/kernel_primitives/compute_primitives_xpu2.h
+324
-0
paddle/fluid/operators/kernel_primitives/datamover_primitives_xpu2.h
...d/operators/kernel_primitives/datamover_primitives_xpu2.h
+567
-0
未找到文件。
paddle/fluid/operators/kernel_primitives/compute_primitives_xpu2.h
0 → 100644
浏览文件 @
89a8989f
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "xpu/kernel/cluster_header.h"
#include "xpu/kernel/debug.h"
#include "xpu/kernel/math.h"
namespace
paddle
{
namespace
operators
{
namespace
kernel_primitives
{
namespace
details
{
// kGlobalMode: block reduce, each block gets an output;
// kLocalMode: thread reduce, each thread gets an output;
enum
ReduceMode
{
kGlobalMode
,
kLocalMode
};
template
<
typename
T
>
class
MPTypeTrait
{
public:
using
Type
=
T
;
};
template
<
>
class
MPTypeTrait
<
platform
::
float16
>
{
public:
using
Type
=
float
;
};
static
inline
__device__
void
sync_all
()
{
__asm__
__volatile__
(
"sync_local
\t\n
"
"csr_set csr3, %0
\t\n
"
"sync_group csr3"
::
"r"
(
-
1
));
}
#define ncores 64
template
<
typename
T
,
typename
OpFunc
,
int
VecSize
>
__device__
void
BlockXReduce
(
T
*
data
,
OpFunc
reducer
)
{
__shared__
T
sum_array
[
ncores
*
VecSize
];
int
core_idx
=
core_id
()
*
VecSize
;
mfence
();
sync_all
();
#pragma unroll
for
(
int
i
=
0
;
i
<
VecSize
;
i
++
)
{
mfence
();
sum_array
[
core_idx
+
i
]
=
data
[
i
];
mfence
();
data
[
i
]
=
0
;
}
sync_all
();
#pragma unroll
for
(
int
i
=
0
;
i
<
VecSize
;
i
++
)
{
#pragma unroll
for
(
int
j
=
0
;
j
<
ncores
;
j
++
)
{
mfence
();
T
tmp
=
sum_array
[
j
*
VecSize
+
i
];
mfence
();
data
[
i
]
=
reducer
(
data
[
i
],
tmp
);
mfence
();
}
}
sync_all
();
}
#undef ncores
}
// namespace details
/**
* @brief Perform unary calculation according to OpFunc. Shape of input and
* output are the same.
*
* @template paraments
* InT: The data type of in.
* OutT: The data type of out.
* NX: The number of data columns loaded by each thread.
* NY: The number of data rows loaded by each thread.
* BlockSize: Identifies the current device thread index method. For xpu,
* core_id() is used as the index.
* OpFunc: Compute functor which has an operator() as following:
* template <typename InT, typename OutT>
* struct XxxFunctor {
* HOSTDEVICE OutT operator()(const InT& a) const {
* return ...;
* }
* };
*
* @param:
* out: The register pointer of out, the size is NX * NY.
* in: The register pointer of in, the size is NX * NY.
* compute: Compute function which was declared like OpFunc<InT, OutT>().
*/
template
<
typename
InT
,
typename
OutT
,
int
NX
,
int
NY
,
int
BlockSize
,
class
OpFunc
>
__device__
__forceinline__
void
ElementwiseUnary
(
OutT
*
out
,
const
InT
*
in
,
OpFunc
compute
)
{
#pragma unroll
for
(
int
idx
=
0
;
idx
<
NX
*
NY
;
idx
++
)
{
out
[
idx
]
=
static_cast
<
OutT
>
(
compute
(
in
[
idx
]));
}
}
/**
* @brief Binary calculation according to OpFunc. Shape of The input and output
* are the same.
*
* @template paraments
* InT: The data type of in1 and in2.
* OutT: The data type of out.
* NX: The number of data columns computed by each thread.
* NY: The number of data rows computed by each thread.
* BlockSize: Identifies the current device thread index method. For xpu,
* core_id() is used as the index.
* OpFunc: Compute functor which has an operator() as following:
* template <typename InT>
* struct XxxFunctor {
* HOSTDEVICE InT operator()(const InT& a, const InT& b) const {
* return ...;
* }
* };
*
* @param:
* out: The register pointer of out, the size is NX * NY.
* in1: The register pointer of fist input, size is NX * NY.
* in2: The register pointer of second input, size is NX * NY.
* compute: Compute function which was declared like OpFunc<InT>().
