diff --git a/paddle/fluid/API.spec b/paddle/fluid/API.spec index f50a38842a21c795c979f859e88a9b16c3e54bd8..df961be911537582fb60dd258fcdd4a5dd41a38e 100644 --- a/paddle/fluid/API.spec +++ b/paddle/fluid/API.spec @@ -8,13 +8,13 @@ paddle.fluid.Program.parse_from_string ArgSpec(args=['binary_str'], varargs=None paddle.fluid.Program.to_string ArgSpec(args=['self', 'throw_on_error', 'with_details'], varargs=None, keywords=None, defaults=(False,)) paddle.fluid.default_startup_program ArgSpec(args=[], varargs=None, keywords=None, defaults=None) paddle.fluid.default_main_program ArgSpec(args=[], varargs=None, keywords=None, defaults=None) -paddle.fluid.program_guard ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None) -paddle.fluid.name_scope ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None) +paddle.fluid.program_guard ArgSpec(args=['main_program', 'startup_program'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.name_scope ArgSpec(args=['prefix'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.Executor.__init__ ArgSpec(args=['self', 'place'], varargs=None, keywords=None, defaults=None) paddle.fluid.Executor.close ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) paddle.fluid.Executor.run ArgSpec(args=['self', 'program', 'feed', 'fetch_list', 'feed_var_name', 'fetch_var_name', 'scope', 'return_numpy', 'use_program_cache'], varargs=None, keywords=None, defaults=(None, None, None, 'feed', 'fetch', None, True, False)) paddle.fluid.global_scope ArgSpec(args=[], varargs=None, keywords=None, defaults=None) -paddle.fluid.scope_guard ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None) +paddle.fluid.scope_guard ArgSpec(args=['scope'], varargs=None, keywords=None, defaults=None) paddle.fluid.DistributeTranspiler.__init__ ArgSpec(args=['self', 'config'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.DistributeTranspiler.get_pserver_program ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None) paddle.fluid.DistributeTranspiler.get_pserver_programs ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None) @@ -66,7 +66,7 @@ paddle.fluid.initializer.XavierInitializer.__init__ ArgSpec(args=['self', 'unifo paddle.fluid.initializer.BilinearInitializer.__init__ ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) paddle.fluid.initializer.MSRAInitializer.__init__ ArgSpec(args=['self', 'uniform', 'fan_in', 'seed'], varargs=None, keywords=None, defaults=(True, None, 0)) paddle.fluid.initializer.force_init_on_cpu ArgSpec(args=[], varargs=None, keywords=None, defaults=None) -paddle.fluid.initializer.init_on_cpu ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None) +paddle.fluid.initializer.init_on_cpu ArgSpec(args=[], varargs=None, keywords=None, defaults=None) paddle.fluid.initializer.NumpyArrayInitializer.__init__ ArgSpec(args=['self', 'value'], varargs=None, keywords=None, defaults=None) paddle.fluid.layers.fc ArgSpec(args=['input', 'size', 'num_flatten_dims', 'param_attr', 'bias_attr', 'act', 'is_test', 'name'], varargs=None, keywords=None, defaults=(1, None, None, None, False, None)) paddle.fluid.layers.embedding ArgSpec(args=['input', 'size', 'is_sparse', 'is_distributed', 'padding_idx', 'param_attr', 'dtype'], varargs=None, keywords=None, defaults=(False, False, None, None, 'float32')) @@ -229,7 +229,7 @@ paddle.fluid.layers.random_data_generator ArgSpec(args=['low', 'high', 'shapes', paddle.fluid.layers.py_reader ArgSpec(args=['capacity', 'shapes', 'dtypes', 'lod_levels', 'name', 'use_double_buffer'], varargs=None, keywords=None, defaults=(None, None, True)) paddle.fluid.layers.create_py_reader_by_data ArgSpec(args=['capacity', 'feed_list', 'name', 'use_double_buffer'], varargs=None, keywords=None, defaults=(None, True)) paddle.fluid.layers.Preprocessor.__init__ ArgSpec(args=['self', 'reader', 'name'], varargs=None, keywords=None, defaults=(None,)) -paddle.fluid.layers.Preprocessor.block ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None) +paddle.fluid.layers.Preprocessor.block ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) paddle.fluid.layers.Preprocessor.inputs ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) paddle.fluid.layers.Preprocessor.outputs ArgSpec(args=['self'], varargs='outs', keywords=None, defaults=None) paddle.fluid.layers.load ArgSpec(args=['out', 'file_path', 'load_as_fp16'], varargs=None, keywords=None, defaults=(None,)) @@ -270,7 +270,7 @@ paddle.fluid.layers.IfElse.input ArgSpec(args=['self', 'x'], varargs=None, keywo paddle.fluid.layers.IfElse.output ArgSpec(args=['self'], varargs='outs', keywords=None, defaults=None) paddle.fluid.layers.IfElse.true_block ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) paddle.fluid.layers.DynamicRNN.