Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
86657dbe
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
86657dbe
编写于
2月 12, 2018
作者:
C
chengduo
提交者:
GitHub
2月 12, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #8382 from chengduoZH/feature/multiBoxHead
Add MultiBox API
上级
24509f4a
6e79d01b
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
296 addition
and
260 deletion
+296
-260
python/paddle/v2/fluid/layers/detection.py
python/paddle/v2/fluid/layers/detection.py
+276
-221
python/paddle/v2/fluid/tests/test_detection.py
python/paddle/v2/fluid/tests/test_detection.py
+20
-39
未找到文件。
python/paddle/v2/fluid/layers/detection.py
浏览文件 @
86657dbe
...
...
@@ -17,13 +17,13 @@ All layers just related to the detection neural network.
from
layer_function_generator
import
generate_layer_fn
from
..layer_helper
import
LayerHelper
import
nn
import
ops
import
tensor
import
ops
import
nn
import
math
__all__
=
[
'
prior_box
'
,
'
multi_box_head
'
,
'bipartite_match'
,
'target_assign'
,
'detection_output'
,
...
...
@@ -132,211 +132,6 @@ def detection_output(scores,
return
nmsed_outs
def
prior_box
(
inputs
,
image
,
min_ratio
,
max_ratio
,
aspect_ratios
,
base_size
,
steps
=
None
,
step_w
=
None
,
step_h
=
None
,
offset
=
0.5
,
variance
=
[
0.1
,
0.1
,
0.1
,
0.1
],
flip
=
False
,
clip
=
False
,
min_sizes
=
None
,
max_sizes
=
None
,
name
=
None
):
"""
**Prior_boxes**
Generate prior boxes for SSD(Single Shot MultiBox Detector)
algorithm. The details of this algorithm, please refer the
section 2.2 of SSD paper (SSD: Single Shot MultiBox Detector)
<https://arxiv.org/abs/1512.02325>`_ .
Args:
inputs(list): The list of input Variables, the format
of all Variables is NCHW.
image(Variable): The input image data of PriorBoxOp,
the layout is NCHW.
min_ratio(int): the min ratio of generated prior boxes.
max_ratio(int): the max ratio of generated prior boxes.
aspect_ratios(list): the aspect ratios of generated prior
boxes. The length of input and aspect_ratios must be equal.
base_size(int): the base_size is used to get min_size
and max_size according to min_ratio and max_ratio.
step_w(list, optional, default=None): Prior boxes step
across width. If step_w[i] == 0.0, the prior boxes step
across width of the inputs[i] will be automatically calculated.
step_h(list, optional, default=None): Prior boxes step
across height, If step_h[i] == 0.0, the prior boxes
step across height of the inputs[i] will be automatically calculated.
offset(float, optional, default=0.5): Prior boxes center offset.
variance(list, optional, default=[0.1, 0.1, 0.1, 0.1]): the variances
to be encoded in prior boxes.
flip(bool, optional, default=False): Whether to flip
aspect ratios.
clip(bool, optional, default=False): Whether to clip
out-of-boundary boxes.
min_sizes(list, optional, default=None): If `len(inputs) <=2`,
min_sizes must be set up, and the length of min_sizes
should equal to the length of inputs.
max_sizes(list, optional, default=None): If `len(inputs) <=2`,
max_sizes must be set up, and the length of min_sizes
should equal to the length of inputs.
name(str, optional, None): Name of the prior box layer.
Returns:
boxes(Variable): the output prior boxes of PriorBoxOp.
The layout is [num_priors, 4]. num_priors is the total
box count of each position of inputs.
Variances(Variable): the expanded variances of PriorBoxOp.