*/
template
<
typename
InT
,
typename
OutT
,
int
NX
,
int
NY
,
int
BlockSize
,
class
OpFunc
>
__device__
__forceinline__
void
ElementwiseBinary
(
OutT
*
out
,
const
InT
*
in1
,
const
InT
*
in2
,
OpFunc
compute
)
{
#pragma unroll
for
(
int
idx
=
0
;
idx
<
NX
*
NY
;
++
idx
)
{
out
[
idx
]
=
static_cast
<
OutT
>
(
compute
(
in1
[
idx
],
in2
[
idx
]));
}
}
/**
* @brief Ternary calculation according to OpFunc. Shape of input and output
* are the same.
*
* @template paraments
* InT: The data type of in1 and in2.
* OutT: The data type of out.
* NX: The number of data columns loaded by each thread.
* NY: The number of data rows loaded by each thread.
* BlockSize: Identifies the current device thread index method. For xpu,
* core_id() is used as the index.
* OpFunc: Compute functor which has an operator() as following
* template <typename InT>
* struct XxxFunctor {
* HOSTDEVICE InT operator()(const InT& a, const InT& b, const InT& c)
* const {
* return ...;
* }
* };
*
* @param
* out: The register pointer of out, the size is NX * NY.
* in1: The register pointer of fist input, size is NX * NY.
* in2: The register pointer of second input, size is NX * NY.
* in3: The register pointer of third input, size is NX * NY.
* compute: Compute function which was declared like OpFunc<InT>().
*/
template
<
typename
InT
,
typename
OutT
,
int
NX
,
int
NY
,
int
BlockSize
,
class
OpFunc
>
__device__
__forceinline__
void
ElementwiseTernary
(
OutT
*
out
,
const
InT
*
in1
,
const
InT
*
in2
,
const
InT
*
in3
,
OpFunc
compute
)
{
#pragma unroll
for
(
int
idx
=
0
;
idx
<
NX
*
NY
;
++
idx
)
{
out
[
idx
]
=
static_cast
<
OutT
>
(
compute
(
in1
[
idx
],
in2
[
idx
],
in3
[
idx
]));
}
}
/**
* @brief Multivariate calculation according to OpFunc. Shape of inputs and
* output are the same.
*
* @template paraments
* InT: The data type of in1, in2 and in3.
* OutT: The data type of out.
* NX: The number of data columns loaded by each thread.
* NY: The number of data rows loaded by each thread.
* BlockSize: Identifies the current device thread index method. For xpu,
* core_id() is used as the index.
* Arity: The size of ins
* OpFunc: Compute functor which has an operator() as following:
* template <typename InT>
* struct XxxFunctor {
* HOSTDEVICE InT operator()(const InT* args) const {
* return ...;
* }
* };
*
* @param
* out: The register pointer of out, the size is NX * NY.
* ins: A pointers of array consisting of multiple inputs.
* compute: Compute function which was declared like OpFunc<InT>().
*/
template
<
typename
InT
,
typename
OutT
,
int
NX
,
int
NY
,
int
BlockSize
,
int
Arity
,
class
OpFunc
>
__device__
__forceinline__
void
ElementwiseAny
(
OutT
*
out
,
InT
(
*
ins
)[
NX
*
NY
],
OpFunc
compute
)
{
__local__
InT
args
[
Arity
];
#pragma unroll
for
(
int
idx
=
0
;
idx
<
NX
*
NY
;
++
idx
)
{
#pragma unroll
for
(
int
j
=
0
;
j
<
Arity
;
++
j
)
{
args
[
j
]
=
ins
[
j
][
idx
];
}
out
[
idx
]
=
static_cast
<
OutT
>
(
compute
(
args
));
}
}
/**
* @brief Binary calculation according to OpFunc. The shape of in1 and in2 are
* different. When in1's shape is [1, NX], in2's shape is [NY, NX], then
* output's shape is [NY, NX].
*
* @template paraments
* InT: The data type of in1 and in2.
* OutT: The data type of out.
* NX: The number of data columns loaded by each thread.
* NY: The number of data rows loaded by each thread.
* BlockSize: Identifies the current device thread index method. For xpu,
* core_id() is used as the index.
* OpFunc: Compute functor which has an operator() as following
* template <typename InT, typename OutT>
* struct XxxFunctor {
* HOSTDEVICE OutT operator()(const InT& a, const InT& b) const {
* return ...;
* }
* };
*
* @param
* out: The register pointer of out, the size is NX * NY.
* in1: The register pointer of fist input, size is NX * 1.
* in2: The register pointer of second input, size is NX * NY.
* compute: Compute function which was declared like OpFunc<InT, OutT>().
