From 828c5b3e1dd3c80b955a1c65179ca6d5a27d852d Mon Sep 17 00:00:00 2001 From: Abhinav Arora Date: Thu, 5 Oct 2017 13:07:55 -0700 Subject: [PATCH] Adding Adadelta optimization operator (#4576) * Adding Adadelta optimization operator * Making inputs and outputs conform to naming convention * Removing type alias from header files * Fixing Adadelta documentation in comments * Addressing code review feedback --- paddle/operators/adadelta_op.cc | 115 ++++++++++++++++++ paddle/operators/adadelta_op.cu | 20 +++ paddle/operators/adadelta_op.h | 69 +++++++++++ .../v2/framework/tests/test_adadelta_op.py | 96 +++++++++++++++ 4 files changed, 300 insertions(+) create mode 100644 paddle/operators/adadelta_op.cc create mode 100644 paddle/operators/adadelta_op.cu create mode 100644 paddle/operators/adadelta_op.h create mode 100644 python/paddle/v2/framework/tests/test_adadelta_op.py diff --git a/paddle/operators/adadelta_op.cc b/paddle/operators/adadelta_op.cc new file mode 100644 index 00000000000..bd8c93b4a19 --- /dev/null +++ b/paddle/operators/adadelta_op.cc @@ -0,0 +1,115 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/adadelta_op.h" + +namespace paddle { +namespace operators { + +class AdadeltaOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContextBase *ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("Param"), + "Input(Param) of AdadeltaOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Grad"), + "Input(Grad) of AdadeltaOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("AvgSquaredGrad"), + "Input(AvgSquaredGrad) of AdadeltaOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("AvgSquaredUpdate"), + "Input(AvgSquaredUpdate) of AdadeltaOp should not be null."); + + PADDLE_ENFORCE(ctx->HasOutput("ParamOut"), + "Output(ParamOut) of AdadeltaOp should not be null."); + PADDLE_ENFORCE( + ctx->HasOutput("AvgSquaredGradOut"), + "Output(AvgSquaredGradOut) of AdadeltaOp should not be null."); + PADDLE_ENFORCE( + ctx->HasOutput("AvgSquaredUpdateOut"), + "Output(AvgSquaredUpdateOut) of AdadeltaOp should not be null."); + + auto param_dim = ctx->GetInputDim("Param"); + PADDLE_ENFORCE_EQ( + param_dim, ctx->GetInputDim("Grad"), + "param and grad input of AdadeltaOp should have same dimension"); + PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("AvgSquaredGrad"), + "Param and AvgSquaredGrad input of AdadeltaOp " + "should have same dimension"); + PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("AvgSquaredUpdate"), + "Param and AvgSquaredUpdate input of AdadeltaOp " + "should have same dimension"); + + ctx->SetOutputDim("ParamOut", param_dim); + ctx->SetOutputDim("AvgSquaredGradOut", param_dim); + ctx->SetOutputDim("AvgSquaredUpdateOut", param_dim); + } +}; + +class AdadeltaOpMaker : public framework::OpProtoAndCheckerMaker { + public: + AdadeltaOpMaker(framework::OpProto *proto, + framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("Param", "(Tensor) Input parameter"); + AddInput("Grad", "(Tensor) Input gradient"); + AddInput("AvgSquaredGrad", + "(Tensor) Input expectation of squared gradient"); + AddInput("AvgSquaredUpdate", + "(Tensor) Input expectation of squared parameter updates"); + + AddOutput("ParamOut", "(Tensor) Output parameter"); + AddOutput("AvgSquaredGradOut", + "(Tensor) Output expectation of squared gradient"); + AddOutput("AvgSquaredUpdateOut", + "(Tensor) Output expectation of squared parameter updates"); + + AddAttr("rho", + "(float, default 0.95) Exponential decay rate " + "for squared gradients.") + .SetDefault(0.95f); + AddAttr("epsilon", + "(float, default 1.0e-6) Constant for " + "numerical stability") + .SetDefault(1.0e-6f); + AddComment(R"DOC( +Adadelta Updates Operator. + +This implements the Adadelta optimizer[1]. Adadelta is a per-dimension +adaptive learning rate method for gradient descent. + +Adadelta updates: + +avg_squared_grad_out = rho * avg_squared_grad + (1 - rho) * grad * grad +param_update = - sqrt((avg_squared_update + epsilon) / + (avg_squared_grad_out + epsilon)) * grad +avg_squared_update_out = rho * avg_squared_update + (1 - rho) * param_update**2 +param_out = param + param_update + +References: + [1] ADADELTA: An Adaptive Learning Rate Method + https://arxiv.org/abs/1212.5701 + +)DOC"); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP_WITHOUT_GRADIENT(adadelta, ops::AdadeltaOp, ops::AdadeltaOpMaker); +REGISTER_OP_CPU_KERNEL( + adadelta, ops::AdadeltaOpKernel); diff --git a/paddle/operators/adadelta_op.cu b/paddle/operators/adadelta_op.cu new file mode 100644 index 00000000000..3af1c8c8e98 --- /dev/null +++ b/paddle/operators/adadelta_op.cu @@ -0,0 +1,20 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#define EIGEN_USE_GPU +#include "paddle/operators/adadelta_op.h" + +namespace