The layout is [num_priors, 4]. num_priors is the total
box count of each position of inputs
Examples:
.. code-block:: python
prior_box(
inputs = [conv1, conv2, conv3, conv4, conv5, conv6],
image = data,
min_ratio = 20, # 0.20
max_ratio = 90, # 0.90
offset = 0.5,
base_size = 300,
variance = [0.1,0.1,0.1,0.1],
aspect_ratios = [[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
flip=True,
clip=True)
"""
def
_prior_box_
(
input
,
image
,
min_sizes
,
max_sizes
,
aspect_ratios
,
variance
,
flip
=
False
,
clip
=
False
,
step_w
=
0.0
,
step_h
=
0.0
,
offset
=
0.5
,
name
=
None
):
helper
=
LayerHelper
(
"prior_box"
,
**
locals
())
dtype
=
helper
.
input_dtype
()
box
=
helper
.
create_tmp_variable
(
dtype
)
var
=
helper
.
create_tmp_variable
(
dtype
)
helper
.
append_op
(
type
=
"prior_box"
,
inputs
=
{
"Input"
:
input
,
"Image"
:
image
},
outputs
=
{
"Boxes"
:
box
,
"Variances"
:
var
},
attrs
=
{
'min_sizes'
:
min_sizes
,
'max_sizes'
:
max_sizes
,
'aspect_ratios'
:
aspect_ratios
,
'variances'
:
variance
,
'flip'
:
flip
,
'clip'
:
clip
,
'step_w'
:
step_w
,
'step_h'
:
step_h
,
'offset'
:
offset
})
return
box
,
var
def
_reshape_with_axis_
(
input
,
axis
=
1
):
if
not
(
axis
>
0
and
axis
<
len
(
input
.
shape
)):
raise
ValueError
(
"The axis should be smaller than "
"the arity of input and bigger than 0."
)
new_shape
=
[
-
1
,
reduce
(
lambda
x
,
y
:
x
*
y
,
input
.
shape
[
axis
:
len
(
input
.
shape
)])
]
out
=
ops
.
reshape
(
x
=
input
,
shape
=
new_shape
)
return
out
assert
isinstance
(
inputs
,
list
),
'inputs should be a list.'
num_layer
=
len
(
inputs
)
if
num_layer
<=
2
:
assert
min_sizes
is
not
None
and
max_sizes
is
not
None
assert
len
(
min_sizes
)
==
num_layer
and
len
(
max_sizes
)
==
num_layer
else
:
min_sizes
=
[]
max_sizes
=
[]
step
=
int
(
math
.
floor
(((
max_ratio
-
min_ratio
))
/
(
num_layer
-
2
)))
for
ratio
in
xrange
(
min_ratio
,
max_ratio
+
1
,
step
):
min_sizes
.
append
(
base_size
*
ratio
/
100.
)
max_sizes
.
append
(
base_size
*
(
ratio
+
step
)
/
100.
)
min_sizes
=
[
base_size
*
.
10
]
+
min_sizes
max_sizes
=
[
base_size
*
.
20
]
+
max_sizes
if
aspect_ratios
:
if
not
(
isinstance
(
aspect_ratios
,
list
)
and
len
(
aspect_ratios
)
==
num_layer
):
raise
ValueError
(
'aspect_ratios should be list and the length of inputs '
'and aspect_ratios should be the same.'
)
if
step_h
:
if
not
(
isinstance
(
step_h
,
list
)
and
len
(
step_h
)
==
num_layer
):
raise
ValueError
(
'step_h should be list and the length of inputs and '
'step_h should be the same.'
)
if
step_w
:
if
not
(
isinstance
(
step_w
,
list
)
and
len
(
step_w
)
==
num_layer
):
raise
ValueError
(
'step_w should be list and the length of inputs and '
'step_w should be the same.'
)
if
steps
:
if
not
(
isinstance
(
steps
,
list
)
and
len
(
steps
)
==
num_layer
):
raise
ValueError
(
'steps should be list and the length of inputs and '
'step_w should be the same.'