__init__ ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=(None,)) -paddle.fluid.layers.DynamicRNN.block ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None) +paddle.fluid.layers.DynamicRNN.block ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) paddle.fluid.layers.DynamicRNN.memory ArgSpec(args=['self', 'init', 'shape', 'value', 'need_reorder', 'dtype'], varargs=None, keywords=None, defaults=(None, None, 0.0, False, 'float32')) paddle.fluid.layers.DynamicRNN.output ArgSpec(args=['self'], varargs='outputs', keywords=None, defaults=None) paddle.fluid.layers.DynamicRNN.static_input ArgSpec(args=['self', 'x'], varargs=None, keywords=None, defaults=None) @@ -346,12 +346,12 @@ paddle.fluid.contrib.StateCell.set_state ArgSpec(args=['self', 'state_name', 'st paddle.fluid.contrib.StateCell.state_updater ArgSpec(args=['self', 'updater'], varargs=None, keywords=None, defaults=None) paddle.fluid.contrib.StateCell.update_states ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) paddle.fluid.contrib.TrainingDecoder.__init__ ArgSpec(args=['self', 'state_cell', 'name'], varargs=None, keywords=None, defaults=(None,)) -paddle.fluid.contrib.TrainingDecoder.block ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None) +paddle.fluid.contrib.TrainingDecoder.block ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) paddle.fluid.contrib.TrainingDecoder.output ArgSpec(args=['self'], varargs='outputs', keywords=None, defaults=None) paddle.fluid.contrib.TrainingDecoder.static_input ArgSpec(args=['self', 'x'], varargs=None, keywords=None, defaults=None) paddle.fluid.contrib.TrainingDecoder.step_input ArgSpec(args=['self', 'x'], varargs=None, keywords=None, defaults=None) paddle.fluid.contrib.BeamSearchDecoder.__init__ ArgSpec(args=['self', 'state_cell', 'init_ids', 'init_scores', 'target_dict_dim', 'word_dim', 'input_var_dict', 'topk_size', 'sparse_emb', 'max_len', 'beam_size', 'end_id', 'name'], varargs=None, keywords=None, defaults=({}, 50, True, 100, 1, 1, None)) -paddle.fluid.contrib.BeamSearchDecoder.block ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None) +paddle.fluid.contrib.BeamSearchDecoder.block ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) paddle.fluid.contrib.BeamSearchDecoder.decode ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) paddle.fluid.contrib.BeamSearchDecoder.early_stop ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) paddle.fluid.contrib.BeamSearchDecoder.read_array ArgSpec(args=['self', 'init', 'is_ids', 'is_scores'], varargs=None, keywords=None, defaults=(False, False)) @@ -456,7 +456,7 @@ paddle.fluid.optimizer.AdadeltaOptimizer.apply_gradients ArgSpec(args=['self', ' paddle.fluid.optimizer.AdadeltaOptimizer.backward ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set', 'callbacks'], varargs=None, keywords=None, defaults=(None, None, None, None)) paddle.fluid.optimizer.AdadeltaOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None)) paddle.fluid.optimizer.ModelAverage.__init__ ArgSpec(args=['self', 'average_window_rate', 'min_average_window', 'max_average_window', 'regularization', 'name'], varargs=None, keywords=None, defaults=(10000, 10000, None, None)) -paddle.fluid.optimizer.ModelAverage.apply ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None) +paddle.fluid.optimizer.ModelAverage.apply ArgSpec(args=['self', 'executor', 'need_restore'], varargs=None, keywords=None, defaults=(True,)) paddle.fluid.optimizer.ModelAverage.apply_gradients ArgSpec(args=['self', 'params_grads'], varargs=None, keywords=None, defaults=None) paddle.fluid.optimizer.ModelAverage.backward ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set', 'callbacks'], varargs=None, keywords=None, defaults=(None, None, None, None)) paddle.fluid.optimizer.ModelAverage.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None)) @@ -491,14 +491,14 @@ paddle.fluid.clip.ErrorClipByValue.__init__ ArgSpec(args=['self', 'max', 'min'], paddle.fluid.clip.GradientClipByValue.__init__ ArgSpec(args=['self', 'max', 'min'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.clip.GradientClipByNorm.__init__ ArgSpec(args=['self', 'clip_norm'], varargs=None, keywords=None, defaults=None) paddle.fluid.clip.GradientClipByGlobalNorm.__init__ ArgSpec(args=['self', 'clip_norm', 'group_name'], varargs=None, keywords=None, defaults=('default_group',)) -paddle.fluid.profiler.cuda_profiler ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None) +paddle.fluid.profiler.cuda_profiler ArgSpec(args=['output_file', 'output_mode', 'config'], varargs=None, keywords=None, defaults=(None, None)) paddle.fluid.profiler.reset_profiler ArgSpec(args=[], varargs=None, keywords=None, defaults=None) -paddle.fluid.profiler.profiler ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None) +paddle.fluid.profiler.profiler ArgSpec(args=['state', 'sorted_key', 'profile_path'], varargs=None, keywords=None, defaults=(None, '/tmp/profile')) paddle.fluid.profiler.start_profiler ArgSpec(args=['state'], varargs=None, keywords=None, defaults=None) paddle.fluid.profiler.stop_profiler ArgSpec(args=['sorted_key', 'profile_path'], varargs=None, keywords=None, defaults=(None, '/tmp/profile')) paddle.fluid.unique_name.generate