Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
8991e9ae
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8991e9ae
编写于
3月 23, 2022
作者:
W
whs
提交者:
GitHub
3月 23, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix quant and dequant cuda kernels when quant_axis==1 (#40772)
上级
319f95d0
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
62 addition
and
46 deletion
+62
-46
paddle/fluid/operators/fake_dequantize_op.cu
paddle/fluid/operators/fake_dequantize_op.cu
+29
-21
paddle/fluid/operators/fake_quantize_op.cu
paddle/fluid/operators/fake_quantize_op.cu
+33
-25
未找到文件。
paddle/fluid/operators/fake_dequantize_op.cu
浏览文件 @
8991e9ae
...
...
@@ -58,19 +58,15 @@ __global__ void DequantizeOneScaleQuantAxis0(const T* in, const T* scale,
}
template
<
typename
T
>
__global__
void
DequantizeOneScaleQuantAxis1
(
const
T
*
in
,
const
T
*
scale
,
T
max_range
,
const
int
num
,
const
int
cin
,
const
int
cout
,
T
*
out
)
{
int
bid
=
blockIdx
.
x
;
T
s
=
scale
[
bid
%
cout
];
int
wh_size
=
num
/
(
cin
*
cout
);
const
T
*
in_current
=
in
+
bid
*
wh_size
;
T
*
out_current
=
out
+
bid
*
wh_size
;
for
(
int
i
=
threadIdx
.
x
;
i
<
wh_size
;
i
+=
blockDim
.
x
)
{
out_current
[
i
]
=
in_current
[
i
]
*
s
/
max_range
;
__global__
void
DequantizeOneScaleQuantAxisN
(
const
T
*
in
,
const
T
*
scale
,
const
T
max_range
,
const
int64_t
num
,
const
int
n_scales
,
const
int
quant_stride
,
T
*
out
)
{
int64_t
idx
=
blockDim
.
x
*
blockIdx
.
x
+
threadIdx
.
x
;
for
(
int64_t
i
=
idx
;
i
<
num
;
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
T
s
=
scale
[(
i
/
quant_stride
)
%
n_scales
];
out
[
i
]
=
in
[
i
]
*
s
/
max_range
;
}
}
...
...
@@ -98,20 +94,32 @@ struct ChannelDequantizeFunctor<platform::CUDADeviceContext, T> {
const
T
*
in_data
=
in
->
data
<
T
>
();
T
*
out_data
=
out
->
mutable_data
<
T
>
(
dev_ctx
.
GetPlace
());
if
(
scale_num
==
1
)
{
int
num
=
in
->
numel
();
int
64_t
num
=
in
->
numel
();
const
T
*
scale_factor
=
scales
[
0
]
->
data
<
T
>
();
if
(
quant_axis
==
0
)
{
int
grid
=
in_dims
[
0
];
int
block
=
1024
;
DequantizeOneScaleQuantAxis0
<
T
><<<
grid
,
block
,
0
,
dev_ctx
.
stream
()
>>>
(
in_data
,
scale_factor
,
max_range
,
num
,
in_dims
[
0
],
out_data
);
}
else
if
(
quant_axis
==
1
)
{
// Dequantize weight of Cin * Cout * W * H
int
grid
=
in_dims
[
0
]
*
in_dims
[
1
];
int
block
=
1024
;
DequantizeOneScaleQuantAxis1
<
T
><<<
grid
,
block
,
0
,
dev_ctx
.
stream
()
>>>
(
in_data
,
scale_factor
,
max_range
,
num
,
in_dims
[
0
],
in_dims
[
1
],
out_data
);
}
else
{
int
quant_stride
=
1
;
for
(
int
i
=
quant_axis
+
1
;
i
<
in_dims
.
size
();
i
++
)
{
quant_stride
*=
in_dims
[
i
];
}
int64_t
block_size
=
std
::
min
(
num
,
static_cast
<
int64_t
>
(
dev_ctx
.
GetMaxThreadsPerBlock
()
/
4
));
int64_t
max_threads
=
dev_ctx
.
GetMaxPhysicalThreadCount
();
// SM * block_per_SM
const
int64_t
max_blocks
=
std
::
max
(
((
max_threads
-
1
)
/
block_size
+
1
),
static_cast
<
int64_t
>
(
1
));
const
int64_t
grid_size
=
std
::
min
(
max_blocks
,
(
num
+
block_size
-
1
)
/
block_size
);
DequantizeOneScaleQuantAxisN
<
T
><<<
grid_size
,
block_size
,
0
,
dev_ctx
.
stream
()
>>>
(
in_data
,
scale_factor
,
max_range
,
num
,
in_dims
[
quant_axis
],
quant_stride
,
out_data
);
}
}
else
if
(
scale_num
==
2
)
{
// Not need to consider quant_axis
...
...
paddle/fluid/operators/fake_quantize_op.cu
浏览文件 @
8991e9ae
...
...