ops = paddle::operators; +REGISTER_OP_GPU_KERNEL( + adadelta, ops::AdadeltaOpKernel); diff --git a/paddle/operators/adadelta_op.h b/paddle/operators/adadelta_op.h new file mode 100644 index 00000000000..d29e15c4358 --- /dev/null +++ b/paddle/operators/adadelta_op.h @@ -0,0 +1,69 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" + +namespace paddle { +namespace operators { + +template +class AdadeltaOpKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto param_out_tensor = ctx.Output("ParamOut"); + auto avg_squared_grad_out_tensor = + ctx.Output("AvgSquaredGradOut"); + auto avg_squared_update_out_tensor = + ctx.Output("AvgSquaredUpdateOut"); + + param_out_tensor->mutable_data(ctx.GetPlace()); + avg_squared_grad_out_tensor->mutable_data(ctx.GetPlace()); + avg_squared_update_out_tensor->mutable_data(ctx.GetPlace()); + + float rho = ctx.Attr("rho"); + float epsilon = ctx.Attr("epsilon"); + + auto param = framework::EigenVector::Flatten( + *ctx.Input("Param")); + auto grad = framework::EigenVector::Flatten( + *ctx.Input("Grad")); + // Squared gradient accumulator + auto avg_squared_grad = framework::EigenVector::Flatten( + *ctx.Input("AvgSquaredGrad")); + // Squared updates accumulator + auto avg_squared_update = framework::EigenVector::Flatten( + *ctx.Input("AvgSquaredUpdate")); + auto param_out = framework::EigenVector::Flatten(*param_out_tensor); + auto avg_squared_grad_out = + framework::EigenVector::Flatten(*avg_squared_grad_out_tensor); + auto avg_squared_update_out = + framework::EigenVector::Flatten(*avg_squared_update_out_tensor); + auto place = ctx.GetEigenDevice(); + + avg_squared_grad_out.device(place) = + rho * avg_squared_grad + (1 - rho) * grad.square(); + auto update = + -((avg_squared_update + epsilon) / (avg_squared_grad_out + epsilon)) + .sqrt() * + grad; + avg_squared_update_out.device(place) = + rho * avg_squared_update + (1 - rho) * update.square(); + param_out.device(place) = param + update; + } +}; + +} // namespace operators +} // namespace paddle diff --git a/python/paddle/v2/framework/tests/test_adadelta_op.py b/python/paddle/v2/framework/tests/test_adadelta_op.py new file mode 100644 index 00000000000..7105593a98a --- /dev/null +++ b/python/paddle/v2/framework/tests/test_adadelta_op.py @@ -0,0 +1,96 @@ +import unittest +import numpy as np +from op_test import OpTest + + +class TestAdadeltaOp1(OpTest): + def setUp(self): + self.op_type = "adadelta" + param = np.random.uniform(-1, 1, (102, 105)).astype("float32") + grad = np.random.uniform(-1, 1, (102, 105)).astype("float32") + # The squared gradient is positive + avg_squared_grad = np.random.random((102, 105)).astype("float32") + # The squared update is positive + avg_squared_update = np.random.random((102, 105)).astype("float32") + + rho = 0.95 + epsilon = 1e-6 + + self.inputs = { + 'Param': param, + 'Grad': grad, + 'AvgSquaredGrad': avg_squared_grad, + 'AvgSquaredUpdate': avg_squared_update + } + + self.attrs = {'rho': rho, 'epsilon': epsilon} + + avg_squared_grad_out = rho * avg_squared_grad + \ + (1 - rho) * np.square(grad) + update = -np.multiply( + np.sqrt( + np.divide(avg_squared_update + epsilon, avg_squared_grad_out + + epsilon)), grad) + + avg_squared_update_out = rho * avg_squared_update + \ + (1 - rho) * np.square(update) + + param_out = param + update + + self.outputs = { + 'ParamOut': param_out, + 'AvgSquaredGradOut': avg_squared_grad_out, + 'AvgSquaredUpdateOut': avg_squared_update_out + } + + def test_check_output(self): + self.check_output() + + +class TestAdadeltaOp2(OpTest): + '''Test Adadelta op with default attribute values + ''' + + def setUp(self): + self.op_type = "adadelta" + param = np.random.uniform(-1, 1, (102, 105)).astype("float32") + grad = np.random.uniform(-1, 1, (102, 105)).astype("float32") + # The squared gradient is positive + avg_squared_grad = np.random.random((102, 105)).astype("float32") + # The squared update is positive + avg_squared_update = np.random.random((102, 105)).astype("float32") + + rho = 0.95 + epsilon = 1e-6 + + self.inputs = { + 'Param': param, + 'Grad': grad, + 'AvgSquaredGrad': avg_squared_grad, + 'AvgSquaredUpdate': avg_squared_update + } + + avg_squared_grad_out = rho * avg_squared_grad + \ + (1 - rho) * np.square(grad) + update = -np.multiply( + np.sqrt( + np.divide(avg_squared_update + epsilon, avg_squared_grad_out + + epsilon)), grad) + + avg_squared_update_out = rho * avg_squared_update + \ + (1 - rho) * np.square(update) + + param_out = param + update + + self.outputs = { + 'ParamOut': param_out, + 'AvgSquaredGradOut': avg_squared_grad_out, + 'AvgSquaredUpdateOut': avg_squared_update_out + } + + def test_check_output(self): + self.check_output() + + +if __name__ == "__main__": + unittest.main() -- GitLab