From 82f0b5ea5c6627c6d60120c65db945d690c4f450 Mon Sep 17 00:00:00 2001 From: littletomatodonkey <2120160898@bit.edu.cn> Date: Tue, 17 Nov 2020 13:57:32 +0800 Subject: [PATCH] adapt pad const (#28585) * adapt pad const * fix comment and rm fluid import * rm stdout * fix note --- .../fluid/tests/unittests/test_pad3d_op.py | 31 ++++++++++++++++++- python/paddle/nn/functional/common.py | 6 ++++ 2 files changed, 36 insertions(+), 1 deletion(-) diff --git a/python/paddle/fluid/tests/unittests/test_pad3d_op.py b/python/paddle/fluid/tests/unittests/test_pad3d_op.py index c29352bb51a..88d3d80a14c 100644 --- a/python/paddle/fluid/tests/unittests/test_pad3d_op.py +++ b/python/paddle/fluid/tests/unittests/test_pad3d_op.py @@ -251,7 +251,9 @@ class TestPadAPI(unittest.TestCase): mode, value=0, data_format="NCDHW"): - if data_format == "NCDHW": + if mode == "constant" and len(pad) == len(input_data.shape) * 2: + pad = np.reshape(pad, (-1, 2)).tolist() + elif data_format == "NCDHW": pad = [ (0, 0), (0, 0), @@ -316,6 +318,7 @@ class TestPadAPI(unittest.TestCase): paddle.disable_static() input_shape = (1, 2, 3, 4, 5) pad = [1, 2, 1, 1, 3, 4] + pad_3 = [1, 2, 1, 1, 3, 4, 5, 6, 7, 8] mode = "constant" value = 100 input_data = np.random.rand(*input_shape).astype(np.float32) @@ -323,6 +326,8 @@ class TestPadAPI(unittest.TestCase): input_data, pad, mode, value, data_format="NCDHW") np_out2 = self._get_numpy_out( input_data, pad, mode, value, data_format="NDHWC") + np_out3 = self._get_numpy_out( + input_data, pad_3, mode, value, data_format="NCDHW") tensor_data = paddle.to_tensor(input_data) y1 = F.pad(tensor_data, @@ -335,14 +340,21 @@ class TestPadAPI(unittest.TestCase): mode=mode, value=value, data_format="NDHWC") + y3 = F.pad(tensor_data, + pad=pad_3, + mode=mode, + value=value, + data_format="NCDHW") self.assertTrue(np.allclose(y1.numpy(), np_out1)) self.assertTrue(np.allclose(y2.numpy(), np_out2)) + self.assertTrue(np.allclose(y3.numpy(), np_out3)) def test_dygraph_2(self): paddle.disable_static() input_shape = (2, 3, 4, 5) pad = [1, 1, 3, 4] + pad_3 = [1, 2, 1, 1, 3, 4, 5, 6] mode = "constant" value = 100 input_data = np.random.rand(*input_shape).astype(np.float32) @@ -350,6 +362,8 @@ class TestPadAPI(unittest.TestCase): input_data, pad, mode, value, data_format="NCHW") np_out2 = self._get_numpy_out( input_data, pad, mode, value, data_format="NHWC") + np_out3 = self._get_numpy_out( + input_data, pad_3, mode, value, data_format="NCHW") tensor_data = paddle.to_tensor(input_data) tensor_pad = paddle.to_tensor(pad, dtype="int32") @@ -364,14 +378,21 @@ class TestPadAPI(unittest.TestCase): mode=mode, value=value, data_format="NHWC") + y3 = F.pad(tensor_data, + pad=pad_3, + mode=mode, + value=value, + data_format="NCHW") self.assertTrue(np.allclose(y1.numpy(), np_out1)) self.assertTrue(np.allclose(y2.numpy(), np_out2)) + self.assertTrue(np.allclose(y3.numpy(), np_out3)) def test_dygraph_3(self): paddle.disable_static() input_shape = (3, 4, 5) pad = [3, 4] + pad_3 = [3, 4, 5, 6, 7, 8] mode = "constant" value = 100 input_data = np.random.rand(*input_shape).astype(np.float32) @@ -379,6 +400,8 @@ class TestPadAPI(unittest.TestCase): input_data, pad, mode, value, data_format="NCL") np_out2 = self._get_numpy_out( input_data, pad, mode, value, data_format="NLC") + np_out3 = self._get_numpy_out( + input_data, pad_3, mode, value, data_format="NCL") tensor_data = paddle.to_tensor(input_data) tensor_pad = paddle.to_tensor(pad, dtype="int32") @@ -392,9 +415,15 @@ class TestPadAPI(unittest.TestCase): mode=mode, value=value, data_format="NLC") + y3 = F.pad(tensor_data, + pad=pad_3, + mode=mode, + value=value, + data_format="NCL") self.assertTrue(np.allclose(y1.numpy(), np_out1)) self.assertTrue(np.allclose(y2.numpy(), np_out2)) + self.assertTrue(np.allclose(y3.numpy(), np_out3)) class TestPad1dAPI(unittest.TestCase): diff --git a/python/paddle/nn/functional/common.py b/python/paddle/nn/functional/common.py index 1cf3599e846..5c5e3f37916 100644 --- a/python/paddle/nn/functional/common.py +++ b/python/paddle/nn/functional/common.py @@ -1158,6 +1158,9 @@ def alpha_dropout(x, p=0.5, training=True, name=None): def pad(x, pad, mode='constant', value=0, data_format="NCHW", name=None): """ Pad tensor according to 'pad' and 'mode'. + If mode is 'constant' and length of pad is twice as length of x dimension, + then the padding will be started from the first dimension and moved back onto x + according to 'pad' and 'value'. If mode is 'reflect', pad[0] and pad[1] must be no greater than width-1. The height and depth dimension has the same condition. @@ -1273,6 +1276,9 @@ def pad(x, pad, mode='constant', value=0, data_format="NCHW", name=None): unsqueezed_dim = [] + if mode == "constant" and isinstance(pad, list) and len(pad) == x_dim * 2: + return layers.pad(x, pad, pad_value=value) + if isinstance(pad, Variable): if data_format in ["NCL", "NCHW", "NCDHW"]: data_format = "NCDHW" -- GitLab