*/
template
<
typename
InT
,
typename
OutT
,
int
NX
,
int
NY
,
int
BlockSize
,
class
OpFunc
>
__device__
__forceinline__
void
CycleBinary
(
OutT
*
out
,
const
InT
*
in1
,
const
InT
*
in2
,
OpFunc
compute
)
{
#pragma unroll
for
(
int
idx
=
0
;
idx
<
NX
;
idx
++
)
{
#pragma unroll
for
(
int
idy
=
0
;
idy
<
NY
;
idy
++
)
{
out
[
idx
+
idy
*
NX
]
=
static_cast
<
OutT
>
(
compute
(
in1
[
idx
],
in2
[
idx
+
idy
*
NX
]));
}
}
}
/**
* @brief The Reduce provides collective methods for computing a parallel
* reduction of items partitioned across a CUDA block and intra thread. When
* ReduceMode == kLocalMode, thread reduce along nx. When ReduceMode ==
* kGlobalMode, use shared memory to reduce between threads.
*
* @template paraments
* T: The type of data.
* NX: The number of data continuously loaded by each thread.
* NY: The number of data rows loaded by each thread, only NY = 1 was supported.
* BlockSize: Identifies the current device thread index method. For xpu,
* core_id() is used as the index.
* ReduceFunctor: Compute functor which has an operator() as following
* template <typename InT>
* struct ReduceFunctor {
* HOSTDEVICE InT operator()(const InT& a, const InT& b) const {
* return ...;
* }
* };
* ReduceMode: Reduce mode, can be kLocalMode, kGlobalMode.
*
* @param
* out: The register pointer of out, the size is NX * NY.
* in: The register pointer of in, the size is NX * NY.
* reducer: Compute function which was declared like ReduceFunctor<InT>().
* reduce_last_dim: if the last dim gets involved in reduction.
*/
template
<
typename
T
,
int
NX
,
int
NY
,
int
BlockSize
,
class
ReduceFunctor
,
details
::
ReduceMode
Mode
>
__device__
__forceinline__
void
Reduce
(
T
*
out
,
const
T
*
in
,
ReduceFunctor
reducer
,
bool
reduce_last_dim
)
{
if
(
Mode
==
kGlobalMode
)
{
#pragma unroll
for
(
int
i
=
0
;
i
<
NY
;
++
i
)
{
#pragma unroll
for
(
int
j
=
0
;
j
<
NX
;
++
j
)
{
out
[
i
]
=
reducer
(
out
[
i
],
in
[
i
*
NX
+
j
]);
}
}
BlockXReduce
<
T
,
OpFunc
,
NY
>
(
out
,
reducer
);
}
else
{
// else kLocalMode
#pragma unroll
for
(
int
i
=
0
;
i
<
NY
;
++
i
)
{
#pragma unroll
for
(
int
j
=
0
;
j
<
NX
;
++
j
)
{
out
[
i
]
=
reducer
(
out
[
i
],
in
[
i
*
NX
+
j
]);
}
}
}
}
}
// namespace kernel_primitives
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/kernel_primitives/datamover_primitives_xpu2.h
0 → 100644
浏览文件 @
89a8989f
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "xpu/kernel/cluster_header.h"
#include "xpu/kernel/debug.h"
#include "xpu/kernel/math.h"
namespace
paddle
{
namespace
operators
{
namespace
kernel_primitives
{
namespace
details
{
template
<
typename
T
,
int
VecSize
>
struct
alignas
(
sizeof
(
T
)
*
VecSize
)
VectorType
{
T
val
[
VecSize
];
};
/**
* Configuration of broadcast. Calculate the input data index according to the
* index of the output data. if input or output shape is [dim0, dim1] then dims
* must be [dim1, dim0].
*/
template
<
int
kDims
>
struct
BroadcastConfig
{
uint32_t
stride_in
[
framework
::
DDim
::
kMaxRank
];
uint32_t
stride_out
[
framework
::
DDim
::
kMaxRank
];
uint32_t
shape_in
[
framework
::
DDim
::
kMaxRank
];
HOSTDEVICE
BroadcastConfig
()
{}
HOSTDEVICE
BroadcastConfig
(
const
std
::
vector
<
int64_t
>&
out_dims
,
const
std
::
vector
<
int64_t
>&
in_dims
,
int
dim_size
)
{
std
::
vector
<
uint32_t
>
strides_in
;
std
::
vector
<
uint32_t
>
strides_out
;
std
::
vector
<
uint32_t
>
shapes_in
;
strides_out
.
resize
(
dim_size
,
1
);
strides_in
.
resize
(
dim_size
,
1
);
shapes_in
.
