From 842325dd0e75465ffd07549866ced5d25f3d7f1f Mon Sep 17 00:00:00 2001 From: Nyakku Shigure Date: Fri, 23 Sep 2022 17:42:58 +0800 Subject: [PATCH] [CodeStyle] remove some `yapf: disable` (#46410) * remove `yapf: disable` from math.py * disable test case only * remove useless disable * remove useless disable * revert no_grad_set_white_list --- .../fluid/tests/unittests/fft/test_fft.py | 2 - .../fft/test_fft_with_static_graph.py | 2 - .../fluid/tests/unittests/test_signal.py | 148 +-- python/paddle/tensor/math.py | 969 +++++++++++------- 4 files changed, 668 insertions(+), 453 deletions(-) diff --git a/python/paddle/fluid/tests/unittests/fft/test_fft.py b/python/paddle/fluid/tests/unittests/fft/test_fft.py index 374db023e29..7ae48819de3 100644 --- a/python/paddle/fluid/tests/unittests/fft/test_fft.py +++ b/python/paddle/fluid/tests/unittests/fft/test_fft.py @@ -1094,5 +1094,3 @@ class TestIfftShift(unittest.TestCase): if __name__ == '__main__': unittest.main() - -# yapf: enable diff --git a/python/paddle/fluid/tests/unittests/fft/test_fft_with_static_graph.py b/python/paddle/fluid/tests/unittests/fft/test_fft_with_static_graph.py index ddf47065bb0..2c0ff3f9272 100644 --- a/python/paddle/fluid/tests/unittests/fft/test_fft_with_static_graph.py +++ b/python/paddle/fluid/tests/unittests/fft/test_fft_with_static_graph.py @@ -925,5 +925,3 @@ class TestIfftShift(unittest.TestCase): if __name__ == '__main__': unittest.main() - -# yapf: enable diff --git a/python/paddle/fluid/tests/unittests/test_signal.py b/python/paddle/fluid/tests/unittests/test_signal.py index 22e99ab49c2..d07e054bd48 100644 --- a/python/paddle/fluid/tests/unittests/test_signal.py +++ b/python/paddle/fluid/tests/unittests/test_signal.py @@ -642,7 +642,6 @@ def to_safe_name(s): return str(re.sub("[^a-zA-Z0-9_]+", "_", s)) -# yapf: disable @place(DEVICES) @parameterize( (TEST_CASE_NAME, 'x', 'frame_length', 'hop_length', 'axis'), @@ -653,10 +652,19 @@ def to_safe_name(s): ('test_2d_input2', rand_x(2, np.float64, shape=[8, 150]), 50, 15, -1), ('test_3d_input1', rand_x(3, np.float64, shape=[150, 4, 2]), 50, 15, 0), ('test_3d_input2', rand_x(3, np.float64, shape=[4, 2, 150]), 50, 15, -1), - ]) + ]) # yapf: disable class TestFrame(unittest.TestCase): + def test_frame(self): - np.testing.assert_allclose(frame_for_api_test(self.x, self.frame_length, self.hop_length, self.axis), paddle.signal.frame(paddle.to_tensor(self.x), self.frame_length, self.hop_length, self.axis), rtol=rtol.get(str(self.x.dtype)), atol=atol.get(str(self.x.dtype))) + np.testing.assert_allclose(frame_for_api_test(self.x, self.frame_length, + self.hop_length, + self.axis), + paddle.signal.frame(paddle.to_tensor(self.x), + self.frame_length, + self.hop_length, + self.axis), + rtol=rtol.get(str(self.x.dtype)), + atol=atol.get(str(self.x.dtype))) @place(DEVICES) @@ -669,24 +677,29 @@ class TestFrame(unittest.TestCase): ('test_2d_input2', rand_x(2, np.float64, shape=[8, 150]), 50, 15, -1), ('test_3d_input1', rand_x(3, np.float64, shape=[150, 4, 2]), 50, 15, 0), ('test_3d_input2', rand_x(3, np.float64, shape=[4, 2, 150]), 50, 15, -1), - ]) + ]) # yapf: disable class TestFrameStatic(unittest.TestCase): + def test_frame_static(self): paddle.enable_static() mp, sp = paddle.static.Program(), paddle.static.Program() with paddle.static.program_guard(mp, sp): - input = paddle.static.data('input', self.x.shape, dtype=self.x.dtype) - output = paddle.signal.frame( - input, - self.frame_length, - self.hop_length, - self.axis), + input = paddle.static.data('input', + self.x.shape, + dtype=self.x.dtype) + output = paddle.signal.frame(input, self.frame_length, + self.hop_length, self.axis), exe = paddle.static.Executor(self.place) exe.run(sp) [output] = exe.run(mp, feed={'input': self.x}, fetch_list=[output]) paddle.disable_static() - np.testing.assert_allclose(frame_for_api_test(self.x, self.frame_length, self.hop_length, self.axis), output, rtol=rtol.get(str(self.x.dtype)), atol=atol.get(str(self.x.dtype))) + np.testing.assert_allclose(frame_for_api_test(self.x, self.frame_length, + self.hop_length, + self.axis), + output, + rtol=rtol.get(str(self.x.dtype)), + atol=atol.get(str(self.x.dtype))) @place(DEVICES) @@ -697,15 +710,13 @@ class TestFrameStatic(unittest.TestCase): ('test_hop_length', rand_x(1, np.float64, shape=[150]), 50, 0, -1, ValueError), ('test_frame_length1', rand_x(2, np.float64, shape=[150, 8]), 0, 15, 0, ValueError), ('test_frame_length2', rand_x(2, np.float64, shape=[150, 8]), 151, 15, 0, ValueError), - ]) + ]) # yapf: disable class TestFrameException(unittest.TestCase): + def test_frame(self): with self.assertRaises(self.expect_exception): - paddle.signal.frame( - paddle.to_tensor(self.x), - self.frame_length, - self.hop_length, - self.axis) + paddle.signal.frame(paddle.to_tensor(self.x), self.frame_length, + self.hop_length, self.axis) @place(DEVICES) @@ -718,10 +729,16 @@ class TestFrameException(unittest.TestCase): ('test_3d_input2', rand_x(3, np.float64, shape=[2, 40, 5]), 10, -1), ('test_4d_input1', rand_x(4, np.float64, shape=[8, 12, 5, 3]), 5, 0), ('test_4d_input2', rand_x(4, np.float64, shape=[3, 5, 12, 8]), 5, -1), - ]) + ]) # yapf: disable class TestOverlapAdd(unittest.TestCase): + def test_overlap_add(self): - np.testing.assert_allclose(overlap_add_for_api_test(self.x, self.hop_length, self.axis), paddle.signal.overlap_add(paddle.to_tensor(self.x), self.hop_length, self.axis), rtol=rtol.get(str(self.x.dtype)), atol=atol.get(str(self.x.dtype))) + np.testing.assert_allclose( + overlap_add_for_api_test(self.x, self.hop_length, self.axis), + paddle.signal.overlap_add(paddle.to_tensor(self.x), self.hop_length, + self.axis), + rtol=rtol.get(str(self.x.dtype)), + atol=atol.get(str(self.x.dtype))) @place(DEVICES) @@ -734,23 +751,28 @@ class TestOverlapAdd(unittest.TestCase): ('test_3d_input2', rand_x(3, np.float64, shape=[2, 40, 5]), 10, -1), ('test_4d_input1', rand_x(4, np.float64, shape=[8, 12, 5, 3]), 5, 0), ('test_4d_input2', rand_x(4, np.float64, shape=[3, 5, 12, 8]), 5, -1), - ]) + ]) # yapf: disable class TestOverlapAddStatic(unittest.TestCase): + def test_overlap_add_static(self): paddle.enable_static() mp, sp = paddle.static.Program(), paddle.static.Program() with paddle.static.program_guard(mp, sp): - input = paddle.static.data('input', self.x.shape, dtype=self.x.dtype) - output = paddle.signal.overlap_add( - input, - self.hop_length, - self.axis), + input = paddle.static.data('input', + self.x.shape, + dtype=self.x.dtype) + output = paddle.signal.overlap_add(input, self.hop_length, + self.axis), exe = paddle.static.Executor(self.place) exe.run(sp) [output] = exe.run(mp, feed={'input': self.x}, fetch_list=[output]) paddle.disable_static() - np.testing.assert_allclose(overlap_add_for_api_test(self.x, self.hop_length, self.axis), output, rtol=rtol.get(str(self.x.dtype)), atol=atol.get(str(self.x.dtype))) + np.testing.assert_allclose(overlap_add_for_api_test( + self.x, self.hop_length, self.axis), + output, + rtol=rtol.get(str(self.x.dtype)), + atol=atol.get(str(self.x.dtype))) @place(DEVICES) @@ -759,14 +781,13 @@ class TestOverlapAddStatic(unittest.TestCase): [ ('test_axis', rand_x(2, np.float64, shape=[3, 50]), 4, 2, ValueError), ('test_hop_length', rand_x(2, np.float64, shape=[50, 3]), -1, -1, ValueError), - ]) + ]) # yapf: disable class TestOverlapAddException(unittest.TestCase): + def test_overlap_add(self): with self.assertRaises(self.expect_exception): - paddle.signal.overlap_add( - paddle.to_tensor(self.x), - self.hop_length, - self.axis) + paddle.signal.overlap_add(paddle.to_tensor(self.x), self.hop_length, + self.axis) # ================= STFT @@ -815,8 +836,9 @@ class TestOverlapAddException(unittest.TestCase): 512, None, None, None, True, 'reflect', False, True), ('test_center', rand_x(2, np.float64, shape=[1, 160000]), 512, None, None, None, False, 'reflect', False, True), - ]) + ])# yapf: disable class TestStft(unittest.TestCase): + def test_stft(self): if self.window is None: win_p = None @@ -825,7 +847,15 @@ class TestStft(unittest.TestCase): win_p = paddle.to_tensor(self.window) win_l = self.window - np.testing.assert_allclose(stft(self.x, self.n_fft, self.hop_length, self.win_length, win_l, self.center, self.pad_mode), paddle.signal.stft(paddle.to_tensor(self.x), self.n_fft, self.hop_length, self.win_length, win_p, self.center, self.pad_mode, self.normalized, self.onesided), rtol=rtol.get(str(self.x.dtype)), atol=atol.get(str(self.x.dtype))) + np.testing.assert_allclose( + stft(self.x, self.n_fft, self.hop_length, self.win_length, win_l, + self.center, self.pad_mode), + paddle.signal.stft(paddle.to_tensor(self.x), self.n_fft, + self.hop_length, self.win_length, win_p, + self.center, self.pad_mode, self.normalized, + self.onesided), + rtol=rtol.get(str(self.x.dtype)), + atol=atol.get(str(self.x.dtype))) @place(DEVICES) @@ -848,8 +878,9 @@ class TestStft(unittest.TestCase): 512, None, None, None, True, 'nonsense', False, True, AssertionError), ('test_complex_onesided', rand_x(1, np.float64, shape=[16000], complex=True), 512, None, None, None, False, 'reflect', False, True, AssertionError), - ]) + ]) # yapf: disable class TestStftException(unittest.TestCase): + def test_stft(self): if self.window is None: win_p = None @@ -857,16 +888,10 @@ class TestStftException(unittest.TestCase): win_p = paddle.to_tensor(self.window) with self.assertRaises(self.expect_exception): - paddle.signal.stft( - paddle.to_tensor(self.x), - self.n_fft, - self.hop_length, - self.win_length, - win_p, - self.center, - self.pad_mode, - self.normalized, - self.onesided), + paddle.signal.stft(paddle.to_tensor(self.x), self.n_fft, + self.hop_length, self.win_length, win_p, + self.center, self.pad_mode, self.normalized, + self.onesided), @place(DEVICES) @@ -887,8 +912,9 @@ class TestStftException(unittest.TestCase): 512, None, None, None, False, False, True, None, False), ('test_length', rand_x(3, np.float64, shape=[1, 257, 471], complex=True), 512, None, None, None, False, False, True, 1888, False), - ]) + ]) # yapf: disable class TestIstft(unittest.TestCase): + def test_istft(self): if self.window is None: win_p = None @@ -897,7 +923,15 @@ class TestIstft(unittest.TestCase): win_p = paddle.to_tensor(self.window) win_l = self.window - np.testing.assert_allclose(istft(self.x, self.hop_length, self.win_length, win_l, self.center, self.length), paddle.signal.istft(paddle.to_tensor(self.x), self.n_fft, self.hop_length, self.win_length, win_p, self.center, self.normalized, self.onesided, self.length, self.return_complex), rtol=rtol.get(str(self.x.dtype)), atol=atol.get(str(self.x.dtype))) + np.testing.assert_allclose( + istft(self.x, self.hop_length, self.win_length, win_l, self.center, + self.length), + paddle.signal.istft(paddle.to_tensor(self.x), self.n_fft, + self.hop_length, self.win_length, win_p, + self.center, self.normalized, self.onesided, + self.length, self.return_complex), + rtol=rtol.get(str(self.x.dtype)), + atol=atol.get(str(self.x.dtype))) @place(DEVICES) @@ -928,8 +962,9 @@ class TestIstft(unittest.TestCase): 512, None, None, rand_x(1, np.float64, shape=[512], complex=True), True, False, True, None, False, AssertionError), ('test_NOLA', rand_x(3, np.float64, shape=[1, 257, 471], complex=True), 512, 512, None, get_window('hann', 512), True, False, True, None, False, ValueError), - ]) + ]) # yapf: disable class TestIstftException(unittest.TestCase): + def test_istft(self): if self.window is None: win_p = None @@ -937,20 +972,11 @@ class TestIstftException(unittest.TestCase): win_p = paddle.to_tensor(self.window) with self.assertRaises(self.expect_exception): - paddle.signal.istft( - paddle.to_tensor(self.x), - self.n_fft, - self.hop_length, - self.win_length, - win_p, - self.center, - self.normalized, - self.onesided, - self.length, - self.return_complex), - - -# yapf: enable + paddle.signal.istft(paddle.to_tensor(self.x), self.n_fft, + self.hop_length, self.win_length, win_p, + self.center, self.normalized, self.onesided, + self.length, self.return_complex), + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/tensor/math.py b/python/paddle/tensor/math.py index adaf928e163..292a8769a69 100644 --- a/python/paddle/tensor/math.py +++ b/python/paddle/tensor/math.py @@ -37,37 +37,35 @@ from ..fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only from ..fluid.layers import utils # TODO: define math functions -# yapf: disable -from .ops import abs # noqa: F401 -from .ops import acos # noqa: F401 -from .ops import asin # noqa: F401 -from .ops import ceil # noqa: F401 -from .ops import ceil_ # noqa: F401 -from .ops import cos # noqa: F401 -from .ops import tan # noqa: F401 -from .ops import sinh # noqa: F401 -from .ops import cosh # noqa: F401 -from .ops import exp # noqa: F401 -from .ops import exp_ # noqa: F401 -from .ops import expm1 # noqa: F401 -from .ops import floor # noqa: F401 -from .ops import floor_ # noqa: F401 -from .ops import reciprocal # noqa: F401 -from .ops import reciprocal_ # noqa: F401 -from .ops import round # noqa: F401 -from .ops import round_ # noqa: F401 -from .ops import rsqrt # noqa: F401 -from .ops import rsqrt_ # noqa: F401 -from .ops import square # noqa: F401 -from .ops import atan # noqa: F401 -from .ops import erf # noqa: F401 -from .ops import sqrt # noqa: F401 -from .ops import sqrt_ # noqa: F401 -from .ops import sin # noqa: F401 -from .ops import asinh # noqa: F401 -from .ops import acosh # noqa: F401 -from .ops import atanh # noqa: F401 - +from .ops import abs # noqa: F401 +from .ops import acos # noqa: F401 +from .ops import asin # noqa: F401 +from .ops import ceil # noqa: F401 +from .ops import ceil_ # noqa: F401 +from .ops import cos # noqa: F401 +from .ops import tan # noqa: F401 +from .ops import sinh # noqa: F401 +from .ops import cosh # noqa: F401 +from .ops import exp # noqa: F401 +from .ops import exp_ # noqa: F401 +from .ops import expm1 # noqa: F401 +from .ops import floor # noqa: F401 +from .ops import floor_ # noqa: F401 +from .ops import reciprocal # noqa: F401 +from .ops import reciprocal_ # noqa: F401 +from .ops import round # noqa: F401 +from .ops import round_ # noqa: F401 +from .ops import rsqrt # noqa: F401 +from .ops import rsqrt_ # noqa: F401 +from .ops import square # noqa: F401 +from .ops import atan # noqa: F401 +from .ops import erf # noqa: F401 +from .ops import sqrt # noqa: F401 +from .ops import sqrt_ # noqa: F401 +from .ops import sin # noqa: F401 +from .ops import asinh # noqa: F401 +from .ops import acosh # noqa: F401 +from .ops import atanh # noqa: F401 from ..fluid.layers import elementwise_sub from paddle import _C_ops, _legacy_C_ops @@ -181,9 +179,9 @@ def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None): return dygraph_utils._append_activation_in_dygraph(out, act) elif _in_legacy_dygraph(): _scale = scale.numpy().item(0) if isinstance(scale, Variable) else scale - out = _legacy_C_ops.scale(x, 'scale', - float(_scale), 'bias', - float(bias), 'bias_after_scale', bias_after_scale) + out = _legacy_C_ops.scale(x, 'scale', float(_scale), 'bias', + float(bias), 'bias_after_scale', + bias_after_scale) return dygraph_utils._append_activation_in_dygraph(out, act) check_variable_and_dtype(x, "x", [ @@ -202,8 +200,10 @@ def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None): helper = LayerHelper('scale', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) - helper.append_op( - type='scale', inputs=inputs, outputs={'Out': out}, attrs=attrs) + helper.append_op(type='scale', + inputs=inputs, + outputs={'Out': out}, + attrs=attrs) return helper.append_activation(out) @@ -242,14 +242,16 @@ def stanh(x, scale_a=0.67, scale_b=1.7159, name=None): helper = LayerHelper('stanh', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) - helper.append_op( - type='stanh', - inputs={'X': x}, - outputs={'Out': out}, - attrs={'scale_a': scale_a, - 'scale_b': scale_b}) + helper.append_op(type='stanh', + inputs={'X': x}, + outputs={'Out': out}, + attrs={ + 'scale_a': scale_a, + 'scale_b': scale_b + }) return out + def multiplex(inputs, index, name=None): """ @@ -318,13 +320,15 @@ def multiplex(inputs, index, name=None): check_variable_and_dtype(index, "index", ['int32', 'int64'], 'multiplex') out = helper.create_variable_for_type_inference(inputs[0].dtype) - helper.append_op( - type='multiplex', - inputs={'X': inputs, - 'Ids': index}, - outputs={'Out': [out]}) + helper.append_op(type='multiplex', + inputs={ + 'X': inputs, + 'Ids': index + }, + outputs={'Out': [out]}) return out + @inplace_apis_in_dygraph_only def scale_(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None): """ @@ -335,9 +339,9 @@ def scale_(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None): return _C_ops.scale_(x, scale, float(bias), bias_after_scale) if _in_legacy_dygraph(): _scale = scale.numpy().item(0) if isinstance(scale, Variable) else scale - return _legacy_C_ops.scale_(x, 'scale', - float(_scale), 'bias', - float(bias), 'bias_after_scale', bias_after_scale) + return _legacy_C_ops.scale_(x, 'scale', float(_scale), 'bias', + float(bias), 'bias_after_scale', + bias_after_scale) def pow(x, y, name=None): @@ -392,23 +396,32 @@ def pow(x, y, name=None): elif isinstance(y, (paddle.Tensor, Variable)): return _C_ops.elementwise_pow(x, y) else: - raise TypeError('y must be scalar or tensor type, but received: %s '% (y.dtype)) + raise TypeError( + 'y must be scalar or tensor type, but received: %s ' % + (y.dtype)) if _in_legacy_dygraph(): if isinstance(y, (int, float)): return _legacy_C_ops.pow(x, 'factor', y) elif isinstance(y, (paddle.Tensor, Variable)): - return _elementwise_op_in_dygraph( - x, y, axis=-1, act=None, op_name='elementwise_pow') + return _elementwise_op_in_dygraph(x, + y, + axis=-1, + act=None, + op_name='elementwise_pow') else: - raise TypeError('y must be scalar or tensor type, but received: %s '% (y.dtype)) + raise TypeError( + 'y must be scalar or tensor type, but received: %s ' % + (y.dtype)) # in static graph mode if isinstance(y, (int, float)): helper = LayerHelper('pow', **locals()) inputs = {'X': x} attrs = {'factor': y} out = helper.create_variable_for_type_inference(dtype=x.dtype) - helper.append_op( - type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs) + helper.append_op(type='pow', + inputs=inputs, + outputs={'Out': out}, + attrs=attrs) return