)
step_w
=
steps
step_h
=
steps
box_results
=
[]
var_results
=
[]
for
i
,
input
in
enumerate
(
inputs
):
min_size
=
min_sizes
[
i
]
max_size
=
max_sizes
[
i
]
aspect_ratio
=
[]
if
not
isinstance
(
min_size
,
list
):
min_size
=
[
min_size
]
if
not
isinstance
(
max_size
,
list
):
max_size
=
[
max_size
]
if
aspect_ratios
:
aspect_ratio
=
aspect_ratios
[
i
]
if
not
isinstance
(
aspect_ratio
,
list
):
aspect_ratio
=
[
aspect_ratio
]
box
,
var
=
_prior_box_
(
input
,
image
,
min_size
,
max_size
,
aspect_ratio
,
variance
,
flip
,
clip
,
step_w
[
i
]
if
step_w
else
0.0
,
step_h
[
i
]
if
step_w
else
0.0
,
offset
)
box_results
.
append
(
box
)
var_results
.
append
(
var
)
if
len
(
box_results
)
==
1
:
box
=
box_results
[
0
]
var
=
var_results
[
0
]
else
:
reshaped_boxes
=
[]
reshaped_vars
=
[]
for
i
in
range
(
len
(
box_results
)):
reshaped_boxes
.
append
(
_reshape_with_axis_
(
box_results
[
i
],
axis
=
3
))
reshaped_vars
.
append
(
_reshape_with_axis_
(
var_results
[
i
],
axis
=
3
))
box
=
tensor
.
concat
(
reshaped_boxes
)
var
=
tensor
.
concat
(
reshaped_vars
)
return
box
,
var
def
bipartite_match
(
dist_matrix
,
name
=
None
):
"""
**Bipartite matchint operator**
...
...
@@ -660,3 +455,263 @@ def ssd_loss(location,
# 5.3 Compute overall weighted loss.
loss
=
conf_loss_weight
*
conf_loss
+
loc_loss_weight
*
loc_loss
return
loss
def
multi_box_head
(
inputs
,
image
,
base_size
,
num_classes
,
aspect_ratios
,
min_ratio
,
max_ratio
,
min_sizes
=
None
,
max_sizes
=
None
,
steps
=
None
,
step_w
=
None
,
step_h
=
None
,
offset
=
0.5
,
variance
=
[
0.1
,
0.1
,
0.1
,
0.1
],
flip
=
False
,
clip
=
False
,
kernel_size
=
1
,
pad
=
0
,
stride
=
1
,
name
=
None
):
"""
**Prior_boxes**
Generate prior boxes for SSD(Single Shot MultiBox Detector)
algorithm. The details of this algorithm, please refer the
section 2.2 of SSD paper (SSD: Single Shot MultiBox Detector)
<https://arxiv.org/abs/1512.02325>`_ .
Args:
inputs(list|tuple): The list of input Variables, the format
of all Variables is NCHW.
image(Variable): The input image data of PriorBoxOp,
the layout is NCHW.
base_size(int): the base_size is used to get min_size
and max_size according to min_ratio and max_ratio.
num_classes(int): The number of classes.
aspect_ratios(list|tuple): the aspect ratios of generated prior
boxes. The length of input and aspect_ratios must be equal.
min_ratio(int): the min ratio of generated prior boxes.
max_ratio(int): the max ratio of generated prior boxes.
min_sizes(list|tuple|None): If `len(inputs) <=2`,
min_sizes must be set up, and the length of min_sizes
should equal to the length of inputs. Default: None.
max_sizes(list|tuple|None): If `len(inputs) <=2`,
max_sizes must be set up, and the length of min_sizes
should equal to the length of inputs. Default: None.
steps(list|tuple): If step_w and step_h are the same,
step_w and step_h can be replaced by steps.
step_w(list|tuple): Prior boxes step
across width. If step_w[i] == 0.0, the prior boxes step
across width of the inputs[i] will be automatically
calculated. Default: None.
step_h(list|tuple): Prior boxes step across height, If
step_h[i] == 0.0, the prior boxes step across height of
the inputs[i] will be automatically calculated. Default: None.
offset(float): Prior boxes center offset. Default: 0.5
variance(list|tuple): the variances to be encoded in prior boxes.