ArgSpec(args=['key'], varargs=None, keywords=None, defaults=None) paddle.fluid.unique_name.switch ArgSpec(args=['new_generator'], varargs=None, keywords=None, defaults=(None,)) -paddle.fluid.unique_name.guard ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None) +paddle.fluid.unique_name.guard ArgSpec(args=['new_generator'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.recordio_writer.convert_reader_to_recordio_file ArgSpec(args=['filename', 'reader_creator', 'feeder', 'compressor', 'max_num_records', 'feed_order'], varargs=None, keywords=None, defaults=(Compressor.Snappy, 1000, None)) paddle.fluid.recordio_writer.convert_reader_to_recordio_files ArgSpec(args=['filename', 'batch_per_file', 'reader_creator', 'feeder', 'compressor', 'max_num_records', 'feed_order'], varargs=None, keywords=None, defaults=(Compressor.Snappy, 1000, None)) paddle.fluid.Scope Scope() -> paddle.fluid.core._Scope diff --git a/paddle/fluid/inference/analysis/ir_passes/subgraph_detector.cc b/paddle/fluid/inference/analysis/ir_passes/subgraph_detector.cc index a64f85ee9ac1a7bb8f0ed7bb8678166bbbcd5746..96befe7f8a5d16402338ac337daa96d714b4d310 100644 --- a/paddle/fluid/inference/analysis/ir_passes/subgraph_detector.cc +++ b/paddle/fluid/inference/analysis/ir_passes/subgraph_detector.cc @@ -460,77 +460,6 @@ inline bool CheckNodeIndegreeEquals(const Node &node, size_t n) { return node.inputs.size() == n; } -NodesTSIterator::NodesTSIterator(const std::vector &source) { - PADDLE_ENFORCE(!source.empty(), - "Start points of topological sorting should not be empty!"); - // CHECK all the inputs' in-degree is 0 - for (auto *node : source) { - PADDLE_ENFORCE(CheckNodeIndegreeEquals(*node, 0)); - } - - std::unordered_set visited; - std::unordered_set to_visit{source.begin(), source.end()}; - - std::vector inlink_visited; - while (!to_visit.empty()) { - std::vector queue(to_visit.begin(), to_visit.end()); - for (auto *p : queue) { - if (Agent(p).deleted()) { - visited.insert(p); - to_visit.erase(p); - } - - inlink_visited.clear(); - - std::copy_if(p->inputs.begin(), p->inputs.end(), - std::back_inserter(inlink_visited), - [&](Node *x) -> bool { return visited.count(x) != 0; }); - - if (inlink_visited.size() == p->inputs.size()) { - sorted_.push_back(p); - for (auto *_ : p->outputs) { - if (!visited.count(_)) { - to_visit.insert(_); - } - } - - to_visit.erase(p); - visited.insert(p); - } - } - } -} - -NodesTSIterator::NodesTSIterator(const NodesTSIterator &other) - : sorted_(other.sorted_), cursor_(other.cursor_) {} - -Node &NodesTSIterator::operator*() { - PADDLE_ENFORCE_LT(cursor_, sorted_.size()); - return *sorted_[cursor_]; -} - -NodesTSIterator &NodesTSIterator::operator++() { - if (++cursor_ >= sorted_.size()) { - sorted_.clear(); - cursor_ = 0; - } - return *this; -} -NodesTSIterator &NodesTSIterator::operator=(const NodesTSIterator &other) { - cursor_ = other.cursor_; - sorted_ = other.sorted_; - return *this; -} - -bool NodesTSIterator::operator==(const NodesTSIterator &other) { - return sorted_ == other.sorted_ && cursor_ == other.cursor_; -} - -Node *NodesTSIterator::operator->() { - PADDLE_ENFORCE_LT(cursor_, sorted_.size()); - return sorted_[cursor_]; -} - } // namespace analysis } // namespace inference } // namespace paddle diff --git a/paddle/fluid/inference/analysis/ir_passes/subgraph_detector.h b/paddle/fluid/inference/analysis/ir_passes/subgraph_detector.h index ea88edd042aa9d46f66af1aa92f2cb273696c118..5d11c217b69f11d45c6fb6d552dc404fa8313daf 100644 --- a/paddle/fluid/inference/analysis/ir_passes/subgraph_detector.h +++ b/paddle/fluid/inference/analysis/ir_passes/subgraph_detector.h @@ -30,6 +30,7 @@ namespace inference { namespace analysis { using framework::ir::Graph; +using framework::ir::NodesTSIterator; const char kIsFunctionNode[] = "__is_function_node__"; const char kFunctionNodeSubGraph[] = "__function_node_sub_graph__"; @@ -132,32 +133,6 @@ struct Agent { framework::ir::Node *x_; }; -// Topological sorting iterator on nodes. -struct NodesTSIterator - : public std::iterator { - NodesTSIterator() = default; - explicit NodesTSIterator(const std::vector &source); - NodesTSIterator(NodesTSIterator &&other) - : sorted_(std::move(other.sorted_)), cursor_(other.cursor_) { - other.cursor_ = 0; - } - NodesTSIterator(const NodesTSIterator &other); - - framework::ir::Node &operator*(); - NodesTSIterator &operator++(); - // TODO(Superjomn) current implementation just compare the first - // element, need to compare the graph and all the elements in the queue and - // set. - NodesTSIterator &operator=(const NodesTSIterator &other); - bool operator==(const NodesTSIterator &other); - bool operator!=(const NodesTSIterator &other) { return !