Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
8219f206
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8219f206
编写于
9月 13, 2017
作者:
H
hedaoyuan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refine gemm convolution kernel.
上级
5860150d
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
12 addition
and
16 deletion
+12
-16
paddle/operators/gemm_conv_op.h
paddle/operators/gemm_conv_op.h
+12
-16
未找到文件。
paddle/operators/gemm_conv_op.h
浏览文件 @
8219f206
...
...
@@ -58,7 +58,7 @@ class GemmConvKernel : public framework::OpKernel {
input_channels
*
filter_height
*
filter_width
,
output_height
*
output_width
};
Tensor
col
;
col
.
mutable_data
<
float
>
(
col_shape
,
context
.
GetPlace
());
col
.
mutable_data
<
T
>
(
col_shape
,
context
.
GetPlace
());
// col_matrix shares the same piece of data with col,
// but will be reshaped into a two-dimensional matrix shape
// to call the matrix multiplication interface.
...
...
@@ -67,8 +67,8 @@ class GemmConvKernel : public framework::OpKernel {
framework
::
DDim
input_shape
=
{
input
->
dims
()[
1
],
input
->
dims
()[
2
],
input
->
dims
()[
3
]};
framework
::
DDim
filter_matrix_shape
=
{
filter
.
dims
()[
0
],
framework
::
product
(
filter
.
dims
()
)
/
filter
.
dims
()[
0
]};
framework
::
DDim
filter_matrix_shape
=
{
filter
.
dims
()[
0
],
filter
.
numel
(
)
/
filter
.
dims
()[
0
]};
filter
.
Resize
(
filter_matrix_shape
);
framework
::
DDim
output_matrix_shape
=
{
output_channels
,
...
...
@@ -80,14 +80,12 @@ class GemmConvKernel : public framework::OpKernel {
// convolution operator: im2col + gemm
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
// im2col
Tensor
in_slice
=
input
->
Slice
<
T
>
(
i
,
i
+
1
);
in_slice
.
Resize
(
input_shape
);
Tensor
in_slice
=
input
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
(
input_shape
);
im2col
(
in_slice
,
col
,
strides
[
0
],
strides
[
1
],
paddings
[
0
],
paddings
[
1
],
device_context
);
// gemm
Tensor
out_slice
=
output
->
Slice
<
T
>
(
i
,
i
+
1
);
out_slice
.
Resize
(
output_matrix_shape
);
Tensor
out_slice
=
output
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
math
::
matmul
<
Place
,
T
>
(
filter
,
false
,
col_matrix
,
false
,
T
(
1.0
),
&
out_slice
,
T
(
0.0
),
device_context
);
}
...
...
@@ -138,7 +136,7 @@ class GemmConvGradKernel : public framework::OpKernel {
input_channels
*
filter_height
*
filter_width
,
output_height
*
output_width
};
Tensor
col
;
col
.
mutable_data
<
float
>
(
col_shape
,
context
.
GetPlace
());
col
.
mutable_data
<
T
>
(
col_shape
,
context
.
GetPlace
());
// col_matrix shares the same piece of data with col,
// but will be reshaped into a two-dimensional matrix shape
// to call the matrix multiplication interface.
...
...
@@ -151,8 +149,8 @@ class GemmConvGradKernel : public framework::OpKernel {
output_grad
->
dims
()[
1
],
output_grad
->
dims
()[
2
]
*
output_grad
->
dims
()[
3
]};
framework
::
DDim
filter_matrix_shape
=
{
filter
.
dims
()[
0
],
framework
::
product
(
filter
.
dims
()
)
/
filter
.
dims
()[
0
]};
framework
::
DDim
filter_matrix_shape
=
{
filter
.
dims
()[
0
],
filter
.
numel
(
)
/
filter
.
dims
()[
0
]};
filter
.
Resize
(
filter_matrix_shape
);
filter_grad
.
Resize
(
filter_matrix_shape
);
...
...
@@ -168,20 +166,18 @@ class GemmConvGradKernel : public framework::OpKernel {
// convolution backward weight operator: im2col + gemm
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
// gemm
Tensor
out_slice
=
output_grad
->
Slice
<
T
>
(
i
,
i
+
1
);
out_slice
.
Resize
(
output_matrix_shape
);
Tensor
out_slice
=
output_grad
->
Slice
<
T
>
(
i
,
i
+
1
)
.
Resize
(
output_matrix_shape
);
math
::
matmul
<
Place
,
T
>
(
filter
,
true
,
out_slice
,
false
,
T
(
1.0
),
&
col_matrix
,
T
(
0.0
),
device_context
);
// col2im
Tensor
in_grad_slice
=
input_grad
->
Slice
<
T
>
(
i
,
i
+
1
);
in_grad_slice
.
Resize
(
input_shape
);
Tensor
in_grad_slice
=
input_grad
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
(
input_shape
);
col2im
(
in_grad_slice
,
col
,
strides
[
0
],
strides
[
1
],
paddings
[
0
],
paddings
[
1
],
device_context
);
// im2col
Tensor
in_slice
=
input
->
Slice
<
T
>
(
i
,
i
+
1
);
in_slice
.
Resize
(
input_shape
);
Tensor
in_slice
=
input
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
(
input_shape
);
im2col
(
in_slice
,
col
,
strides
[
0
],
strides
[
1
],
paddings
[
0
],
paddings
[
1
],
device_context
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录