resize
(
dim_size
,
1
);
for
(
int
i
=
0
;
i
<
dim_size
;
++
i
)
{
shape_in
[
i
]
=
in_dims
[
dim_size
-
i
-
1
];
}
for
(
int
i
=
1
;
i
<
dim_size
-
1
;
++
i
)
{
strides_out
[
dim_size
-
i
-
1
]
=
std
::
accumulate
(
out_dims
.
begin
(),
out_dims
.
begin
()
+
i
,
1
,
std
::
multiplies
<
int64_t
>
())
strides_in
[
dim_size
-
i
-
1
]
=
std
::
accumulate
(
in_dims
.
begin
(),
in_dims
.
begin
()
+
i
,
1
,
std
::
multiplies
<
int64_t
>
())
}
memcpy
(
stride_in
,
strides_in
.
data
(),
kDims
*
sizeof
(
uint32_t
));
memcpy
(
stride_out
,
strides_out
.
data
(),
kDims
*
sizeof
(
uint32_t
));
memcpy
(
shape_in
,
shapes_in
.
data
(),
kDims
*
sizeof
(
uint32_t
));
}
};
}
// namespace details
/**
* @brief Read 2D data from global memory to register according to Tx type, and
* store it as Ty type into register.
*
* @template paraments
* Tx: The type of data stored in the global memory.
* Ty: The type of data that needs to be stored in registers.
* NX: The number of data columns loaded by each thread.
* NY: The number of data rows loaded by each thread.
* BlockSize: Identifies the current device thread index method. For xpu,
* core_id() is used as the index.
* IsBoundary: Indicates whether to perform block access storage out-of-bounds
* judgment. When the number of data processed by the block is less than
* NX x NY x core_num(), boundary judgment is required to avoid memory access
* crossing the boundary.
*
* @param:
* dst: The register pointer of the thread, the size is NX * NY.
* src: The data pointer of the current block.
* size_nx: The maximum offset of the current block is size_nx elements in the
* lowest dimension. The parameters are only calculated when isboundary = true.
* size_ny: The maximum offset of the current block is size_ny elements in the
* first dimension. The parameters are only calculated when isboundary = true.
* stride_nx: Each read one element stride stride_nx elements in the last dim.
* stride_ny: Each read one element stride stride_ny elements in the first dim.
*/
template
<
typename
Tx
,
typename
Ty
,
int
NX
,
int
NY
,
int
BlockSize
,
bool
IsBoundary
=
false
>
__device__
__forceinline__
void
ReadData
(
Ty
*
dst
,
const
Tx
_global_ptr_
*
src
,
int
size_nx
,
int
size_ny
,
int
stride_nx
,
int
stride_ny
)
{
int
thread_offset
=
core_id
();
int
left_size_nx
=
size_nx
-
thread_offset
;
__local__
T
in_temp
[
1
];
// Each branch is added for better performance
if
(
NX
==
1
&&
NY
==
1
)
{
// for NX == 1 and NY == 1
if
(
IsBoundary
)
{
if
(
left_size_nx
>
0
)
{
GM2LM
(
src
+
thread_offset
,
in_temp
,
sizeof
(
Tx
));
dst
[
0
]
=
static_cast
<
Ty
>
(
in_temp
[
0
]);
}
}
else
{
GM2LM
(
src
+
thread_offset
,
in_temp
,
sizeof
(
Tx
));
dst
[
0
]
=
static_cast
<
Ty
>
(
in_temp
[
0
]);
}
}
else
if
(
NX
==
1
)
{
// for NX == 1 and NY != 1
#pragma unroll
for
(
int
idy
=
0
;
idy
<
NY
;
++
idy
)
{
if
(
IsBoundary
)
{
if
(
idy
*
stride_ny
>=
size_ny
)
{
break
;
}
}
GM2LM
(
src
+
thread_offset
+
idy
*
stride_ny
,
in_temp
,
sizeof
(
Tx
));
dst
[
idy
]
=
static_cast
<
Ty
>
(
in_temp
[
0
]);
}
}
else
if
(
NY
==
1
)
{
// for NY == 1 and NX != 1
#pragma unroll
for
(
int
idx
=
0
;
idx
<
NX
;
++
idx
)
{
if
(
IsBoundary
)
{
if
(
idx
*
stride_nx
>=
left_size_nx
)
{
break
;
}
}
GM2LM
(
src
+
thread_offset
+
idx
*
stride_nx
,
in_temp
,
sizeof
(
Tx
));
dst
[
idx
]
=
static_cast
<
Ty
>
(
in_temp
[
0
]);
}
}
else
{
// for NX != 1 and NY != 1
#pragma unroll
for
(
int
idx
=
0
;
idx
<
NX
;
++
idx
)
{
#pragma unroll
for
(
int
idy
=
0
;
idy
<
NY
;
++
idy
)
{
if
(
IsBoundary
)
{
if
(
idy
*
stride_ny
>=
size_ny
||
idx
*
stride_nx
>=
left_size_nx
)
{
break
;
}
}
int
fix
=
thread_offset
+
idx
*
stride_nx
+
idy
*
stride_ny
;
GM2LM
(
src
+
fix
,
in_temp
,
sizeof
(
Tx
));
dst
[
idy
*
NX
+
idx
]
=
static_cast
<
Ty
>
(
in_temp
[
0
]);
}
}
}
}
/**
* @brief Initialize register with init_data.