(*this == other); } - framework::ir::Node *operator->(); - - private: - std::vector sorted_; - size_t cursor_{0}; -}; - // The nodes those have no input will be treated as start points. static std::vector ExtractStartPoints(const Graph &g) { std::vector result; diff --git a/paddle/fluid/operators/fake_quantize_op.cc b/paddle/fluid/operators/fake_quantize_op.cc index 8aff9111412030265491289bbdb03cf688d59ad8..d51eb054a96d27f6ce87ba4b4e717f49dcd8a588 100644 --- a/paddle/fluid/operators/fake_quantize_op.cc +++ b/paddle/fluid/operators/fake_quantize_op.cc @@ -21,26 +21,17 @@ limitations under the License. */ namespace paddle { namespace operators { -template -using EigenVectorArrayMap = - Eigen::TensorMap>; - -template -using ConstEigenVectorArrayMap = - Eigen::TensorMap>; +template +struct Compare { + public: + bool operator()(const T a, const T b) { return (std::abs(a) < std::abs(b)); } +}; template struct FindAbsMaxFunctor { void operator()(const platform::CPUDeviceContext& ctx, const T* in, const int num, T* out) { - Eigen::DSizes idim(num); - Eigen::DSizes odim(1); - Eigen::TensorMap> in_e(in, idim); - Eigen::TensorMap> out_e(out, odim); - - out_e = in_e.abs().maximum(); + *out = *(std::max_element(in + 0, in + num, Compare())); } }; diff --git a/paddle/fluid/operators/jit/gen/act.h b/paddle/fluid/operators/jit/gen/act.h index 68e66f9298c4eafabb55c20195d46fed800f4ec4..13d98577e21db9041686822f57cb4992e5ad71ec 100644 --- a/paddle/fluid/operators/jit/gen/act.h +++ b/paddle/fluid/operators/jit/gen/act.h @@ -63,7 +63,6 @@ class VActFunc : public JitCode { public: explicit VActFunc(size_t code_size, void* code_ptr) : JitCode(code_size, code_ptr) {} - virtual const char* name() const = 0; virtual void genCode() = 0; protected: @@ -269,7 +268,7 @@ class VActJitCode : public VActFunc { this->genCode(); } - const char* name() const override { + std::string name() const override { std::string base = "VActJitCode"; switch (type_) { case operand_type::RELU: @@ -293,7 +292,7 @@ class VActJitCode : public VActFunc { default: break; } - return base.c_str(); + return base; } void genCode() override; diff --git a/paddle/fluid/operators/jit/gen/blas.h b/paddle/fluid/operators/jit/gen/blas.h index 66a97c1be503b0fa983f9a7ec3b61c986774f16b..70312bbe5e97fcf465ce13ef71e5acc9bab4874e 100644 --- a/paddle/fluid/operators/jit/gen/blas.h +++ b/paddle/fluid/operators/jit/gen/blas.h @@ -41,7 +41,7 @@ class VXXJitCode : public JitCode { this->genCode(); } - virtual const char* name() const { + std::string name() const override { std::string base = "VXXJitCode"; if (scalar_index_ == 1) { base += "_Scalar"; @@ -62,7 +62,7 @@ class VXXJitCode : public JitCode { } base += (with_relu_ ? "_Relu" : ""); base += "_D" + std::to_string(num_); - return base.c_str(); + return base; } void genCode() override; diff --git a/paddle/fluid/operators/jit/gen/gru.h b/paddle/fluid/operators/jit/gen/gru.h index a4d7222a3459d175fc5eaf5cdf0e7a1a610f8b0c..d91f828e6aa7673265a460524dfcad119758aa77 100644 --- a/paddle/fluid/operators/jit/gen/gru.h +++ b/paddle/fluid/operators/jit/gen/gru.h @@ -49,7 +49,7 @@ class GRUJitCode : public VActFunc { this->genCode(); } - const char* name() const override { + std::string name() const override { std::string base = "GRUJitCode"; if (id_ == 0) { base += "_H1"; @@ -81,7 +81,7 @@ class GRUJitCode : public VActFunc { }; AddTypeStr(act_gate_); AddTypeStr(act_cand_); - return base.c_str(); + return base; } void genCode() override; diff --git a/paddle/fluid/operators/jit/gen/hopv.h b/paddle/fluid/operators/jit/gen/hopv.h index d3bc94b63d3f962cd655367a2afe1a08582b06fa..28d213e5e48749f84405454a2708d9289b9d290c 100644 --- a/paddle/fluid/operators/jit/gen/hopv.h +++ b/paddle/fluid/operators/jit/gen/hopv.h @@ -35,14 +35,14 @@ class HOPVJitCode : public JitCode { this->genCode(); } - virtual const char* name() const { + std::string name() const override { std::string base = "VXXJitCode"; if (type_ == operand_type::MAX) { base += "_MAX"; } else { base += "_SUM"; } - return base.c_str(); + return base; } void genCode() override; diff --git a/paddle/fluid/operators/jit/gen/jitcode.h b/paddle/fluid/operators/jit/gen/jitcode.h index c388109604bc57e8475e79a6c57eecb5bfebfb52..689df8b1cbb7a928c9f9175d28a8231b56e2e82e 100644 --- a/paddle/fluid/operators/jit/gen/jitcode.h +++ b/paddle/fluid/operators/jit/gen/jitcode.h @@ -14,6 +14,7 @@ #pragma once +#include #include #include "paddle/fluid/operators/jit/gen_base.h" #include "paddle/fluid/platform/cpu_info.h" @@ -59,7 +60,7 @@ typedef enum { } operand_type; #define DECLARE_JIT_CODE(codename) \ - const char* name() const override { return #codename; } + std::string name() const override { return #codename; } class JitCode : public GenBase, public Xbyak::CodeGenerator { public: @@ -68,7 +69,6 @@ class JitCode : public GenBase, public Xbyak::CodeGenerator { (code_size % 4096 != 0 ? (code_size / 4096 + 1) * 4096 : code_size), code_ptr) {} - virtual const char* name() const = 0; virtual void genCode() = 0; size_t getSize() const override { return CodeGenerator::getSize(); } diff --git