Default:[0.1, 0.1, 0.1, 0.1].
flip(bool): Whether to flip aspect ratios. Default:False.
clip(bool): Whether to clip out-of-boundary boxes. Default: False.
kernel_size(int): The kernel size of conv2d. Default: 1.
pad(int|list|tuple): The padding of conv2d. Default:0.
stride(int|list|tuple): The stride of conv2d. Default:1,
name(str): Name of the prior box layer. Default: None.
Returns:
mbox_loc(list): The predicted boxes' location of the inputs.
The layout of each element is [N, H, W, Priors]. Priors
is the number of predicted boxof each position of each input.
mbox_conf(list): The predicted boxes' confidence of the inputs.
The layout of each element is [N, H, W, Priors]. Priors
is the number of predicted box of each position of each input.
boxes(Variable): the output prior boxes of PriorBox.
The layout is [num_priors, 4]. num_priors is the total
box count of each position of inputs.
Variances(Variable): the expanded variances of PriorBox.
The layout is [num_priors, 4]. num_priors is the total
box count of each position of inputs
Examples:
.. code-block:: python
mbox_locs, mbox_confs, box, var = layers.multi_box_head(
inputs=[conv1, conv2, conv3, conv4, conv5, conv5],
image=images,
num_classes=21,
min_ratio=20,
max_ratio=90,
aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
base_size=300,
offset=0.5,
flip=True,
clip=True)
"""
def
_prior_box_
(
input
,
image
,
min_sizes
,
max_sizes
,
aspect_ratios
,
variance
,
flip
=
False
,
clip
=
False
,
step_w
=
0.0
,
step_h
=
0.0
,
offset
=
0.5
,
name
=
None
):
helper
=
LayerHelper
(
"prior_box"
,
**
locals
())
dtype
=
helper
.
input_dtype
()
box
=
helper
.
create_tmp_variable
(
dtype
)
var
=
helper
.
create_tmp_variable
(
dtype
)
helper
.
append_op
(
type
=
"prior_box"
,
inputs
=
{
"Input"
:
input
,
"Image"
:
image
},
outputs
=
{
"Boxes"
:
box
,
"Variances"
:
var
},
attrs
=
{
'min_sizes'
:
min_sizes
,
'max_sizes'
:
max_sizes
,
'aspect_ratios'
:
aspect_ratios
,
'variances'
:
variance
,
'flip'
:
flip
,
'clip'
:
clip
,
'step_w'
:
step_w
,
'step_h'
:
step_h
,
'offset'
:
offset
})
return
box
,
var
def
_reshape_with_axis_
(
input
,
axis
=
1
):
if
not
(
axis
>
0
and
axis
<
len
(
input
.
shape
)):
raise
ValueError
(
"The axis should be smaller than "
"the arity of input and bigger than 0."
)
new_shape
=
[
-
1
,
reduce
(
lambda
x
,
y
:
x
*
y
,
input
.
shape
[
axis
:
len
(
input
.
shape
)])
]
out
=
ops
.
reshape
(
x
=
input
,
shape
=
new_shape
)
return
out
def
_is_list_or_tuple_
(
data
):
return
(
isinstance
(
data
,
list
)
or
isinstance
(
data
,
tuple
))
def
_is_list_or_tuple_and_equal
(
data
,
length
,
err_info
):
if
not
(
_is_list_or_tuple_
(
data
)
and
len
(
data
)
==
length
):
raise
ValueError
(
err_info
)
if
not
_is_list_or_tuple_
(
inputs
):
raise
ValueError
(
'inputs should be a list or tuple.'
)
num_layer
=
len
(
inputs
)
if
num_layer
<=
2
:
assert
min_sizes
is
not
None
and
max_sizes
is
not
None
assert
len
(
min_sizes
)
==
num_layer
and
len
(
max_sizes
)
==
num_layer
else
:
min_sizes
=
[]
max_sizes
=
[]
step
=
int
(
math
.
floor
(((
max_ratio
-
min_ratio
))
/
(
num_layer
-
2
)))
for
ratio
in
xrange
(
min_ratio
,
max_ratio
+
1
,
step
):
min_sizes
.
append
(
base_size
*
ratio
/
100.