out elif isinstance(y, (paddle.Tensor, Variable)): # TODO A potential speed improvement is supporting different types in C++ and removing the cast ops here @@ -416,7 +429,8 @@ def pow(x, y, name=None): out = helper.create_variable_for_type_inference(dtype=x.dtype) return _elementwise_op(LayerHelper('elementwise_pow', **locals())) else: - raise TypeError('y must be scalar or tensor type, but received: %s '% (type(y))) + raise TypeError('y must be scalar or tensor type, but received: %s ' % + (type(y))) OP_NAMEMAPPING = { @@ -431,6 +445,7 @@ OP_NAMEMAPPING = { 'elementwise_mod': 'remainder', } + @dygraph_only def _elementwise_op_in_dygraph(x, y, @@ -438,23 +453,28 @@ def _elementwise_op_in_dygraph(x, act=None, use_mkldnn=False, op_name=None): + def is_inplace(op_name): - return op_name[-1] == "_" + return op_name[-1] == "_" if op_name not in OP_NAMEMAPPING.keys() or axis != -1: op = getattr(_legacy_C_ops, op_name) out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn) else: if in_dygraph_mode(): - op = getattr(_C_ops, OP_NAMEMAPPING[op_name] if not is_inplace(op_name) else op_name) + op = getattr( + _C_ops, + OP_NAMEMAPPING[op_name] if not is_inplace(op_name) else op_name) out = op(x, y) if _in_legacy_dygraph(): op = getattr(_legacy_C_ops, op_name) out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn) - return dygraph_utils._append_activation_in_dygraph( - out, act, use_mkldnn=use_mkldnn) + return dygraph_utils._append_activation_in_dygraph(out, + act, + use_mkldnn=use_mkldnn) + def _elementwise_op(helper): op_type = helper.layer_type @@ -481,15 +501,20 @@ def _elementwise_op(helper): if name is None: out = helper.create_variable_for_type_inference(dtype=x.dtype) else: - out = helper.create_variable(name=name, dtype=x.dtype, persistable=False) - - helper.append_op( - type=op_type, - inputs={'X': x, - 'Y': y}, - outputs={'Out': out}, - attrs={'axis': axis, - 'use_mkldnn': use_mkldnn}) + out = helper.create_variable(name=name, + dtype=x.dtype, + persistable=False) + + helper.append_op(type=op_type, + inputs={ + 'X': x, + 'Y': y + }, + outputs={'Out': out}, + attrs={ + 'axis': axis, + 'use_mkldnn': use_mkldnn + }) return helper.append_activation(out) @@ -549,7 +574,7 @@ def add(x, y, name=None): """ if in_dygraph_mode(): - return _C_ops.add( x, y) + return _C_ops.add(x, y) else: if _in_legacy_dygraph(): return _legacy_C_ops.elementwise_add(x, y) @@ -568,13 +593,14 @@ def add_(x, y, name=None): out_shape = broadcast_shape(x.shape, y.shape) if out_shape != x.shape: - raise ValueError("The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(out_shape, x.shape)) + raise ValueError( + "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation." + .format(out_shape, x.shape)) if in_dygraph_mode(): return _C_ops.add_(x, y) else: - out = _elementwise_op_in_dygraph( - x, y, axis=axis, op_name=op_type) + out = _elementwise_op_in_dygraph(x, y, axis=axis, op_name=op_type) return out @@ -639,8 +665,11 @@ def subtract(x, y, name=None): return _C_ops.subtract(x, y) else: if _in_legacy_dygraph(): - return _elementwise_op_in_dygraph( - x, y, axis=axis, act=act, op_name=op_type) + return _elementwise_op_in_dygraph(x, + y, + axis=axis, + act=act, + op_name=op_type) else: return _elementwise_op(LayerHelper(op_type, **locals())) @@ -656,13 +685,18 @@ def subtract_(x, y, name=None): out_shape = broadcast_shape(x.shape, y.shape) if out_shape != x.shape: - raise ValueError("The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(out_shape, x.shape)) + raise ValueError( + "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation." + .format(out_shape, x.shape)) if in_dygraph_mode(): return _C_ops.subtract_(x, y) else: - out = _elementwise_op_in_dygraph( - x, y, axis=axis, act=act, op_name='elementwise_sub_') + out = _elementwise_op_in_dygraph(x, + y, + axis=axis, + act=act, + op_name='elementwise_sub_') return out @@ -700,11 +734,14 @@ def divide(x, y, name=None): axis = -1 act = None if in_dygraph_mode(): - return _C_ops.divide( x, y) + return _C_ops.divide(x, y) else: if _in_legacy_dygraph(): - return _elementwise_op_in_dygraph( - x, y, axis=axis, act=act, op_name=op_type) + return _elementwise_op_in_dygraph(x, + y, + axis=axis, + act=act, + op_name=op_type) else: return _elementwise_op(LayerHelper(op_type, **locals())) @@ -744,8 +781,7 @@ def floor_divide(x, y, name=None): if in_dygraph_mode(): return _C_ops.floor_divide(x, y) elif _in_legacy_dygraph(): - return _elementwise_op_in_dygraph( - x, y, axis=axis, op_name=op_type) + return _elementwise_op_in_dygraph(x, y, axis=axis, op_name=op_type) return _elementwise_op(LayerHelper(op_type, **locals())) @@ -787,8 +823,7 @@ def remainder(x, y, name=None): if in_dygraph_mode(): return _C_ops.remainder(x, y) elif _in_legacy_dygraph(): - return _elementwise_op_in_dygraph( - x, y, axis=axis, op_name=op_type) + return _elementwise_op_in_dygraph(x, y, axis=axis, op_name=op_type) return _elementwise_op(LayerHelper(op_type, **locals())) @@ -805,8 +840,8 @@ def remainder_(x, y, name=None): out_shape = broadcast_shape(x.shape, y.shape) if out_shape != x.shape: raise ValueError( - "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format( - out_shape, x.shape)) + "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation." + .format(out_shape, x.shape)) return _elementwise_op_in_dygraph(x, y, axis=axis, op_name=op_type) @@ -858,8 +893,11 @@ def multiply(x, y, name=None): return _C_ops.multiply(x, y) else: if _in_legacy_dygraph(): - return _elementwise_op_in_dygraph( - x, y, axis=axis, act=act, op_name=op_type) + return _elementwise_op_in_dygraph(x, + y, + axis=axis, + act=act, + op_name=op_type) else: if x.dtype != y.dtype: raise TypeError( @@ -868,6 +906,7 @@ def multiply(x, y, name=None): return _elementwise_op(LayerHelper(op_type, **locals())) + def maximum(x, y, name=None): """ Compare two tensors and returns a new tensor containing the element-wise maxima. The equation is: @@ -925,10 +964,14 @@ def maximum(x, y, name=None): if in_dygraph_mode(): return _C_ops.maximum(x, y) elif _in_legacy_dygraph(): - return _elementwise_op_in_dygraph( - x, y, axis=axis, act=act, op_name=op_type) + return _elementwise_op_in_dygraph(x, + y, + axis=axis, + act=act, + op_name=op_type) return _elementwise_op(LayerHelper(op_type, **locals())) + def minimum(x, y, name=None): """ Compare two tensors and return a new tensor containing the element-wise minima. The equation is: @@ -986,10 +1029,14 @@ def minimum(x, y, name=None): if in_dygraph_mode(): return _C_ops.minimum(x, y) elif _in_legacy_dygraph(): - return _elementwise_op_in_dygraph( - x, y, axis=axis, act=act, op_name=op_type) + return _elementwise_op_in_dygraph(x, + y, + axis=axis, + act=act, + op_name=op_type) return _elementwise_op(LayerHelper(op_type, **locals())) + def fmax(x, y, name=None): """ Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the maximum value of the element. @@ -1049,10 +1096,14 @@ def fmax(x, y, name=None): if in_dygraph_mode(): return _C_ops.fmax(x, y, axis) if _in_legacy_dygraph(): - return _elementwise_op_in_dygraph( - x, y, axis=axis, act=act, op_name=op_type) + return _elementwise_op_in_dygraph(x, + y, + axis=axis, + act=act, + op_name=op_type) return _elementwise_op(LayerHelper(op_type, **locals())) + def fmin(x, y, name=None): """ Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the minimum value of the element. @@ -1112,8 +1163,11 @@ def fmin(x, y, name=None): if in_dygraph_mode(): return _C_ops.fmin(x, y, axis) if _in_legacy_dygraph(): - return _elementwise_op_in_dygraph( - x, y, axis=axis, act=act, op_name=op_type) + return _elementwise_op_in_dygraph(x, + y, + axis=axis, + act=act, + op_name=op_type) return _elementwise_op(LayerHelper(op_type, **locals())) @@ -1209,43 +1263,35 @@ def sum(x, axis=None, dtype=None, keepdim=False, name=None): if _in_legacy_dygraph(): if dtype_flag: return _legacy_C_ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim, - 'reduce_all', reduce_all_flag, 'in_dtype', - x.dtype, 'out_dtype', dtype) + 'reduce_all', reduce_all_flag, + 'in_dtype', x.dtype, 'out_dtype', + dtype) else: return _legacy_C_ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim, - 'reduce_all', reduce_all_flag) + 'reduce_all', reduce_all_flag) - attrs = { - 'dim': axis, - 'keep_dim': keepdim, - 'reduce_all': reduce_all_flag - } + attrs = {'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all_flag} if dtype_flag: - attrs.update({ - 'in_dtype': x.dtype, - 'out_dtype': dtype - }) + attrs.update({'in_dtype': x.dtype, 'out_dtype': dtype}) - check_variable_and_dtype( - x, 'x', ['bool', 'float16', 'float32', 'float64', - 'int16', 'int32', 'int64', 'complex64', 'complex128', - u'bool', u'float16', u'float32', u'float64', - u'int32', u'int64', u'complex64', u'complex128'], 'sum') + check_variable_and_dtype(x, 'x', [ + 'bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64', + 'complex64', 'complex128', u'bool', u'float16', u'float32', u'float64', + u'int32', u'int64', u'complex64', u'complex128' + ], 'sum') check_type(axis, 'axis', (int, list, tuple, type(None), Variable), 'sum') helper = LayerHelper('sum', **locals()) if