*
* @template paraments
* T: Data type of register.
* NX: Number of data to initialize.
*
* @param:
* dst: The register pointer of the thread, the size is NX.
* init_data: Initial value.
*/
template
<
typename
T
,
int
NX
>
__device__
__forceinline__
void
Init
(
T
*
dst
,
T
init_data
)
{
#pragma unroll
for
(
int
i
=
0
;
i
<
NX
;
i
++
)
{
dst
[
i
]
=
init_data
;
}
}
/**
* @brief Read 1D data from global memory to register. When IsBoundary = true
* and (NX % 4 == 0 or Nx % 2 == 0), vectorized load data will be used to
* improve memory access efficiency.
*
* @template paraments
* T: The type of data.
* NX: Each thread load NX data from global memory continuously.
* NY: Each thread need to load NY rows, only NY = 1 was supported.
* BlockSize: Identifies the current device thread index method. For xpu,
* core_id() is used as the index.
* IsBoundary: Whether to make an out-of-bounds judgment on access to memory.
* When the number of data processed by this block is less than
* NX x NY x core_num(), boundary judgment is required to avoid memory access
* crossing the boundary.
*
* @param:
* dst: The register pointer of the thread, the size is NX * NY.
* src: The data pointer of the current block.
* size: The current block needs to load size data continuously.
*/
template
<
typename
T
,
int
NX
,
int
NY
,
int
BlockSize
,
bool
IsBoundary
=
false
>
__device__
__forceinline__
void
ReadData
(
T
*
dst
,
const
T
_global_ptr_
*
src
,
int
num
)
{
int
thread_offset
=
core_id
()
*
NX
;
__local__
T
in_temp
[
1
];
if
(
IsBoundary
)
{
// core_num() * NX > num
#pragma unroll
for
(
int
idx
=
0
;
idx
<
NX
;
++
idx
)
{
if
(
idx
+
thread_offset
<
num
)
{
GM2LM
(
src
+
thread_offset
+
idx
,
in_temp
,
sizeof
(
T
));
dst
[
idx
]
=
in_temp
[
0
];
}
}
}
else
{
// core_num() * NX < num
GM2LM
(
src
+
thread_offset
,
dst
,
NX
*
sizeof
(
T
));
}
}
/**
* @brief Read 2D data from global memory to registers with broadcast form.
*
* @template paraments
* T: The type of data stored in the global memory.
* NX: The number of data columns loaded by each thread.
* NY: The number of data rows loaded by each thread.
* BlockSize: Identifies the current device thread index method. For xpu,
* core_id() is used as the index.
* Rank: The shape size of out. eg in[1, 35], out[32, 35] then shape size is 2.
* IsBoundary: Indicates whether to perform block access storage out-of-bounds
* judgment. When the number of data processed by the block is less than
* NX x NY x core_num(), boundary judgment is required to avoid memory access
* crossing the boundary.
*
* @param:
* dst: The register pointer of the thread, the size is NX * NY.
* src: Raw input data pointer of kernel.
* block_offset: Data offset of this block, core_num() * cluster_id() * NX;
* config: Calculation configuration of broadcast. It is used to calculate the
* coordinate mapping relationship between output data and input data.
* total_num_output: Total number of original output.
* stride_nx: Each read one element stride stride_nx elements in the last dim.
* stride_ny: Each read one element stride stride_ny elements in the first dim.