@@ -273,18 +273,18 @@ struct ClipAndFakeQuantDequantFunctor<platform::CUDADeviceContext, T> {
template
<
typename
T
>
__global__
void
ChannelClipAndQuantKernelQuantAxis0
(
const
T
*
in
,
const
T
*
scale
,
const
int
bin_cnt
,
const
int
n
,
const
int
c
,
T
*
out
)
{
const
int
64_t
n
,
const
int
c
,
T
*
out
)
{
int
tid
=
threadIdx
.
x
;
int
channel_size
=
n
/
c
;
int
64_t
channel_size
=
n
/
c
;
const
T
*
in_c
=
in
+
blockIdx
.
x
*
channel_size
;
T
*
out_c
=
out
+
blockIdx
.
x
*
channel_size
;
T
s
=
scale
[
blockIdx
.
x
];
T
inv_s
=
inverse
(
s
);
for
(
int
i
=
tid
;
i
<
channel_size
;
i
+=
blockDim
.
x
)
{
for
(
int
64_t
i
=
tid
;
i
<
channel_size
;
i
+=
blockDim
.
x
)
{
T
x
=
in_c
[
i
];
T
v
=
x
>
s
?
s
:
x
;
v
=
v
<
-
s
?
-
s
:
v
;
...
...
@@ -293,25 +293,20 @@ __global__ void ChannelClipAndQuantKernelQuantAxis0(const T* in, const T* scale,
}
}
// ChannelClipAndQuantKernel for quant_axis is
1
// ChannelClipAndQuantKernel for quant_axis is
N
template
<
typename
T
>
__global__
void
ChannelClipAndQuantKernelQuantAxis1
(
const
T
*
in
,
const
T
*
scale
,
const
int
bin_cnt
,
const
int
n
,
const
int
cin
,
const
int
cout
,
T
*
out
)
{
T
s
=
scale
[
blockIdx
.
x
%
cout
];
T
inv_s
=
inverse
(
s
);
int
wh_size
=
n
/
(
cin
*
cout
);
const
T
*
in_c
=
in
+
blockIdx
.
x
*
wh_size
;
T
*
out_c
=
out
+
blockIdx
.
x
*
wh_size
;
for
(
int
i
=
threadIdx
.
x
;
i
<
wh_size
;
i
+=
blockDim
.
x
)
{
T
x
=
in_c
[
i
];
__global__
void
ChannelClipAndQuantKernelQuantAxisN
(
const
T
*
in
,
const
T
*
scale
,
const
int
bin_cnt
,
const
int64_t
n
,
const
int
nScale
,
const
int
quant_stride
,
T
*
out
)
{
int64_t
idx
=
blockDim
.
x
*
blockIdx
.
x
+
threadIdx
.
x
;
for
(
int64_t
i
=
idx
;
i
<
n
;
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
T
s
=
scale
[(
i
/
quant_stride
)
%
nScale
];
T
inv_s
=
1.0
/
s
;
T
x
=
in
[
i
];
T
v
=
x
>
s
?
s
:
x
;
v
=
v
<
-
s
?
-
s
:
v
;
v
=
bin_cnt
*
inv_s
*
v
;
out
_c
[
i
]
=
round
(
v
);
out
[
i
]
=
round
(
v
);
}
}
...
...
@@ -327,7 +322,7 @@ struct ChannelClipAndFakeQuantFunctor<platform::CUDADeviceContext, T> {
"the received is %d"
,
quant_axis
));
int
num
=
in
.
numel
();
int
64_t
num
=
in
.
numel
();
auto
in_dims
=
in
.
dims
();
const
T
*
in_data
=
in
.
data
<
T
>
();
const
T
*
scale_data
=
scale
.
data
<
T
>
();
...
...
@@ -338,11 +333,24 @@ struct ChannelClipAndFakeQuantFunctor<platform::CUDADeviceContext, T> {
int
block
=
1024
;
ChannelClipAndQuantKernelQuantAxis0
<
T
><<<
grid
,
block
,
0
,
ctx
.
stream
()
>>>
(
in_data
,
scale_data
,
bin_cnt
,
num
,
in_dims
[
0
],
out_data
);
}
else
if
(
quant_axis
==
1
)
{
int
grid
=
in_dims
[
0
]
*
in_dims
[
1
];
int
block
=
1024
;
ChannelClipAndQuantKernelQuantAxis1
<
T
><<<
grid
,
block
,
0
,
ctx
.
stream
()
>>>
(
in_data
,
scale_data
,
bin_cnt
,
num
,
in_dims
[
0
],
in_dims
[
1
],
out_data
);
}
else
{
int
quant_stride
=
1
;
for
(
int
i
=
quant_axis
+
1
;
i
<
in_dims
.
size
();
i
++
)
{
quant_stride
*=
in_dims
[
i
];
}
int64_t
block_size
=
std
::
min
(
num
,
static_cast
<
int64_t
>
(
ctx
.
GetMaxThreadsPerBlock
()
/
4
));
int64_t
max_threads
=
ctx
.
GetMaxPhysicalThreadCount
();
// SM * block_per_SM
const
int64_t
max_blocks
=
std
::
max
(((
max_threads
-
1
)
/
block_size
+
1
),
static_cast
<
int64_t
>
(
1
));
const
int64_t
grid_size
=
std
::
min
(
max_blocks
,
(
num
+
block_size
-
1
)
/
block_size
);
ChannelClipAndQuantKernelQuantAxisN
<
T
><<<
grid_size
,
block_size
>>>
(
in_data
,
scale_data
,
bin_cnt
,
num
,
in_dims
[
quant_axis
],
quant_stride
,
out_data
);
}
}
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录