dtype_flag: - out = helper.create_variable_for_type_inference( - dtype=dtype) + out = helper.create_variable_for_type_inference(dtype=dtype) else: out = helper.create_variable_for_type_inference(dtype=x.dtype) - helper.append_op( - type='reduce_sum', - inputs={'X': x}, - outputs={'Out': out}, - attrs=attrs) + helper.append_op(type='reduce_sum', + inputs={'X': x}, + outputs={'Out': out}, + attrs=attrs) return out @@ -1299,8 +1345,8 @@ def nansum(x, axis=None, dtype=None, keepdim=False, name=None): out5 = paddle.nansum(y, axis=[1, 2]) # [8, 19] out6 = paddle.nansum(y, axis=[0, 1]) # [9, 18] """ - check_variable_and_dtype( - x, 'x', ['float32', 'float64', 'int32', 'int64'], 'nansum') + check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'], + 'nansum') check_type(axis, 'axis', (int, list, tuple, type(None)), 'nansum') zero_tensor = paddle.zeros_like(x) @@ -1367,12 +1413,14 @@ def nanmean(x, axis=None, keepdim=False, name=None): axis = [axis] check_variable_and_dtype(x, 'x/input', ['uint16', 'float16', 'float32', 'float64'], - 'nanmean' ) + 'nanmean') if axis is not None: check_type(axis, 'axis/dim', (int, list, tuple), 'nanmean') - cnt = paddle.sum(~paddle.isnan(x), axis = axis,keepdim=keepdim) - return paddle.divide(paddle.nansum(x, axis=axis, keepdim=keepdim, name=name), cnt.astype(x.dtype)) + cnt = paddle.sum(~paddle.isnan(x), axis=axis, keepdim=keepdim) + return paddle.divide( + paddle.nansum(x, axis=axis, keepdim=keepdim, name=name), + cnt.astype(x.dtype)) def count_nonzero(x, axis=None, keepdim=False, name=None): @@ -1424,13 +1472,13 @@ def count_nonzero(x, axis=None, keepdim=False, name=None): # [1, 3, 5] """ - if axis is not None: if isinstance(axis, int): axis = [axis] dims = len(x.shape) for i in range(len(axis)): - if not isinstance(axis[i], int) or not (axis[i] < dims and axis[i] >= -dims): + if not isinstance(axis[i], int) or not (axis[i] < dims + and axis[i] >= -dims): raise ValueError( "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))." ) @@ -1518,14 +1566,12 @@ def add_n(inputs, name=None): check_variable_and_dtype(inputs, "inputs", \ ['float16', 'float32', 'float64', 'int32', 'int64'], 'add_n') - out = helper.create_variable_for_type_inference( dtype=helper.input_dtype('inputs')) - helper.append_op( - type='sum', - inputs={'X': inputs}, - outputs={'Out': out}, - attrs={'use_mkldnn': False}) + helper.append_op(type='sum', + inputs={'X': inputs}, + outputs={'Out': out}, + attrs={'use_mkldnn': False}) return out @@ -1559,7 +1605,7 @@ def trunc(input, name=None): # [0., 0.]])) ''' if in_dygraph_mode(): - return _C_ops.trunc(input) + return _C_ops.trunc(input) else: if _in_legacy_dygraph(): return _legacy_C_ops.trunc(input) @@ -1568,15 +1614,18 @@ def trunc(input, name=None): attrs = {} helper = LayerHelper("trunc", **locals()) - check_variable_and_dtype(input, 'X', ['int32', 'int64', 'float32', 'float64'], 'trunc') + check_variable_and_dtype(input, 'X', + ['int32', 'int64', 'float32', 'float64'], + 'trunc') out = helper.create_variable_for_type_inference(dtype=input.dtype) - helper.append_op( - type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": out}) + helper.append_op(type="trunc", + inputs=inputs, + attrs=attrs, + outputs={"Out": out}) return out - def mm(input, mat2, name=None): """ @@ -1686,9 +1735,12 @@ def mm(input, mat2, name=None): helper = LayerHelper('mm', **locals()) out = helper.create_variable_for_type_inference(dtype=input.dtype) - helper.append_op( - type='matmul_v2', inputs={'X': input, - 'Y': mat2}, outputs={'Out': out}) + helper.append_op(type='matmul_v2', + inputs={ + 'X': input, + 'Y': mat2 + }, + outputs={'Out': out}) return out @@ -1735,28 +1787,40 @@ def addmm(input, x, y, beta=1.0, alpha=1.0, name=None): x_shape = x.shape y_shape = y.shape if not len(x_shape) == len(y_shape) == 2: - raise ValueError("The dimention of x, y should be 2 but receive x's shape: {}, y's shape: {}".format(x_shape, y_shape)) + raise ValueError( + "The dimention of x, y should be 2 but receive x's shape: {}, y's shape: {}" + .format(x_shape, y_shape)) if x_shape[1] != y_shape[0]: - raise ValueError("The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(x_shape, y_shape)) + raise ValueError( + "The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}." + .format(x_shape, y_shape)) if len(input_shape) == 2: if input_shape[0] != x_shape[0]: if input_shape[0] != 1: - raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0])) + raise ValueError( + "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}" + .format(input_shape[0])) if input_shape[1] != y_shape[1] and input_shape[1] != 1: - raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1])) + raise ValueError( + "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}" + .format(input_shape[1])) if input_shape[1] != y_shape[1]: if input_shape[1] != 1: - raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1])) + raise ValueError( + "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}" + .format(input_shape[1])) elif len(input_shape) == 1: if input_shape[0] not in (y_shape[1], 1): - raise ValueError("The input's shape: {} is not broadcastable with [x.shape[0], y.shape[1]]: [{},{}]".format(input_shape, x_shape[0], y_shape[1])) + raise ValueError( + "The input's shape: {} is not broadcastable with [x.shape[0], y.shape[1]]: [{},{}]" + .format(input_shape, x_shape[0], y_shape[1])) else: - raise ValueError("The dimention of input should be 2 or 1 but receive input's shape: {}".format(input_shape)) - - + raise ValueError( + "The dimention of input should be 2 or 1 but receive input's shape: {}" + .format(input_shape)) if in_dygraph_mode(): - return _C_ops.addmm( input, x, y, alpha, beta) + return _C_ops.addmm(input, x, y, alpha, beta) else: if _in_legacy_dygraph(): out = _legacy_C_ops.addmm(input, x, y, "Alpha", alpha, "Beta", beta) @@ -1766,15 +1830,19 @@ def addmm(input, x, y, beta=1.0, alpha=1.0, name=None): attrs = {'Alpha': alpha, 'Beta': beta} helper = LayerHelper("addmm", **locals()) - check_variable_and_dtype(input, 'Input', ['float32', 'float64'], 'addmm') + check_variable_and_dtype(input, 'Input', ['float32', 'float64'], + 'addmm') check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'addmm') check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'addmm') out = helper.create_variable_for_type_inference(dtype=x.dtype) - helper.append_op( - type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out}) + helper.append_op(type="addmm", + inputs=inputs, + attrs=attrs, + outputs={"Out": out}) return out + def renorm(x, p, axis, max_norm): """ **renorm** @@ -1812,30 +1880,36 @@ def renorm(x, p, axis, max_norm): input_shape = x.shape check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'renorm') if not axis < len(input_shape): - raise ValueError("the axis:{} should be less then the shape's size {}:{}".format(axis,len(input_shape),input_shape)) - if not axis >=0: + raise ValueError( + "the axis:{} should be less then the shape's size {}:{}".format( + axis, len(input_shape), input_shape)) + if not axis >= 0: if not axis >= -1 * len(input_shape): - raise ValueError("the axis:{} should not be less than -1 * length of input_shape:{}".format(axis,-1 * len(input_shape))) + raise ValueError( + "the axis:{} should not be less than -1 * length of input_shape:{}" + .format(axis, -1 * len(input_shape))) axis = axis + len(input_shape) if in_dygraph_mode(): out = _C_ops.renorm(x, p, axis, max_norm) return out elif _in_legacy_dygraph(): - out = _legacy_C_ops.renorm(x, 'p',p, 'axis',axis, 'max_norm', max_norm) + out = _legacy_C_ops.renorm(x, 'p', p, 'axis', axis, 'max_norm', + max_norm) return out inputs = {'X': x} - attrs = {'p': p, 'axis': axis, 'max_norm':max_norm} + attrs = {'p': p, 'axis': axis, 'max_norm': max_norm} helper = LayerHelper("renorm", **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) - helper.append_op( - type="renorm", inputs=inputs, attrs=attrs, outputs={"Out": out}) + helper.append_op(type="renorm", + inputs=inputs, + attrs=attrs, + outputs={"Out": out}) return out - def inner(x, y, name=None): """ @@ -1869,8 +1943,8 @@ def inner(x, y, name=None): else: xshape = x.shape yshape = y.shape - dstshape = list(xshape[:-1])+list(yshape[:-1]) - if len(dstshape)==0: + dstshape = list(xshape[:-1]) + list(yshape[:-1]) + if len(dstshape) == 0: dstshape = [1] nx = x.reshape((-1, xshape[-1])) ny = y.reshape((-1, yshape[-1])) @@ -1884,7 +1958,8 @@ def inner(x, y, name=None): var_names = {'x': x, 'y': y} for name, val in var_names.items(): check_variable_and_dtype(val, name, - ['float16', 'float32', 'float64'], 'inner') + ['float16', 'float32', 'float64'], + 'inner') x_shape = list(xshape) y_shape = list(yshape) @@ -1901,9 +1976,12 @@ def inner(x, y, name=None): helper = LayerHelper('inner', **locals()) out = helper.create_variable_for_type_inference(dtype=nx.dtype) - helper.append_op( - type='matmul_v2', inputs={'X': nx, - 'Y': ny.T}, outputs={'Out': out}) + helper.append_op(type='matmul_v2', + inputs={ + 'X': nx, + 'Y': ny.T + }, + outputs={'Out': out}) return out.reshape(dstshape) @@ -1954,9 +2032,12 @@ def outer(x, y, name=None): helper = LayerHelper('outer', **locals()) out = helper.create_variable_for_type_inference(dtype=nx.dtype) - helper.append_op( - type='matmul_v2', inputs={'X': nx, - 'Y': ny}, outputs={'Out': out}) + helper.append_op(type='matmul_v2', + inputs={ + 'X': nx, + 'Y': ny + }, + outputs={'Out': out}) return out @@ -2015,17 +2096,18 @@ def logsumexp(x, axis=None, keepdim=False, name=None): axis = range(len(x.shape)) return _C_ops.logsumexp(x, axis, keepdim, reduce_all) if _in_legacy_dygraph(): - return _legacy_C_ops.logsumexp(x, 'axis', axis, 'keepdim', keepdim, 'reduce_all', reduce_all) + return _legacy_C_ops.logsumexp(x, 'axis', axis, 'keepdim', keepdim, + 'reduce_all', reduce_all) - check_variable_and_dtype(x, 'x', - ['float32', 'float64'], - 'logsumexp') + check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'logsumexp') helper = LayerHelper('logsumexp', **locals()) - attrs = {'axis': axis, 'keepdim': keepdim, 'reduce_all':reduce_all} + attrs = {'axis': axis, 'keepdim': keepdim, 'reduce_all': reduce_all} out = helper.create_variable_for_type_inference(x.dtype) - helper.append_op( - type='logsumexp', inputs={'X': x}, outputs={'Out': out}, attrs=attrs) + helper.append_op(type='logsumexp', + inputs={'X': x}, + outputs={'Out': out}, + attrs=attrs) return out @@ -2062,20 +2144,22 @@ def inverse(x, name=None): return _legacy_C_ops.inverse(x) def _check_input(x): - check_variable_and_dtype(x, 'x', - ['float32', 'float64'], 'inverse') + check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'inverse') if len(x.shape) < 2: raise ValueError( "The input of inverse is expected to be a Tensor whose number " "of dimensions is no less than 2. But reviced: %d, " "x's shape: %s." % (len(x.shape), x.shape)) + _check_input(x) helper = LayerHelper('inverse', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) - helper.append_op( - type='inverse', inputs={'Input': [x] }, outputs={'Output': [out]}) + helper.append_op(type='inverse', + inputs={'Input': [x]}, + outputs={'Output': [out]}) return out + def _get_reduce_axis(axis): """ Internal function for max, min, amax and amin. @@ -2085,20 +2169,23 @@ def _get_reduce_axis(axis): if isinstance(axis, tuple): axis = list(axis) elif isinstance(axis, int): - axis= [axis] + axis = [axis] else: raise TypeError( - "The type of axis must be int, list or tuple, but received {}".format(type(axis))) + "The type of axis must be int, list or tuple, but received {}". + format(type(axis))) reduce_all = True if axis == None or axis == [] else False if axis == None: axis = [] return reduce_all, axis + def _get_reduce_axis_with_tensor(axis): if isinstance(axis, Variable): return False, axis return _get_reduce_axis(axis) + def _get_reduce_all_value(axis): """ Internal function for max, min, amax and amin. @@ -2108,15 +2195,17 @@ def _get_reduce_all_value(axis): if isinstance(axis, tuple): axis = list(axis) elif isinstance(axis, int): - axis= [axis] + axis = [axis] else: raise TypeError( - "The type of axis must be int, list or tuple, but received {}".format(type(axis))) + "The type of axis must be int, list or tuple, but received {}". + format(type(axis))) reduce_all = True if axis == None or axis == [] else False axis = axis if axis != None and axis != [] else [0] return reduce_all, axis + def max(x, axis=None, keepdim=False, name=None): """ @@ -2200,27 +2289,26 @@ def max(x, axis=None, keepdim=False, name=None): return _C_ops.max(x, axis, keepdim) if _in_legacy_dygraph(): return _legacy_C_ops.reduce_max(x, 'dim', axis, 'keep_dim', keepdim, - 'reduce_all', reduce_all) + 'reduce_all', reduce_all) helper = LayerHelper('max', **locals()) - check_variable_and_dtype( - x, 'x', ['float32', 'float64', 'int32', 'int64'], 'max') + check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'], + 'max') if not isinstance(axis, Variable) and utils._contain_var(axis): axis = utils._convert_to_tensor_list(axis) - out = helper.create_variable_for_type_inference( - dtype=x.dtype) - helper.append_op( - type='reduce_max', - inputs={'X': x}, - outputs={'Out': out}, - attrs={ - 'dim': axis, - 'keep_dim': keepdim, - 'reduce_all': reduce_all - }) + out = helper.create_variable_for_type_inference(dtype=x.dtype) + helper.append_op(type='reduce_max', + inputs={'X': x}, + outputs={'Out': out}, + attrs={ + 'dim': axis, + 'keep_dim': keepdim, + 'reduce_all': reduce_all + }) return out + def min(x, axis=None, keepdim=False, name=None): """ @@ -2304,27 +2392,26 @@ def min(x, axis=None, keepdim=False, name=None): if _in_legacy_dygraph(): return _legacy_C_ops.reduce_min(x, 'dim', axis, 'keep_dim', keepdim, - 'reduce_all', reduce_all) + 'reduce_all', reduce_all) helper = LayerHelper('min', **locals()) - check_variable_and_dtype( - x, 'x', ['float32', 'float64', 'int32', 'int64'], 'min') + check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'], + 'min') if not isinstance(axis, Variable) and utils._contain_var(axis): axis = utils._convert_to_tensor_list(axis) - out = helper.create_variable_for_type_inference( - dtype=x.dtype) - helper.append_op( - type='reduce_min', - inputs={'X': x}, - outputs={'Out': out}, - attrs={ - 'dim': axis, - 'keep_dim': keepdim, - 'reduce_all': reduce_all - }) + out = helper.create_variable_for_type_inference(dtype=x.dtype) + helper.append_op(type='reduce_min', + inputs={'X': x}, + outputs={'Out': out}, + attrs={ + 'dim': axis, + 'keep_dim': keepdim, + 'reduce_all': reduce_all + }) return out + def amax(x, axis=None, keepdim=False, name=None): """ Computes the maximum of tensor elements over the given axis. @@ -2417,27 +2504,27 @@ def amax(x, axis=None, keepdim=False, name=None): reduce_all, axis = _get_reduce_axis(axis) if in_dygraph_mode(): - return _C_ops.amax(x, axis, keepdim) + return _C_ops.amax(x, axis, keepdim) if _in_legacy_dygraph(): - return _legacy_C_ops.reduce_amax(x, 'dim', axis, 'keep_dim', keepdim, 'reduce_all', reduce_all) + return _legacy_C_ops.reduce_amax(x, 'dim', axis, 'keep_dim', keepdim, + 'reduce_all', reduce_all) helper = LayerHelper('amax', **locals()) - check_variable_and_dtype( - x, 'x', ['float32', 'float64', 'int32', 'int64'], 'amax') + check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'], + 'amax') - out = helper.create_variable_for_type_inference( - dtype=x.dtype) - helper.append_op( - type='reduce_amax', - inputs={'X': x}, - outputs={'Out': out}, - attrs={ - 'dim': axis, - 'keep_dim': keepdim, - 'reduce_all': reduce_all - }) + out = helper.create_variable_for_type_inference(dtype=x.dtype) + helper.append_op(type='reduce_amax', + inputs={'X': x}, + outputs={'Out': out}, + attrs={ + 'dim': axis, + 'keep_dim': keepdim, + 'reduce_all': reduce_all + }) return out + def amin(x, axis=None, keepdim=False, name=None): """ @@ -2529,28 +2616,28 @@ def amin(x, axis=None, keepdim=False, name=None): #[0.1., 0.1], [[[0., 0.3333], [0.5, 0.3333]], [[0.5, 0.3333], [1., 1.]]] """ - reduce_all, axis = _get_reduce_axis( axis ) + reduce_all, axis = _get_reduce_axis(axis) if in_dygraph_mode(): return _C_ops.amin(x, axis, keepdim) elif _in_legacy_dygraph(): - return _legacy_C_ops.reduce_amin(x, 'dim', axis, 'keep_dim', keepdim, 'reduce_all', reduce_all) + return _legacy_C_ops.reduce_amin(x, 'dim', axis, 'keep_dim', keepdim, + 'reduce_all', reduce_all) helper = LayerHelper('amin', **locals()) - check_variable_and_dtype( - x, 'x', ['float32', 'float64', 'int32', 'int64'], 'amin') + check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'], + 'amin') - out = helper.create_variable_for_type_inference( - dtype=x.dtype) - helper.append_op( - type='reduce_amin', - inputs={'X': x}, - outputs={'Out': out}, - attrs={ - 'dim': axis, - 'keep_dim': keepdim, - 'reduce_all': reduce_all - }) + out = helper.create_variable_for_type_inference(dtype=x.dtype) + helper.append_op(type='reduce_amin', + inputs={'X': x}, + outputs={'Out': out}, + attrs={ + 'dim': axis, + 'keep_dim': keepdim, + 'reduce_all': reduce_all + }) return out + def log1p(x, name=None): r""" Calculates the natural log of the given input tensor, element-wise. @@ -2588,6 +2675,7 @@ def log1p(x, name=None): helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out}) return out + def log2(x, name=None): r""" Calculates the log to the base 2 of the given input tensor, element-wise. @@ -2768,7 +2856,8 @@ def clip(x, min=None, max=None, name=None): check_dtype(max.dtype, 'max', ['float32', 'float64', 'int32'], 'clip', '(When the type of max in clip is Variable.)') - check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'], 'clip') + check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'], + 'clip') inputs = {'X': x} attrs = {'min': min_, 'max': max_} @@ -2788,8 +2877,10 @@ def clip(x, min=None, max=None, name=None): helper = LayerHelper('clip', **locals()) output = helper.create_variable_for_type_inference( dtype=helper.input_dtype('x')) - helper.append_op( - type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs) + helper.append_op(type='clip', + inputs=inputs, + outputs={'Out': [output]}, + attrs=attrs) return output @@ -2816,7 +2907,6 @@ def clip_(x, min=None, max=None, name=None): return _legacy_C_ops.clip_(x, "min", min, "max", max) - def trace(x, offset=0, axis1=0, axis2=1, name=None): """ @@ -2857,6 +2947,7 @@ def trace(x, offset=0, axis1=0, axis2=1, name=None): data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) # data2.shape = [3] data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) # data2.shape = [3, 5] """ + def __check_input(x, offset, axis1, axis2): check_dtype(x.dtype, 'Input', ['int32', 'int64', 'float16', 'float32', 'float64'], @@ -2885,25 +2976,28 @@ def trace(x, offset=0, axis1=0, axis2=1, name=None): "But received axis1 = %d, axis2 = %d\n"%(axis1, axis2) if in_dygraph_mode(): - return _C_ops.trace( x, offset, axis1, axis2 ) + return _C_ops.trace(x, offset, axis1, axis2) if _in_legacy_dygraph(): - return _legacy_C_ops.trace(x, 'offset', offset, 'axis1', axis1, 'axis2', axis2) + return _legacy_C_ops.trace(x, 'offset', offset, 'axis1', axis1, 'axis2', + axis2) __check_input(x, offset, axis1, axis2) helper = LayerHelper('trace', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) - helper.append_op( - type='trace', - inputs={'Input': [x]}, - attrs={'offset': offset, - 'axis1': axis1, - 'axis2': axis2}, - outputs={'Out': [out]}) + helper.append_op(type='trace', + inputs={'Input': [x]}, + attrs={ + 'offset': offset, + 'axis1': axis1, + 'axis2': axis2 + }, + outputs={'Out': [out]}) return out + def diagonal(x, offset=0, axis1=0, axis2=1, name=None): """ This OP computes the diagonals of the input tensor x. @@ -2973,7 +3067,8 @@ def diagonal(x, offset=0, axis1=0, axis2=1, name=None): return _C_ops.diagonal(x, offset, axis1, axis2) else: if _in_legacy_dygraph(): - return _legacy_C_ops.diagonal(x, 'offset', offset, 'axis1', axis1, 'axis2', axis2) + return _legacy_C_ops.diagonal(x, 'offset', offset, 'axis1', axis1, + 'axis2', axis2) def __check_input(x, offset, axis1, axis2): check_dtype(x.dtype, 'Input', @@ -3005,13 +3100,14 @@ def diagonal(x, offset=0, axis1=0, axis2=1, name=None): helper = LayerHelper('diagonal', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) - helper.append_op( - type='diagonal', - inputs={'Input': [x]}, - attrs={'offset': offset, - 'axis1': axis1, - 'axis2': axis2}, - outputs={'Out': [out]}) + helper.append_op(type='diagonal', + inputs={'Input': [x]}, + attrs={ + 'offset': offset, + 'axis1': axis1, + 'axis2': axis2 + }, + outputs={'Out': [out]}) return out @@ -3049,8 +3145,10 @@ def kron(x, y, name=None): if in_dygraph_mode(): return _C_ops.kron(x, y) helper = LayerHelper('kron', **locals()) - check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron') - check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron') + check_variable_and_dtype( + x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron') + check_variable_and_dtype( + y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron') out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out}) @@ -3186,13 +3284,20 @@ def logcumsumexp(x, axis=None, dtype=None, name=None): if axis is None: return _legacy_C_ops.logcumsumexp(x, 'flatten', flatten) else: - return _legacy_C_ops.logcumsumexp(x, 'axis', axis, 'flatten', flatten) + return _legacy_C_ops.logcumsumexp(x, 'axis', axis, 'flatten', + flatten) check_variable_and_dtype(x, 'x', ['float32', 'float64'], "logcumsumexp") helper = LayerHelper('logcumsumexp', **locals()) out = helper.create_variable_for_type_inference(x.dtype) - helper.append_op(type='logcumsumexp', inputs={'X': x}, outputs={'Out': out}, attrs={'axis': axis, 'flatten': flatten}) + helper.append_op(type='logcumsumexp', + inputs={'X': x}, + outputs={'Out': out}, + attrs={ + 'axis': axis, + 'flatten': flatten + }) return out @@ -3251,14 +3356,21 @@ def cumprod(x, dim=None, dtype=None, name=None): if _in_legacy_dygraph(): return _legacy_C_ops.cumprod(x, 'dim', dim) - check_variable_and_dtype(x, "x", ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'], 'cumprod') + check_variable_and_dtype( + x, "x", + ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'], + 'cumprod') check_type(dim, 'dim', int, 'cumprod') helper = LayerHelper('cumprod', **locals()) out = helper.create_variable_for_type_inference(x.dtype) - helper.append_op(type='cumprod', inputs={'X': x}, outputs={'Out': out}, attrs={'dim': dim}) + helper.append_op(type='cumprod', + inputs={'X': x}, + outputs={'Out': out}, + attrs={'dim': dim}) return out + def isfinite(x, name=None): """ @@ -3281,15 +3393,17 @@ def isfinite(x, name=None): print(out) # [False True True False True False False] """ if in_dygraph_mode(): - return _C_ops.isfinite( x ) + return _C_ops.isfinite(x) if _in_legacy_dygraph(): return _legacy_C_ops.isfinite_v2(x) helper = LayerHelper("isfinite_v2", **locals()) - check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isfinite') + check_variable_and_dtype( + x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isfinite') out = helper.create_variable_for_type_inference('bool') helper.append_op(type="isfinite_v2", inputs={"X": x}, outputs={"Out": out}) return out + def isinf(x, name=None): """ @@ -3312,15 +3426,17 @@ def isinf(x, name=None): print(out) # [ True False False True False False False] """ if in_dygraph_mode(): - return _C_ops.isinf( x ) + return _C_ops.isinf(x) if _in_legacy_dygraph(): return _legacy_C_ops.isinf_v2(x) helper = LayerHelper("isinf_v2", **locals()) - check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isinf') + check_variable_and_dtype( + x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isinf') out = helper.create_variable_for_type_inference(dtype='bool') helper.append_op(type="isinf_v2", inputs={"X": x}, outputs={"Out": out}) return out + def isnan(x, name=None): """ @@ -3343,12 +3459,13 @@ def isnan(x, name=None): print(out) # [False False False False False True True] """ if in_dygraph_mode(): - return _C_ops.isnan( x ) + return _C_ops.isnan(x) if _in_legacy_dygraph(): return _legacy_C_ops.isnan_v2(x) helper = LayerHelper("isnan_v2", **locals()) - check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isnan') + check_variable_and_dtype( + x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isnan') out = helper.create_variable_for_type_inference(dtype='bool') helper.append_op(type="isnan_v2", inputs={"X": x}, outputs={"Out": out}) return out @@ -3409,7 +3526,8 @@ def prod(x, axis=None, keepdim=False, dtype=None, name=None): """ if dtype is not None: - check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'prod') + check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], + 'prod') if x.dtype != convert_np_dtype_to_dtype_(dtype): x = cast(x, dtype) @@ -3424,34 +3542,35 @@ def prod(x, axis=None, keepdim=False, dtype=None, name=None): dim = [dim] else: raise TypeError( - "The type of axis must be int, list or tuple, but received {}". - format(type(dim))) + "The type of axis must be int, list or tuple, but received {}" + .format(type(dim))) - reduce_all = True if dim is None or len(dim) == 0 or len(dim) == len(x.shape) else False + reduce_all = True if dim is None or len(dim) == 0 or len(dim) == len( + x.shape) else False if dim is None or len(dim) == 0: dim = [0] if in_dygraph_mode(): return _C_ops.reduce_prod(x, dim, keepdim, reduce_all) if _in_legacy_dygraph(): - return _legacy_C_ops.reduce_prod( - x, 'dim', dim, 'keep_dim', keepdim, 'reduce_all', reduce_all) + return _legacy_C_ops.reduce_prod(x, 'dim', dim, 'keep_dim', keepdim, + 'reduce_all', reduce_all) helper = LayerHelper('reduce_prod', **locals()) - check_variable_and_dtype( - x, 'x/input', ['float32', 'float64', 'int32', 'int64'], 'reduce_prod') + check_variable_and_dtype(x, 'x/input', + ['float32', 'float64', 'int32', 'int64'], + 'reduce_prod') out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) if not isinstance(dim, Variable) and utils._contain_var(dim): dim = utils._convert_to_tensor_list(dim) - helper.append_op( - type='reduce_prod', - inputs={'X': x}, - outputs={'Out': out}, - attrs={ - 'dim': dim, - 'keep_dim': keepdim, - 'reduce_all': reduce_all - }) + helper.append_op(type='reduce_prod', + inputs={'X': x}, + outputs={'Out': out}, + attrs={ + 'dim': dim, + 'keep_dim': keepdim, + 'reduce_all': reduce_all + }) return out @@ -3516,7 +3635,7 @@ def tanh(x, name=None): # [-0.37994896 -0.19737532 0.09966799 0.29131261] """ if in_dygraph_mode(): - return _C_ops.tanh( x ) + return _C_ops.tanh(x) if _in_legacy_dygraph(): return _legacy_C_ops.tanh(x) @@ -3528,6 +3647,7 @@ def tanh(x, name=None): helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out}) return out + @inplace_apis_in_dygraph_only def tanh_(x, name=None): r""" @@ -3535,7 +3655,7 @@ def tanh_(x, name=None): Please refer to :ref:`api_tensor_tanh`. """ if in_dygraph_mode(): - return _C_ops.tanh_( x ) + return _C_ops.tanh_(x) return _legacy_C_ops.tanh_(x) @@ -3571,11 +3691,10 @@ def increment(x, value=1.0, name=None): check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'], 'increment') helper = LayerHelper("increment", **locals()) - helper.append_op( - type='increment', - inputs={'X': [x]}, - outputs={'Out': [x]}, - attrs={'step': float(value)}) + helper.append_op(type='increment', + inputs={'X': [x]}, + outputs={'Out': [x]}, + attrs={'step': float(value)}) return x @@ -3647,7 +3766,7 @@ def all(x, axis=None, keepdim=False, name=None): if _in_legacy_dygraph(): axis = axis if axis != None and axis != [] else [0] return _legacy_C_ops.reduce_all(x, 'dim', axis, 'keep_dim', keepdim, - 'reduce_all', reduce_all_flag) + 'reduce_all', reduce_all_flag) attrs = { 'dim': axis if axis != None and axis != [] and axis != () else [0], @@ -3656,16 +3775,14 @@ def all(x, axis=None, keepdim=False, name=None): } check_variable_and_dtype(x, 'x', ['bool'], 'all') - check_type(axis, 'axis', (int, list, tuple, type(None)), 'all') helper = LayerHelper('all', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) - helper.append_op( - type='reduce_all', - inputs={'X': x}, - outputs={'Out': out}, - attrs=attrs) + helper.append_op(type='reduce_all', + inputs={'X': x}, + outputs={'Out': out}, + attrs=attrs) return out @@ -3738,7 +3855,7 @@ def any(x, axis=None, keepdim=False, name=None): if _in_legacy_dygraph(): axis = axis if axis != None and axis != [] else [0] return _legacy_C_ops.reduce_any(x, 'dim', axis, 'keep_dim', keepdim, - 'reduce_all', reduce_all_flag) + 'reduce_all', reduce_all_flag) attrs = { 'dim': axis if axis != None and axis != [] and axis != () else [0], @@ -3748,18 +3865,17 @@ def any(x, axis=None, keepdim=False, name=None): check_variable_and_dtype(x, 'x', ['bool'], 'any') - check_type(axis, 'axis', (int, list, tuple, type(None)), 'any') helper = LayerHelper('any', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) - helper.append_op( - type='reduce_any', - inputs={'X': x}, - outputs={'Out': out}, - attrs=attrs) + helper.append_op(type='reduce_any', + inputs={'X': x}, + outputs={'Out': out}, + attrs=attrs) return out + def broadcast_shape(x_shape, y_shape): """ The function returns the shape of doing operation with broadcasting on tensors of x_shape and y_shape, please refer to :ref:`user_guide_broadcasting` for more details. @@ -3787,6 +3903,7 @@ def broadcast_shape(x_shape, y_shape): return core.broadcast_shape(x_shape, y_shape) + def conj(x, name=None): r""" This function computes the conjugate of the Tensor elementwisely. @@ -3821,15 +3938,18 @@ def conj(x, name=None): if paddle.in_dynamic_mode(): return _legacy_C_ops.conj(x) - check_variable_and_dtype(x, "x", ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'], 'conj') + check_variable_and_dtype( + x, "x", + ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'], + 'conj') helper = LayerHelper('conj', **locals()) - out = helper.create_variable_for_type_inference( - dtype=helper.input_dtype()) + out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) helper.append_op(type='conj', inputs={'X': x}, outputs={'Out': [out]}) return out + def digamma(x, name=None): r""" Calculates the digamma of the given input tensor, element-wise. @@ -3868,6 +3988,7 @@ def digamma(x, name=None): helper.append_op(type='digamma', inputs={'X': x}, outputs={'Out': out}) return out + def lgamma(x, name=None): r""" Calculates the lgamma of the given input tensor, element-wise. @@ -3927,7 +4048,13 @@ def neg(x, name=None): # [0.4 0.2 -0.1 -0.3] """ - return scale(x, scale=-1.0, bias=0.0, bias_after_scale=True, act=None, name=name) + return scale(x, + scale=-1.0, + bias=0.0, + bias_after_scale=True, + act=None, + name=name) + def atan2(x, y, name=None): r""" @@ -3973,21 +4100,25 @@ def atan2(x, y, name=None): """ if in_dygraph_mode(): - return _C_ops.atan2( x, y) + return _C_ops.atan2(x, y) else: if _in_legacy_dygraph(): return _legacy_C_ops.atan2(x, y) else: - check_variable_and_dtype(x, 'x', ['int32', 'int64', 'float16', 'float32', 'float64'], 'atan2') - check_variable_and_dtype(y, 'y', ['int32', 'int64', 'float16', 'float32', 'float64'], 'atan2') + check_variable_and_dtype( + x, 'x', ['int32', 'int64', 'float16', 'float32', 'float64'], + 'atan2') + check_variable_and_dtype( + y, 'y', ['int32', 'int64', 'float16', 'float32', 'float64'], + 'atan2') helper = LayerHelper('atan2', **locals()) - inputs = {'X1' : x, 'X2' : y} + inputs = {'X1': x, 'X2': y} out = helper.create_variable_for_type_inference(dtype=x.dtype) - helper.append_op( - type='atan2', inputs=inputs, outputs={'Out': out}) + helper.append_op(type='atan2', inputs=inputs, outputs={'Out': out}) return out + def logit(x, eps=None, name=None): r""" This function generates a new tensor with the logit of the elements of input x. x is clamped to [eps, 1-eps] when eps is not zero. When eps is zero and x < 0 or x > 1, the function will yields NaN. @@ -4038,13 +4169,13 @@ def logit(x, eps=None, name=None): check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'logit') helper = LayerHelper("logit", **locals()) out = helper.create_variable_for_type_inference(x.dtype) - helper.append_op( - type='logit', - inputs={'X': x}, - outputs={'Out': out}, - attrs={'eps': eps}) + helper.append_op(type='logit', + inputs={'X': x}, + outputs={'Out': out}, + attrs={'eps': eps}) return out + def lerp(x, y, weight, name=None): r""" Does a linear interpolation between x and y based on weight. @@ -4080,7 +4211,7 @@ def lerp(x, y, weight, name=None): if isinstance(weight, float): weight = paddle.to_tensor(weight, dtype=x.dtype) - return _C_ops.lerp( x, y, weight) + return _C_ops.lerp(x, y, weight) if _in_legacy_dygraph(): if isinstance(weight, float): weight = paddle.to_tensor(weight, dtype=x.dtype) @@ -4099,6 +4230,7 @@ def lerp(x, y, weight, name=None): helper.append_op(type='lerp', inputs=inputs, outputs={'Out': out}) return out + @inplace_apis_in_dygraph_only def lerp_(x, y, weight, name=None): r""" @@ -4112,11 +4244,14 @@ def lerp_(x, y, weight, name=None): elif isinstance(weight, (paddle.Tensor, Variable)): out_shape = broadcast_shape(out_shape, weight.shape) if out_shape != x.shape: - raise ValueError("The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(out_shape, x.shape)) + raise ValueError( + "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation." + .format(out_shape, x.shape)) if in_dygraph_mode(): - return _C_ops.lerp_( x, y, weight) + return _C_ops.lerp_(x, y, weight) return _legacy_C_ops.lerp_(x, y, weight) + def erfinv(x, name=None): r""" The inverse error function of x. Please refer to :ref:`api_paddle_erf` @@ -4143,7 +4278,7 @@ def erfinv(x, name=None): """ if in_dygraph_mode(): - return _C_ops.erfinv( x ) + return _C_ops.erfinv(x) check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'erfinv') @@ -4155,6 +4290,7 @@ def erfinv(x, name=None): helper.append_op(type='erfinv', inputs={'X': x}, outputs={'Out': out}) return out + @inplace_apis_in_dygraph_only def erfinv_(x, name=None): r""" @@ -4163,9 +4299,10 @@ def erfinv_(x, name=None): """ check_type(x, 'x', (paddle.Tensor, Variable), 'erfinv') if in_dygraph_mode(): - return _C_ops.erfinv_( x ) + return _C_ops.erfinv_(x) return _legacy_C_ops.erfinv_(x) + def rad2deg(x, name=None): r""" Convert each of the elements of input x from angles in radians to degrees. @@ -4217,18 +4354,29 @@ def rad2deg(x, name=None): x = cast(x, dtype="float32") return _legacy_C_ops.scale(x, 'scale', rad2deg_scale) else: - check_variable_and_dtype(x, 'x', ['int32', 'int64', 'float32', 'float64'], 'rad2deg') + check_variable_and_dtype(x, 'x', + ['int32', 'int64', 'float32', 'float64'], + 'rad2deg') helper = LayerHelper('rad2deg', **locals()) out_cast = x if convert_dtype(x.dtype) in ['int32', 'int64']: - out_cast = helper.create_variable_for_type_inference(dtype=paddle.float32) - helper.append_op( - type='cast', inputs={'X':x}, outputs={'Out': out_cast}, attrs={'in_dtype': x.dtype,'out_dtype': paddle.float32}) + out_cast = helper.create_variable_for_type_inference( + dtype=paddle.float32) + helper.append_op(type='cast', + inputs={'X': x}, + outputs={'Out': out_cast}, + attrs={ + 'in_dtype': x.dtype, + 'out_dtype': paddle.float32 + }) out = helper.create_variable_for_type_inference(dtype=out_cast.dtype) - helper.append_op( - type='scale', inputs={'X':out_cast}, outputs={'Out': out}, attrs={'scale': rad2deg_scale}) + helper.append_op(type='scale', + inputs={'X': out_cast}, + outputs={'Out': out}, + attrs={'scale': rad2deg_scale}) return out + def deg2rad(x, name=None): r""" Convert each of the elements of input x from degrees to angles in radians. @@ -4272,18 +4420,29 @@ def deg2rad(x, name=None): x = cast(x, dtype="float32") return _legacy_C_ops.scale(x, 'scale', deg2rad_scale) else: - check_variable_and_dtype(x, 'x', ['int32', 'int64', 'float32', 'float64'], 'deg2rad') + check_variable_and_dtype(x, 'x', + ['int32', 'int64', 'float32', 'float64'], + 'deg2rad') helper = LayerHelper('deg2rad', **locals()) out_cast = x if convert_dtype(x.dtype) in ['int32', 'int64']: - out_cast = helper.create_variable_for_type_inference(dtype=paddle.float32) - helper.append_op( - type='cast', inputs={'X':x}, outputs={'Out': out_cast}, attrs={'in_dtype': x.dtype,'out_dtype': paddle.float32}) + out_cast = helper.create_variable_for_type_inference( + dtype=paddle.float32) + helper.append_op(type='cast', + inputs={'X': x}, + outputs={'Out': out_cast}, + attrs={ + 'in_dtype': x.dtype, + 'out_dtype': paddle.float32 + }) out = helper.create_variable_for_type_inference(dtype=out_cast.dtype) - helper.append_op( - type='scale', inputs={'X':out_cast}, outputs={'Out': out}, attrs={'scale': deg2rad_scale}) + helper.append_op(type='scale', + inputs={'X': out_cast}, + outputs={'Out': out}, + attrs={'scale': deg2rad_scale}) return