*/
template
<
typename
T
,
int
NX
,
int
NY
,
int
BlockSize
,
int
Rank
,
bool
IsBoundary
=
false
>
__device__
__forceinline__
void
ReadDataBc
(
T
*
dst
,
const
T
_global_ptr_
*
src
,
uint32_t
block_offset
,
details
::
BroadcastConfig
<
Rank
>
config
,
int
total_num_output
,
int
stride_nx
,
int
stride_ny
)
{
uint32_t
thread_offset
=
block_offset
+
core_id
();
uint32_t
index_src
=
0
;
__local__
T
in_temp
[
1
];
#pragma unroll
for
(
int
ny
=
0
;
ny
<
NY
;
++
ny
)
{
#pragma unroll
for
(
uint32_t
nx
=
0
;
nx
<
NX
;
++
nx
)
{
uint32_t
index_output
=
thread_offset
+
ny
*
stride_ny
+
nx
*
stride_nx
;
index_src
=
0
;
if
(
IsBoundary
)
{
if
(
index_output
>=
total_num_output
)
{
break
;
}
}
#pragma unroll
for
(
int
i
=
0
;
i
<
Rank
;
++
i
)
{
uint32_t
tmp
=
index_output
/
config
.
stride_out
[
i
];
index_output
=
index_output
-
tmp
*
config
.
stride_out
[
i
];
index_src
+=
(
tmp
%
config
.
shape_in
[
i
])
*
config
.
stride_in
[
i
];
}
GM2LM
(
src
+
index_src
,
in_temp
,
sizeof
(
T
));
dst
[
nx
+
ny
*
NX
]
=
in_temp
[
0
];
}
}
}
/**
* @brief Read 2D data from global memory to register with reduce form.
*
* @template paraments
* T: The type of data.
* NX: The number of data columns loaded by each thread.
* NY: The number of data rows loaded by each thread.
* BlockSize: Identifies the current device thread index method. For xpu,
* core_id() is used as the index.
* Rank: The shape size of out. eg in[1, 35], out[32, 35] then shape size is 2.
* IsBoundary: Indicates whether to perform block access storage out-of-bounds
* judgment. When the number of data processed by the block is less than
* NX x NY x core_num(), boundary judgment is required to avoid memory access
* crossing the boundary.
*
* @param:
* dst: The register pointer of the thread, the size is NX * NY.
* src: The input data pointer of this block.
* block_offset: The data offset of this block, blockDim.x * cluster_id() * NX.
* index_cal: Calculation configuration of Reduce. It is used to calculate the
* coordinate mapping relationship between output data and input data.
* size_nx: The current block needs to load size_nx columns of data, this
* parameter will participate in the calculation when isboundary = true.
* size_ny: The current block needs to load size_ny rows of data, this parameter
* will participate in the calculation when isboundary = true.
* will be used when IsBoundary = true.
* stride_nx: Each read one element stride stride_nx columns.
* stride_ny: Each read one element stride stride_ny raws.
* reduce_last_dim: Used to indicate whether the dimension of reduce contains
* the lowest dimension.
*/
template
<
typename
T
,
int
NX
,
int
NY
,
int
BlockSize
,
int
Rank
,
typename
IndexCal
,
bool
IsBoundary
=
false
>
__device__
__forceinline__
void
ReadDataReduce
(
T
*
dst
,
const
T
_global_ptr_
*
src
,
int
block_offset
,
const
IndexCal
&
index_cal
,
int
size_nx
,
int
size_ny
,
int
stride_nx
,
int
stride_ny
,
bool
reduce_last_dim
)
{
__local__
T
in_temp
[
1
];
int
thread_offset
=
0
;
int
left_size_nx
=
size_nx
;
int
left_size_ny
=
size_ny
;
if
(
reduce_last_dim
)
{
thread_offset
=
block_offset
+
core_id
();
left_size_nx
-=
thread_offset
;
}
else
{
thread_offset
=
block_offset
+
core_id
();
left_size_ny
-=
thread_offset
;
}
if
(
NX
==
1
)
{
#pragma unroll
for
(
int
ny
=
0
;
ny
<
NY
;
++
ny
)
{
if
(
IsBoundary
)
{
if
(
ny
*
stride_ny
>=
left_size_ny
)
{
break
;
}
}
uint32_t
index_src
=
index_cal
(
thread_offset
);
GM2LM
(
src
+
index_src
,
in_temp
,
sizeof
(
T
));
dst
[
ny
]
=
in_temp
[
0
];
thread_offset
+=
stride_ny
;
}
}
else
{
#pragma unroll
for
(
int
nx
=
0
;
nx
<
NX
;
++
nx
)
{
#pragma unroll
for
(
int
ny
=
0
;
ny
<
NY
;
++
ny
)
{
if
(
IsBoundary
)
{
if
((
ny
*
stride_ny
>=
left_size_ny
)
||
(
nx
*
stride_nx
>=
left_size_nx
))
{
break
;
}
}
uint32_t
index_src
=
index_cal
(
thread_offset
);
GM2LM
(
src
+
index_src
,
in_temp
,
sizeof
(
T
));
dst
[
nx
+
ny
*
NX
]
=
in_temp
[
0
];
thread_offset
+=
stride_ny
;
}
thread_offset
+=
stride_nx
;
}
}
}
/**
* @brief Write 1D data from registers to global memory. When IsBoundary = true
* and (NX % 4 == 0 or Nx % 2 == 0), the data will be vectorized to improve the
* data loading efficiency
*
* @template paraments
* T: The type of data.