)
max_sizes
.
append
(
base_size
*
(
ratio
+
step
)
/
100.
)
min_sizes
=
[
base_size
*
.
10
]
+
min_sizes
max_sizes
=
[
base_size
*
.
20
]
+
max_sizes
if
aspect_ratios
:
_is_list_or_tuple_and_equal
(
aspect_ratios
,
num_layer
,
'aspect_ratios should be list or tuple, and the length of inputs '
'and aspect_ratios should be the same.'
)
if
step_h
:
_is_list_or_tuple_and_equal
(
step_h
,
num_layer
,
'step_h should be list or tuple, and the length of inputs and '
'step_h should be the same.'
)
if
step_w
:
_is_list_or_tuple_and_equal
(
step_w
,
num_layer
,
'step_w should be list or tuple, and the length of inputs and '
'step_w should be the same.'
)
if
steps
:
_is_list_or_tuple_and_equal
(
steps
,
num_layer
,
'steps should be list or tuple, and the length of inputs and '
'step_w should be the same.'
)
step_w
=
steps
step_h
=
steps
mbox_locs
=
[]
mbox_confs
=
[]
box_results
=
[]
var_results
=
[]
for
i
,
input
in
enumerate
(
inputs
):
min_size
=
min_sizes
[
i
]
max_size
=
max_sizes
[
i
]
if
not
_is_list_or_tuple_
(
min_size
):
min_size
=
[
min_size
]
if
not
_is_list_or_tuple_
(
max_size
):
max_size
=
[
max_size
]
if
not
(
len
(
max_size
)
==
len
(
min_size
)):
raise
ValueError
(
'the length of max_size and min_size should be equal.'
)
aspect_ratio
=
[]
if
aspect_ratios
is
not
None
:
aspect_ratio
=
aspect_ratios
[
i
]
if
not
_is_list_or_tuple_
(
aspect_ratio
):
aspect_ratio
=
[
aspect_ratio
]
box
,
var
=
_prior_box_
(
input
,
image
,
min_size
,
max_size
,
aspect_ratio
,
variance
,
flip
,
clip
,
step_w
[
i
]
if
step_w
else
0.0
,
step_h
[
i
]
if
step_w
else
0.0
,
offset
)
box_results
.
append
(
box
)
var_results
.
append
(
var
)
num_boxes
=
box
.
shape
[
2
]
# get box_loc
num_loc_output
=
num_boxes
*
num_classes
*
4
mbox_loc
=
nn
.
conv2d
(
input
=
input
,
num_filters
=
num_loc_output
,
filter_size
=
kernel_size
,
padding
=
pad
,
stride
=
stride
)
mbox_loc
=
nn
.
transpose
(
mbox_loc
,
perm
=
[
0
,
2
,
3
,
1
])
mbox_locs
.
append
(
mbox_loc
)
# get conf_loc
num_conf_output
=
num_boxes
*
num_classes
conf_loc
=
nn
.
conv2d
(
input
=
input
,
num_filters
=
num_conf_output
,
filter_size
=
kernel_size
,
padding
=
pad
,
stride
=
stride
)
conf_loc
=
nn
.
transpose
(
conf_loc
,
perm
=
[
0
,
2
,
3
,
1
])
mbox_confs
.
append
(
conf_loc
)
if
len
(
box_results
)
==
1
:
box
=
box_results
[
0
]
var
=
var_results
[
0
]
else
:
reshaped_boxes
=
[]
reshaped_vars
=
[]
for
i
in
range
(
len
(
box_results
)):
reshaped_boxes
.
append
(
_reshape_with_axis_
(
box_results
[
i
],
axis
=
3
))
reshaped_vars
.
append
(
_reshape_with_axis_
(
var_results
[
i
],
axis
=
3
))
box
=
tensor
.
concat
(
reshaped_boxes
)
var
=
tensor
.
concat
(
reshaped_vars
)
return
mbox_locs
,
mbox_confs
,
box
,
var
python/paddle/v2/fluid/tests/test_detection.py
浏览文件 @
86657dbe
...