a/paddle/fluid/operators/jit/gen/lstm.h b/paddle/fluid/operators/jit/gen/lstm.h index d4753bca23de91c74415d41c372cde1610712ef7..fa560b6230d7164be907f0172fb1d91860c05db2 100644 --- a/paddle/fluid/operators/jit/gen/lstm.h +++ b/paddle/fluid/operators/jit/gen/lstm.h @@ -53,7 +53,7 @@ class LSTMJitCode : public VActFunc { this->genCode(); } - const char* name() const override { + std::string name() const override { std::string base = "LSTMJitCode"; if (use_peephole_) { base += "_Peephole"; @@ -85,7 +85,7 @@ class LSTMJitCode : public VActFunc { AddTypeStr(act_gate_); AddTypeStr(act_cand_); AddTypeStr(act_cell_); - return base.c_str(); + return base; } void genCode() override; diff --git a/paddle/fluid/operators/jit/gen/matmul.h b/paddle/fluid/operators/jit/gen/matmul.h index 626baa8f738bf0395f3c7f1700610d0a9075879b..881cea581acc27a7aa7d395c041d40a4d3281947 100644 --- a/paddle/fluid/operators/jit/gen/matmul.h +++ b/paddle/fluid/operators/jit/gen/matmul.h @@ -36,11 +36,11 @@ class MatMulJitCode : public JitCode { this->genCode(); } - virtual const char* name() const { + std::string name() const override { std::string base = "MatMulJitCode"; base = base + "_M" + std::to_string(m_) + "_N" + std::to_string(n_) + "_K" + std::to_string(k_); - return base.c_str(); + return base; } void genCode() override; diff --git a/paddle/fluid/operators/jit/gen/seqpool.h b/paddle/fluid/operators/jit/gen/seqpool.h index fcbbb3c84c562e2ba57110134bf07bb218b41edb..4108ee2f46433f6dc846cbdd3a8f8f9b15cc0c67 100644 --- a/paddle/fluid/operators/jit/gen/seqpool.h +++ b/paddle/fluid/operators/jit/gen/seqpool.h @@ -38,7 +38,7 @@ class SeqPoolJitCode : public JitCode { this->genCode(); } - virtual const char* name() const { + std::string name() const override { std::string base = "SeqPoolJitCode"; if (type_ == SeqPoolType::kSum) { base += "_Sum"; @@ -48,7 +48,7 @@ class SeqPoolJitCode : public JitCode { base += "_Sqrt"; } base += ("_W" + std::to_string(w_)); - return base.c_str(); + return base; } void genCode() override; diff --git a/paddle/fluid/operators/jit/gen_base.h b/paddle/fluid/operators/jit/gen_base.h index d808a332472ae86240cb63356cb417123523366a..32a861b209c58649da8299a2718dba9c97e18903 100644 --- a/paddle/fluid/operators/jit/gen_base.h +++ b/paddle/fluid/operators/jit/gen_base.h @@ -16,6 +16,7 @@ #include #include // for unique_ptr +#include #include #include "paddle/fluid/operators/jit/kernel_base.h" @@ -28,7 +29,7 @@ namespace jit { class GenBase : public Kernel { public: virtual ~GenBase() = default; - virtual const char* name() const = 0; + virtual std::string name() const = 0; virtual size_t getSize() const = 0; virtual const unsigned char* getCodeInternal() = 0; template diff --git a/paddle/fluid/operators/row_conv_op.cc b/paddle/fluid/operators/row_conv_op.cc index 10b1b0c899d833d70fa6afe51998fe210899e3c3..d283bddbe9f974ac6835ee91d5a7851453687b80 100644 --- a/paddle/fluid/operators/row_conv_op.cc +++ b/paddle/fluid/operators/row_conv_op.cc @@ -109,23 +109,23 @@ from future subsequences in a computationally efficient manner to improve unidirectional recurrent neural networks. The row convolution operator is different from the 1D sequence convolution, and is computed as follows: -Given an input sequence $in$ of length $t$ and input dimension $d$, -and a filter ($W$) of size $context \times d$, +Given an input sequence $X$ of length $t$ and input dimension $D$, +and a filter ($W$) of size $context \times D$, the output sequence is convolved as: $$ -out_{i, :} = \\sum_{j=i}^{i + context} in_{j,:} \\cdot W_{i-j, :} +out_{i} = \\sum_{j=i}^{i + context - 1} X_{j} \\cdot W_{j-i} $$ In the above equation: * $Out_{i}$: The i-th row of output variable with shape [1, D]. -* $\\tau$: Future context size. +* $context$: Future context size. * $X_{j}$: The j-th row of input variable with shape [1, D]. -* $W_{i-j}$: The (i-j)-th row of parameters with shape [1, D]. +* $W_{j-i}$: The (j-i)-th row of parameters with shape [1, D]. More details about row_conv please refer to the design document diff --git a/python/paddle/fluid/contrib/decoder/beam_search_decoder.py b/python/paddle/fluid/contrib/decoder/beam_search_decoder.py index f2b7ac8375af25beed562b8279b6044f11c09d44..5854cadb58c76066ba4b48dc6b5dbca06fba8cba 100644 --- a/python/paddle/fluid/contrib/decoder/beam_search_decoder.py +++ b/python/paddle/fluid/contrib/decoder/beam_search_decoder.py @@ -22,7 +22,7 @@ This API is still under active development and may change drastically. from __future__ import print_function -import contextlib +from ...wrapped_decorator import signature_safe_contextmanager import numpy as np import six @@ -419,7 +419,7 @@ class TrainingDecoder(object): self._state_cell = state_cell self._state_cell._enter_decoder(self) - @contextlib.contextmanager + @signature_safe_contextmanager def block(self): """ Define the behavior of the decoder for each RNN time step. @@ -613,7 +613,7 @@ class