out + def gcd(x, y, name=None): """ Computes the element-wise greatest common divisor (GCD) of input |x| and |y|. @@ -4348,7 +4507,8 @@ def gcd(x, y, name=None): y_not_equal_0 = (y != 0) y_safe = paddle.where(y_not_equal_0, y, paddle.ones(y.shape, y.dtype)) x, y = (paddle.where(y_not_equal_0, y, x), - paddle.where(y_not_equal_0, paddle.mod(x, y_safe),paddle.zeros(y.shape, y.dtype))) + paddle.where(y_not_equal_0, paddle.mod(x, y_safe), + paddle.zeros(y.shape, y.dtype))) return (paddle.where(x < y, y, x), paddle.where(x < y, x, y)) if paddle.in_dynamic_mode(): @@ -4362,6 +4522,7 @@ def gcd(x, y, name=None): out, _ = paddle.static.nn.while_loop(_gcd_cond_fn, _gcd_body_fn, [x, y]) return out + def lcm(x, y, name=None): """ Computes the element-wise least common multiple (LCM) of input |x| and |y|. @@ -4416,9 +4577,11 @@ def lcm(x, y, name=None): # they won't be used. d_equal_0 = paddle.equal(d, 0) d_safe = paddle.where(d_equal_0, paddle.ones(d.shape, d.dtype), d) - out = paddle.where(d_equal_0, paddle.zeros(d.shape, d.dtype), paddle.abs(x * y) // d_safe) + out = paddle.where(d_equal_0, paddle.zeros(d.shape, d.dtype), + paddle.abs(x * y) // d_safe) return out + def diff(x, n=1, axis=-1, prepend=None, append=None, name=None): r""" Computes the n-th forward difference along the given axis. @@ -4510,14 +4673,14 @@ def diff(x, n=1, axis=-1, prepend=None, append=None, name=None): attrs_1 += ('starts', starts_1) ends_1 = [dim_len - 1] attrs_1 += ('ends', ends_1) - input_front = _C_ops.slice(new_input, axes, starts_1, ends_1, infer_flags, - []) + input_front = _C_ops.slice(new_input, axes, starts_1, ends_1, + infer_flags, []) starts_2 = [1] attrs_2 += ('starts', starts_2) ends_2 = [dim_len] attrs_2 += ('ends', ends_2) - input_back = _C_ops.slice(new_input, axes, starts_2, ends_2, infer_flags, - []) + input_back = _C_ops.slice(new_input, axes, starts_2, ends_2, + infer_flags, []) if x.dtype == paddle.bool: return _C_ops.logical_xor(input_back, input_front) @@ -4564,7 +4727,8 @@ def diff(x, n=1, axis=-1, prepend=None, append=None, name=None): else: return elementwise_sub(input_back, input_front, axis=axis) else: - check_variable_and_dtype(x, 'x', ['float32', 'float64', 'bool', 'int32', 'int64'], 'diff') + check_variable_and_dtype( + x, 'x', ['float32', 'float64', 'bool', 'int32', 'int64'], 'diff') check_type(axis, 'axis', (int), 'diff') helper = LayerHelper('diff', **locals()) has_pend = False @@ -4581,9 +4745,10 @@ def diff(x, n=1, axis=-1, prepend=None, append=None, name=None): if has_pend: new_input = helper.create_variable_for_type_inference(dtype) - helper.append_op( - type='concat', inputs={'X': input_list}, outputs={'Out': [new_input]}, attrs={'axis': axis} - ) + helper.append_op(type='concat', + inputs={'X': input_list}, + outputs={'Out': [new_input]}, + attrs={'axis': axis}) else: new_input = x @@ -4594,29 +4759,35 @@ def diff(x, n=1, axis=-1, prepend=None, append=None, name=None): attrs_1['starts'] = starts_1 attrs_1['ends'] = ends_1 input_front = helper.create_variable_for_type_inference(dtype) - helper.append_op( - type='slice', inputs={'Input': new_input}, attrs=attrs_1, outputs={'Out': input_front} - ) + helper.append_op(type='slice', + inputs={'Input': new_input}, + attrs=attrs_1, + outputs={'Out': input_front}) attrs_2 = {'axes': axes} starts_2 = [1] ends_2 = [dim_len] attrs_2['starts'] = starts_2 attrs_2['ends'] = ends_2 input_back = helper.create_variable_for_type_inference(dtype) - helper.append_op( - type='slice', inputs={'Input': new_input}, attrs=attrs_2, outputs={'Out': input_back} - ) + helper.append_op(type='slice', + inputs={'Input': new_input}, + attrs=attrs_2, + outputs={'Out': input_back}) if dtype == paddle.bool: out = helper.create_variable_for_type_inference(dtype) - helper.append_op( - type='logical_xor', inputs={"X": input_back, "Y": input_front}, outputs={"Out": out} - ) + helper.append_op(type='logical_xor', + inputs={ + "X": input_back, + "Y": input_front + }, + outputs={"Out": out}) else: out = elementwise_sub(input_back, input_front, axis=axis) return out + def angle(x, name=None): r""" Element-wise angle of complex numbers. For non-negative real numbers, the angle is 0 while @@ -4662,7 +4833,8 @@ def angle(x, name=None): return _legacy_C_ops.angle(x) check_variable_and_dtype(x, 'x', - ['float32', 'float64', 'complex64', 'complex128'], 'angle') + ['float32', 'float64', 'complex64', 'complex128'], + 'angle') op_type = "angle" helper = LayerHelper(op_type, **locals()) inputs = {"X": x} @@ -4672,6 +4844,7 @@ def angle(x, name=None): helper.append_op(type=op_type, inputs=inputs, outputs=outputs) return out + def heaviside(x, y, name=None): r""" Computes the Heaviside step function determined by corresponding element in y for each element in x. The equation is @@ -4715,10 +4888,14 @@ def heaviside(x, y, name=None): axis = -1 act = None if _non_static_mode(): - return _elementwise_op_in_dygraph( - x, y, axis=axis, act=act, op_name=op_type) + return _elementwise_op_in_dygraph(x, + y, + axis=axis, + act=act, + op_name=op_type) return _elementwise_op(LayerHelper(op_type, **locals())) + def frac(x, name=None): """ This API is used to return the fractional portion of each element in input. @@ -4751,28 +4928,39 @@ def frac(x, name=None): op_type = 'elementwise_sub' axis = -1 act = None - if x.dtype not in [paddle.int32, paddle.int64, paddle.float32, paddle.float64]: + if x.dtype not in [ + paddle.int32, paddle.int64, paddle.float32, paddle.float64 + ]: raise TypeError( - "The data type of input must be one of ['int32', 'int64', 'float32', 'float64'], but got {}".format(x.dtype)) + "The data type of input must be one of ['int32', 'int64', 'float32', 'float64'], but got {}" + .format(x.dtype)) if in_dygraph_mode(): y = _C_ops.trunc(x) return _C_ops.subtract(x, y) else: if _in_legacy_dygraph(): y = _legacy_C_ops.trunc(x) - return _elementwise_op_in_dygraph( - x, y, axis=axis, act=act, op_name=op_type) + return _elementwise_op_in_dygraph(x, + y, + axis=axis, + act=act, + op_name=op_type) else: inputs = {"X": x} attrs = {} helper = LayerHelper("trunc", **locals()) - check_variable_and_dtype(x, "X", ['int32', 'int64', 'float32', 'float64'], 'trunc') + check_variable_and_dtype(x, "X", + ['int32', 'int64', 'float32', 'float64'], + 'trunc') y = helper.create_variable_for_type_inference(dtype=x.dtype) - helper.append_op( - type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": y}) + helper.append_op(type="trunc", + inputs=inputs, + attrs=attrs, + outputs={"Out": y}) return _elementwise_op(LayerHelper(op_type, **locals())) + def sgn(x, name=None): """ For complex tensor, this API returns a new tensor whose elements have the same angles as the corresponding @@ -4798,10 +4986,13 @@ def sgn(x, name=None): # [0.6+0.8j 1.+0.j 0.+0.j -1.+0.j]] """ - if x.dtype not in [paddle.float16, paddle.float32, paddle.float64, paddle.complex64, paddle.complex128]: + if x.dtype not in [ + paddle.float16, paddle.float32, paddle.float64, paddle.complex64, + paddle.complex128 + ]: raise TypeError( "The data type of input must be one of ['float16', 'float32', 'float64', 'complex64', 'complex128'], but got {}" - .format(x.dtype)) + .format(x.dtype)) if paddle.is_complex(x): expand_x = paddle.as_real(x) x_abs = paddle.abs(x) @@ -4814,6 +5005,7 @@ def sgn(x, name=None): else: return paddle.sign(x) + def take(x, index, mode='raise', name=None): """ Returns a new tensor with the elements of input tensor x at the given index. @@ -4881,16 +5073,18 @@ def take(x, index, mode='raise', name=None): """ if mode not in ['raise', 'wrap', 'clip']: raise ValueError( - "'mode' in 'take' should be 'raise', 'wrap', 'clip', but received {}.".format(mode)) + "'mode' in 'take' should be 'raise', 'wrap', 'clip', but received {}." + .format(mode)) if paddle.in_dynamic_mode(): if not isinstance(index, (paddle.Tensor, Variable)): raise TypeError( - "The type of 'index' must be Tensor, but got {}".format(type(index))) + "The type of 'index' must be Tensor, but got {}".format( + type(index))) if index.dtype not in [paddle.int32, paddle.int64]: raise TypeError( - "The data type of 'index' must be one of ['int32', 'int64'], but got {}".format( - index.dtype)) + "The data type of 'index' must be one of ['int32', 'int64'], but got {}" + .format(index.dtype)) else: check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'take') @@ -4904,10 +5098,9 @@ def take(x, index, mode='raise', name=None): index_1d = paddle.where(index_1d < 0, index_1d + max_index, index_1d) elif mode == 'wrap': # The out of range indices are constrained by taking the remainder. - index_1d = paddle.where(index_1d < 0, - index_1d % max_index, index_1d) - index_1d = paddle.where(index_1d >= max_index, - index_1d % max_index, index_1d) + index_1d = paddle.where(index_1d < 0, index_1d % max_index, index_1d) + index_1d = paddle.where(index_1d >= max_index, index_1d % max_index, + index_1d) elif mode == 'clip': # 'clip' mode disables indexing with negative numbers. index_1d = clip(index_1d, 0, max_index - 1) -- GitLab