...
@@ -13,6 +13,7 @@
# limitations under the License.
from
__future__
import
print_function
import
paddle.v2.fluid
as
fluid
import
paddle.v2.fluid.layers
as
layers
from
paddle.v2.fluid.framework
import
Program
,
program_guard
import
unittest
...
...
@@ -108,60 +109,40 @@ class TestDetection(unittest.TestCase):
print
(
str
(
program
))
class
Test
PriorBox
(
unittest
.
TestCase
):
def
test_
prior_box
(
self
):
class
Test
MultiBoxHead
(
unittest
.
TestCase
):
def
test_
multi_box_head
(
self
):
data_shape
=
[
3
,
224
,
224
]
box
,
var
=
self
.
prior_box
_output
(
data_shape
)
mbox_locs
,
mbox_confs
,
box
,
var
=
self
.
multi_box_head
_output
(
data_shape
)
assert
len
(
box
.
shape
)
==
2
assert
box
.
shape
==
var
.
shape
assert
box
.
shape
[
1
]
==
4
def
prior_box_output
(
self
,
data_shape
):
images
=
layers
.
data
(
name
=
'pixel'
,
shape
=
data_shape
,
dtype
=
'float32'
)
conv1
=
layers
.
conv2d
(
input
=
images
,
num_filters
=
3
,
filter_size
=
3
,
stride
=
2
,
use_cudnn
=
False
)
conv2
=
layers
.
conv2d
(
input
=
conv1
,
num_filters
=
3
,
filter_size
=
3
,
stride
=
2
,
use_cudnn
=
False
)
conv3
=
layers
.
conv2d
(
input
=
conv2
,
num_filters
=
3
,
filter_size
=
3
,
stride
=
2
,
use_cudnn
=
False
)
conv4
=
layers
.
conv2d
(
input
=
conv3
,
num_filters
=
3
,
filter_size
=
3
,
stride
=
2
,
use_cudnn
=
False
)
conv5
=
layers
.
conv2d
(
input
=
conv4
,
num_filters
=
3
,
filter_size
=
3
,
stride
=
2
,
use_cudnn
=
False
)
box
,
var
=
layers
.
prior_box
(
for
loc
,
conf
in
zip
(
mbox_locs
,
mbox_confs
):
assert
loc
.
shape
[
1
:
3
]
==
conf
.
shape
[
1
:
3
]
def
multi_box_head_output
(
self
,
data_shape
):
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
data_shape
,
dtype
=
'float32'
)
conv1
=
fluid
.
layers
.
conv2d
(
images
,
3
,
3
,
2
)
conv2
=
fluid
.
layers
.
conv2d
(
conv1
,
3
,
3
,
2
)
conv3
=
fluid
.
layers
.
conv2d
(
conv2
,
3
,
3
,
2
)
conv4
=
fluid
.
layers
.
conv2d
(
conv3
,
3
,
3
,
2
)
conv5
=
fluid
.
layers
.
conv2d
(
conv4
,
3
,
3
,
2
)
mbox_locs
,
mbox_confs
,
box
,
var
=
layers
.
multi_box_head
(
inputs
=
[
conv1
,
conv2
,
conv3
,
conv4
,
conv5
,
conv5
],
image
=
images
,
num_classes
=
21
,
min_ratio
=
20
,
max_ratio
=
90
,
# steps=[8, 16, 32, 64, 100, 300],
aspect_ratios
=
[[
2.
],
[
2.
,
3.
],
[
2.
,
3.
],
[
2.
,
3.
],
[
2.
],
[
2.
]],
base_size
=
300
,
offset
=
0.5
,
flip
=
True
,
clip
=
True
)
return
box
,
var
return
mbox_locs
,
mbox_confs
,
box
,
var
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录