BeamSearchDecoder(object): self._word_dim = word_dim self._input_var_dict = input_var_dict - @contextlib.contextmanager + @signature_safe_contextmanager def block(self): """ Define the behavior of the decoder for each RNN time step. diff --git a/python/paddle/fluid/contrib/inferencer.py b/python/paddle/fluid/contrib/inferencer.py index b8d5f4ffeadca0a7b103682f175d50dc46fa258a..4f37129234482189436ad71391f55394e2b8a277 100644 --- a/python/paddle/fluid/contrib/inferencer.py +++ b/python/paddle/fluid/contrib/inferencer.py @@ -14,7 +14,7 @@ from __future__ import print_function -import contextlib +from ..wrapped_decorator import signature_safe_contextmanager from .. import core @@ -105,7 +105,7 @@ class Inferencer(object): return results - @contextlib.contextmanager + @signature_safe_contextmanager def _prog_and_scope_guard(self): with framework.program_guard(main_program=self.inference_program): with executor.scope_guard(self.scope): diff --git a/python/paddle/fluid/contrib/int8_inference/README.md b/python/paddle/fluid/contrib/int8_inference/README.md index a9691dad4494f5eacf427b2806b2393baa57dc1e..460ae393f158ae320c93601365a68b8cfe2ba50e 100644 --- a/python/paddle/fluid/contrib/int8_inference/README.md +++ b/python/paddle/fluid/contrib/int8_inference/README.md @@ -63,10 +63,10 @@ Notes: ## 4. How to reproduce the results * Small dataset ```bash -python python/paddle/fluid/contrib/tests/test_calibration.py +FLAGS_use_mkldnn=true python python/paddle/fluid/contrib/tests/test_calibration.py ``` * Full dataset ```bash -DATASET=full python python/paddle/fluid/contrib/tests/test_calibration.py +FLAGS_use_mkldnn=true DATASET=full python python/paddle/fluid/contrib/tests/test_calibration.py ``` diff --git a/python/paddle/fluid/contrib/tests/CMakeLists.txt b/python/paddle/fluid/contrib/tests/CMakeLists.txt index 81aee1233d1db756686d1a934b94672dc5c770fe..a2c59416467e5dbe66f058666633807eb0e45047 100644 --- a/python/paddle/fluid/contrib/tests/CMakeLists.txt +++ b/python/paddle/fluid/contrib/tests/CMakeLists.txt @@ -6,5 +6,9 @@ if(APPLE OR WIN32 OR NOT WITH_MKL) endif() foreach(src ${TEST_OPS}) - py_test(${src} SRCS ${src}.py) + if(src MATCHES "test_calibration") + py_test(${src} SRCS ${src}.py ENVS FLAGS_use_mkldnn=true) + else() + py_test(${src} SRCS ${src}.py) + endif() endforeach() diff --git a/python/paddle/fluid/contrib/tests/test_calibration.py b/python/paddle/fluid/contrib/tests/test_calibration.py index 424ea245a0f2dff0d437ace386f2e4e0fa6b517d..b9f938bebed71dc9611df8d743a066858ea38bca 100644 --- a/python/paddle/fluid/contrib/tests/test_calibration.py +++ b/python/paddle/fluid/contrib/tests/test_calibration.py @@ -199,7 +199,6 @@ class TestCalibrationForResnet50(unittest.TestCase): def run_program(self, model_path, generate_int8=False, algo='direct'): image_shape = [3, 224, 224] - os.environ['FLAGS_use_mkldnn'] = 'True' fluid.memory_optimize(fluid.default_main_program()) @@ -241,9 +240,6 @@ class TestCalibrationForResnet50(unittest.TestCase): label = label.reshape([-1, 1]) running_program = calibrator.sampling_program.clone( ) if generate_int8 else infer_program.clone() - for op in running_program.current_block().ops: - if op.has_attr("use_mkldnn"): - op._set_attr("use_mkldnn", True) t1 = time.time() _, acc1, _ = exe.run( diff --git a/python/paddle/fluid/contrib/trainer.py b/python/paddle/fluid/contrib/trainer.py index 8569e486f91786b5562e84dcdccf6d91da0612cc..d27b808438d53a004db4e85345a68c35d00fff98 100644 --- a/python/paddle/fluid/contrib/trainer.py +++ b/python/paddle/fluid/contrib/trainer.py @@ -14,7 +14,7 @@ from __future__ import print_function -import contextlib +from ..wrapped_decorator import signature_safe_contextmanager import os import errno import shutil @@ -453,7 +453,7 @@ class Trainer(object): io.save_inference_model(param_path, feeded_var_names, target_vars, exe) - @contextlib.contextmanager + @signature_safe_contextmanager def _prog_and_scope_guard(self): with framework.program_guard( main_program=self.train_program, diff --git a/python/paddle/fluid/executor.py b/python/paddle/fluid/executor.py index d3ff14a17955990bff851e95bd61fbc370ea7aa5..8815911eaeb36067987c0490d7a4f3e909789499 100644 --- a/python/paddle/fluid/executor.py +++ b/python/paddle/fluid/executor.py @@ -17,7 +17,7 @@ from __future__ import print_function import os import multiprocessing import numpy as np -import contextlib +from .wrapped_decorator import signature_safe_contextmanager import six from .framework import Program, default_main_program, Variable from . import core @@ -49,7 +49,7 @@ def _switch_scope(scope): return ex -@contextlib.contextmanager +@signature_safe_contextmanager def scope_guard(scope): """ Change the global/default scope instance by Python `with` statement. All diff --git a/python/paddle/fluid/framework.py b/python/paddle/fluid/framework.py index c0b0ad8a202b82183de9ec1edd43cb10db10fb5c..832c97c7deb49b4e118e15989ab7a34da6ce57a0 100644 --- a/python/paddle/fluid/framework.py +++ b/python/paddle/fluid/framework.py @@ -16,7 +16,7 @@ from __future__ import print_function import collections from collections import defaultdict -import contextlib +from .wrapped_decorator import signature_safe_contextmanager import os import re import traceback @@ -111,7 +111,7 @@ class NameScope(object): _name_scope = NameScope() -@contextlib.contextmanager +@signature_safe_contextmanager def name_scope(prefix=None): """ Generate hierarchical name prefix for the operators. @@ -1775,7 +1775,7 @@ class Program(object): def set_op_role_var(self, var_name): self._op_role_var = [var_name] - @contextlib.contextmanager + @signature_safe_contextmanager def _optimized_guard(self, param_and_grads): """ A with guard to set :code:`Optimization` :code:`OpRole` and @@ -1805,7 +1805,7 @@ class Program(object): self._op_role_var = tmp_var self._current_role = tmp_role - @contextlib.contextmanager + @signature_safe_contextmanager def _lr_schedule_guard(self, is_with_opt=False): """ A with guard to set :code:`LRSched` :code:`OpRole` and @@ -2459,7 +2459,7 @@ def switch_startup_program(program): return prev_program -@contextlib.contextmanager +@signature_safe_contextmanager def program_guard(main_program, startup_program=None): """ Change the global main program and startup program with `with` statement. @@ -2524,7 +2524,7 @@ def _get_var(name, program=None): return program.global_block().var(name) -@contextlib.contextmanager +@signature_safe_contextmanager def _imperative_guard(tracer): global _imperative_tracer_ tmp_trace = _imperative_tracer_ @@ -2535,7 +2535,7 @@ def _imperative_guard(tracer): _imperative_tracer_ = tmp_trace -@contextlib.contextmanager +@signature_safe_contextmanager def _imperative_place_guard(place): global _imperative_current_expected_place_ tmp_place = _imperative_current_expected_place_ diff --git a/python/paddle/fluid/imperative/base.py b/python/paddle/fluid/imperative/base.py index ff3984b11f42cf9e6ff49c8654c600c065effe1d..d4525233cc681720404770ef1d0c5d3006607a2e 100644 --- a/python/paddle/fluid/imperative/base.py +++ b/python/paddle/fluid/imperative/base.py @@ -11,7 +11,7 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. -import contextlib +from ..wrapped_decorator import signature_safe_contextmanager import numpy as np from paddle.fluid import core @@ -24,7 +24,7 @@ def enabled(): return framework._in_imperative_mode() -@contextlib.contextmanager +@signature_safe_contextmanager def guard(place=None): train = framework.Program() startup = framework.Program() diff --git a/python/paddle/fluid/initializer.py b/python/paddle/fluid/initializer.py index 5be21ff7f7270f6ce950c069f61418c922bcedc5..e8341be28683a25971a53a37c70533a16add1593 100644 --- a/python/paddle/fluid/initializer.py +++ b/python/paddle/fluid/initializer.py @@ -16,7 +16,7 @@ from __future__ import print_function from . import framework import numpy as np -import contextlib +from .wrapped_decorator import signature_safe_contextmanager from .core import VarDesc from . import unique_name @@ -49,7 +49,7 @@ def force_init_on_cpu(): return _force_init_on_cpu_ -@contextlib.contextmanager +@signature_safe_contextmanager def init_on_cpu(): """ Force the variable to be inited on CPU. diff --git a/python/paddle/fluid/layers/control_flow.py b/python/paddle/fluid/layers/control_flow.py index a7494aaceab42332cb4362ab1df43d9e0b139f4f..3a6753b01f152f61b78a9f04f4fe32136c051a19 100644 --- a/python/paddle/fluid/layers/control_flow.py +++ b/python/paddle/fluid/layers/control_flow.py @@ -13,7 +13,7 @@ # limitations under the License. from __future__ import print_function -import contextlib +from ..wrapped_decorator import signature_safe_contextmanager from .layer_function_generator import autodoc, templatedoc from .tensor import assign, fill_constant @@ -1532,7 +1532,7 @@ class DynamicRNN(object): outputs={'Out': [x_reordered]}) return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table) - @contextlib.contextmanager + @signature_safe_contextmanager def block(self): """ The block for user to define operators in RNN. See the class docstring diff --git a/python/paddle/fluid/layers/io.py b/python/paddle/fluid/layers/io.py index 1762bd3e343e8af6768dd23f8fbc58cd0182d3c9..b88be66906e806aeee55c1af6235a6fef9da7030 100644 --- a/python/paddle/fluid/layers/io.py +++ b/python/paddle/fluid/layers/io.py @@ -13,7 +13,7 @@ # limitations under the License. from __future__ import print_function -import contextlib +from ..wrapped_decorator import signature_safe_contextmanager import multiprocessing import os import six @@ -1116,7 +1116,7 @@ class Preprocessor(object): def _is_completed(self): return self.sub_block and self.source_var_names and self.sink_var_names - @contextlib.contextmanager + @signature_safe_contextmanager def block(self): self.status = Preprocessor.IN_SUB_BLOCK self.sub_block = self.main_prog._create_block() diff --git a/python/paddle/fluid/optimizer.py