* NX: The number of data continuously writed by each thread.
* NY: The number of data rows loaded by each thread, only NY = 1 was supported.
* BlockSize: Identifies the current device thread index method. For xpu,
* core_id() is used as the index.
* IsBoundary: Indicates whether to perform block access storage out-of-bounds
* judgment. When the number of data processed by the block is less than
* NX x NY x core_num(), boundary judgment is required to avoid memory access
* crossing the boundary.
*
* @param:
* dst: The data pointer of the current block.
* src: The register pointer, the size is NX * NY.
* size: The current block needs to load size elements continuously.
*/
template
<
typename
T
,
int
NX
,
int
NY
,
int
BlockSize
,
bool
IsBoundary
>
__device__
void
WriteData
(
T
_global_ptr_
*
dst
,
const
T
*
src
,
int
num
)
{
int
thread_offset
=
core_id
()
*
NX
;
__local__
T
in_temp
[
1
];
if
(
IsBoundary
)
{
// core_num() * NX > num
#pragma unroll
for
(
int
idx
=
0
;
idx
<
NX
;
++
idx
)
{
if
(
idx
+
thread_offset
<
num
)
{
in_temp
[
0
]
=
src
[
idx
];
LM2GM
(
in_temp
,
dst
+
idx
+
thread_offset
,
sizeof
(
T
));
}
}
}
else
{
// core_num() * NX < num
LM2GM
(
src
,
dst
+
thread_offset
,
NX
*
sizeof
(
T
));
}
}
/**
* @brief Write 2D data from register to global memory according to Tx type, and
* store it as Ty type.
*
* @template paraments
* Tx: The type of data that needs to be stored in registers.
* Ty: The type of data stored in the global memory.
* NX: The number of data columns loaded by each thread.
* NY: The number of data rows loaded by each thread.
* BlockSize: Identifies the current device thread index method. For xpu,
* core_id() is used as the index.
* IsBoundary: Indicates whether to perform block access storage out-of-bounds
* judgment. When the number of data processed by the block is less than
* NX x NY x core_num(), boundary judgment is required to avoid memory access
* crossing the boundary.
*
* @param:
* dst: Data pointer of the current block.
* src: The register pointer of the thread, the size is NX * NY.
* size_nx: The current block needs to load size_nx columns of data, this
* parameter will be used when IsBoundary = true.
* size_ny: The current block needs to load size_ny rows of data. This parameter
* will be used when IsBoundary = true.
* stride_nx: Each read one element stride stride_nx elements in the last dim.
* stride_ny: Each read one element stride stride_ny elements in the first dim.
*/
template
<
typename
Tx
,
typename
Ty
,
int
NX
,
int
NY
,
int
BlockSize
,
bool
IsBoundary
=
false
>
__device__
__forceinline__
void
WriteData
(
Ty
_global_ptr_
*
dst
,
const
Tx
*
src
,
int
size_nx
,
int
size_ny
,
int
stride_nx
,
int
stride_ny
)
{
int
thread_offset
=
core_id
();
int
left_size_nx
=
size_nx
-
thread_offset
;
__local__
Ty
in_temp
[
1
];
// Each branch is added for better performance
if
(
NX
==
1
&&
NY
==
1
)
{
if
(
IsBoundary
)
{
if
(
left_size_nx
>
0
)
{
in_temp
[
0
]
=
static_cast
<
Ty
>
(
src
[
0
]);
LM2GM
(
in_temp
,
dst
+
thread_offset
,
sizeof
(
T
));
}
}
else
{
in_temp
[
0
]
=
static_cast
<
Ty
>
(
src
[
0
]);
LM2GM
(
in_temp
,
dst
+
thread_offset
,
sizeof
(
T
));
}
}
else
if
(
NX
==
1
)
{
#pragma unroll
for
(
int
idy
=
0
;
idy
<
NY
;
++
idy
)
{
if
(
IsBoundary
)
{
if
(
idy
*
stride_ny
>=
size_ny
)
{
break
;
}
}
in_temp
[
0
]
=
static_cast
<
Ty
>
(
src
[
idy
]);
LM2GM
(
in_temp
,
dst
+
thread_offset
+
idy
*
stride_ny
,
sizeof
(
T
));
}
}
else
if
(
NY
==
1
)
{