b/python/paddle/fluid/optimizer.py index e0e781a322b3eb68e3f54a66252a8d8b11a9a56f..fbd04f1eb461268ae98ca74c0bc46cc2717733cb 100644 --- a/python/paddle/fluid/optimizer.py +++ b/python/paddle/fluid/optimizer.py @@ -15,7 +15,7 @@ from __future__ import print_function from collections import defaultdict -from contextlib import contextmanager +from .wrapped_decorator import signature_safe_contextmanager from paddle.fluid.framework import Program, Variable, name_scope, default_main_program from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table @@ -1610,7 +1610,7 @@ class ModelAverage(Optimizer): }, stop_gradient=True) - @contextmanager + @signature_safe_contextmanager def apply(self, executor, need_restore=True): """Apply average values to parameters of current model. """ diff --git a/python/paddle/fluid/profiler.py b/python/paddle/fluid/profiler.py index e05885f5f5bfc169828c1c6e723dffff098c3c2e..d5670dbc823c5d317f27f768c596ed2e009e71b6 100644 --- a/python/paddle/fluid/profiler.py +++ b/python/paddle/fluid/profiler.py @@ -15,7 +15,7 @@ from __future__ import print_function from . import core -from contextlib import contextmanager +from .wrapped_decorator import signature_safe_contextmanager import os import six @@ -35,7 +35,7 @@ NVPROF_CONFIG = [ ] -@contextmanager +@signature_safe_contextmanager def cuda_profiler(output_file, output_mode=None, config=None): """The CUDA profiler. This fuctions is used to profile CUDA program by CUDA runtime application @@ -217,7 +217,7 @@ def stop_profiler(sorted_key=None, profile_path='/tmp/profile'): core.disable_profiler(key_map[sorted_key], profile_path) -@contextmanager +@signature_safe_contextmanager def profiler(state, sorted_key=None, profile_path='/tmp/profile'): """The profiler interface. Different from cuda_profiler, this profiler can be used to profile both CPU diff --git a/python/paddle/fluid/recordio_writer.py b/python/paddle/fluid/recordio_writer.py index 076a942cdde5623faa570bf98f889e8145b60f8b..aa581f23a191639fdc026e7781897d5d996823a9 100644 --- a/python/paddle/fluid/recordio_writer.py +++ b/python/paddle/fluid/recordio_writer.py @@ -15,14 +15,14 @@ from __future__ import print_function import os -import contextlib +from .wrapped_decorator import signature_safe_contextmanager from . import core __all__ = [ 'convert_reader_to_recordio_file', 'convert_reader_to_recordio_files' ] -@contextlib.contextmanager +@signature_safe_contextmanager def create_recordio_writer(filename, compressor=core.RecordIOWriter.Compressor.Snappy, max_num_records=1000): diff --git a/python/paddle/fluid/transpiler/memory_optimization_transpiler.py b/python/paddle/fluid/transpiler/memory_optimization_transpiler.py index 52c1aea288fa2bb7478ad14186367900c05f64e7..31d8e44cececd39cf88c6149fd89d1d1d0e82c1d 100755 --- a/python/paddle/fluid/transpiler/memory_optimization_transpiler.py +++ b/python/paddle/fluid/transpiler/memory_optimization_transpiler.py @@ -355,6 +355,10 @@ class ControlFlowGraph(object): is_forward).dtype() cache_dtype = self._find_var(block_desc, cache_var, is_forward).dtype() + if x_dtype != cache_dtype: + if PRINT_LOG: + print("x_dtype and cache_dtype are different!") + continue if not compare_shape(x_shape, cache_shape, level): continue diff --git a/python/paddle/fluid/unique_name.py b/python/paddle/fluid/unique_name.py index b9957a699e597898bee75ce0e7283f7224293f0c..324257c13ff9828b341ca9affe8186387688c0bf 100644 --- a/python/paddle/fluid/unique_name.py +++ b/python/paddle/fluid/unique_name.py @@ -15,7 +15,7 @@ from __future__ import print_function import collections -import contextlib +from .wrapped_decorator import signature_safe_contextmanager import six import sys @@ -68,7 +68,7 @@ def switch(new_generator=None): return old -@contextlib.contextmanager +@signature_safe_contextmanager def guard(new_generator=None): if isinstance(new_generator, six.string_types): new_generator = UniqueNameGenerator(new_generator) diff --git a/python/paddle/fluid/wrapped_decorator.py b/python/paddle/fluid/wrapped_decorator.py new file mode 100644 index 0000000000000000000000000000000000000000..7e7dbff65611e947d1a11a0c33c6ecc27e6df636 --- /dev/null +++ b/python/paddle/fluid/wrapped_decorator.py @@ -0,0 +1,30 @@ +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import decorator +import contextlib + +__all__ = ['wrap_decorator', 'signature_safe_contextmanager'] + + +def wrap_decorator(decorator_func): + @decorator.decorator + def __impl__(func, *args, **kwargs): + wrapped_func = decorator_func(func) + return wrapped_func(*args, **kwargs) + + return __impl__ + + +signature_safe_contextmanager = wrap_decorator(contextlib.contextmanager) diff --git a/python/requirements.txt b/python/requirements.txt index 03d5e33e88cd5f1138ca8f6a6e885d6acfbc260e..5a70f1aa3ffc0ab6d4d148eb5bc26981784f2d32 100644 --- a/python/requirements.txt +++ b/python/requirements.txt @@ -11,3 +11,4 @@ graphviz six funcsigs pyyaml +decorator