// for NY == 1 and NX != 1
#pragma unroll
for
(
int
idx
=
0
;
idx
<
NX
;
++
idx
)
{
if
(
IsBoundary
)
{
if
(
idx
*
stride_nx
>=
left_size_nx
)
{
break
;
}
}
in_temp
[
0
]
=
static_cast
<
Ty
>
(
src
[
idx
]);
LM2GM
(
in_temp
,
dst
+
thread_offset
+
idx
*
stride_nx
,
sizeof
(
T
));
}
}
else
{
// for NX != 1 and NY != 1
#pragma unroll
for
(
int
idx
=
0
;
idx
<
NX
;
++
idx
)
{
if
(
IsBoundary
)
{
if
(
idx
*
stride_nx
>=
left_size_nx
)
{
break
;
}
}
#pragma unroll
for
(
int
idy
=
0
;
idy
<
NY
;
++
idy
)
{
if
(
IsBoundary
)
{
if
(
idy
*
stride_ny
>=
size_ny
)
{
break
;
}
}
in_temp
[
0
]
=
static_cast
<
Ty
>
(
src
[
idx
+
idy
*
NX
]);
LM2GM
(
in_temp
,
dst
+
thread_offset
+
idx
*
stride_nx
+
idy
*
stride_ny
,
sizeof
(
T
));
}
}
}
}
/**
* @brief Initialize register with init_data.
*
* @template paraments
* T: Data type of register.
* NX: Number of data to initialize.
*
* @param:
* dst: The register pointer of the thread, the size is NX.
* init_data: The register pointer of init data, the size is NX.
*/
template
<
typename
T
,
int
NX
,
bool
IsBoundary
=
false
>
__device__
__forceinline__
void
Init
(
T
*
dst
,
T
*
init_data
,
int
num
)
{
#pragma unroll
for
(
int
i
=
0
;
i
<
NX
;
i
++
)
{
if
(
IsBoundary
)
{
if
(
i
>=
num
)
{
break
;
}
}
dst
[
i
]
=
init_data
[
i
];
}
}
/**
* @brief Read 1D data from global memory to register with broadcast form.
*
* @template paraments
* T: The type of data stored in the global memory.
* NX: The number of data continuously loaded by each thread.
* NY: The number of data rows loaded by each thread, only NY = 1 was supported.
* BlockSize: Identifies the current device thread index method. For xpu,
* core_id() is used as the index.
* Rank: The shape size of out. eg in[1, 35], out[32, 35] then shape size is 2.
* IsBoundary: Indicates whether to perform block access storage out-of-bounds
* judgment. When the number of data processed by the block is less than
* NX x NY x core_num(), boundary judgment is required to avoid memory access
* crossing the boundary.
*
* @param:
* dst: The register pointer of the thread, the size is NX * NY.
* src: The original input data pointer of kernel.
* block_offset: The data offset of this block, core_num() * blockIdx.x * NX;
* config: Calculation configuration of broadcast. It is used to calculate the
* coordinate mapping relationship between output data and input data.
* total_num_output: Total number of original output.
*/
template
<
typename
T
,
int
NX
,
int
NY
,
int
BlockSize
,
int
Rank
,
bool
IsBoundary
=
false
>
__device__
__forceinline__
void
ReadDataBc
(
T
*
dst
,
const
T
_global_ptr_
*
src
,
uint32_t
block_offset
,
details
::
BroadcastConfig
<
Rank
>
config
,
int
total_num_output
)
{
uint32_t
thread_offset
=
block_offset
+
core_id
()
*
NX
;
uint32_t
index_src
=
0
;
__local__
T
in_temp
[
1
];
#pragma unroll
for
(
uint32_t
nx
=
0
;
nx
<
NX
;
++
nx
)
{
uint32_t
index_output
=
thread_offset
+
nx
;
index_src
=
0
;
if
(
IsBoundary
)
{
if
(
index_output
>=
total_num_output
)
{
break
;
}
}
#pragma unroll
for
(
int
i
=
0
;
i
<
Rank
;
++
i
)
{
uint32_t
tmp
=
index_output
/
config
.
stride_out
[
i
];
index_output
=
index_output
-
tmp
*
config
.
stride_out
[
i
];
index_src
+=
(
tmp
%
config
.
shape_in
[
i
])
*
config
.
stride_in
[
i
];
}
GM2LM
(
src
+
index_src
,
in_temp
,
sizeof
(
T
));
dst
[
nx
+
ny
*
NX
]
=
in_temp
[
0
];
}
}
}
// namespace kernel_primitives
}
// namespace operators
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录