Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
7ec8459c
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
7ec8459c
编写于
3月 17, 2021
作者:
O
OleNet
提交者:
GitHub
3月 17, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[NPU] Support softmax npu kernel (#31564)
上级
7875bcb8
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
405 addition
and
0 deletion
+405
-0
paddle/fluid/operators/CMakeLists.txt
paddle/fluid/operators/CMakeLists.txt
+1
-0
paddle/fluid/operators/softmax_op.cc
paddle/fluid/operators/softmax_op.cc
+2
-0
paddle/fluid/operators/softmax_op_npu.cc
paddle/fluid/operators/softmax_op_npu.cc
+102
-0
paddle/fluid/operators/softmax_op_npu_test.cc
paddle/fluid/operators/softmax_op_npu_test.cc
+175
-0
python/paddle/fluid/tests/unittests/npu/test_softmax_op_npu.py
...n/paddle/fluid/tests/unittests/npu/test_softmax_op_npu.py
+125
-0
未找到文件。
paddle/fluid/operators/CMakeLists.txt
浏览文件 @
7ec8459c
...
...
@@ -187,4 +187,5 @@ endif()
if
(
WITH_ASCEND_CL
)
cc_test
(
gelu_op_npu_test SRCS gelu_op_npu_test.cc DEPS op_registry gelu_op scope device_context enforce executor
)
cc_test
(
top_k_op_npu_test SRCS top_k_op_npu_test.cc DEPS op_registry top_k_op scope device_context enforce executor
)
endif
()
paddle/fluid/operators/softmax_op.cc
浏览文件 @
7ec8459c
...
...
@@ -79,11 +79,13 @@ class SoftmaxOp : public framework::OperatorWithKernel {
#endif
auto
input_data_type
=
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"X"
);
#ifndef PADDLE_WITH_ASCEND_CL
if
(
input_data_type
==
framework
::
proto
::
VarType
::
FP16
)
{
PADDLE_ENFORCE_EQ
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()),
true
,
platform
::
errors
::
InvalidArgument
(
"float16 can only be used on GPU place"
));
}
#endif
return
framework
::
OpKernelType
(
input_data_type
,
ctx
.
GetPlace
(),
layout_
,
library_
);
...
...
paddle/fluid/operators/softmax_op_npu.cc
0 → 100644
浏览文件 @
7ec8459c
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include <string>
#include "paddle/fluid/operators/npu_op_runner.h"
#include "paddle/fluid/operators/softmax_op.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
DeviceContext
,
typename
T
>
class
SoftmaxNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
);
auto
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
std
::
vector
<
int
>
axes
;
axes
.
push_back
(
axis
);
framework
::
NPUAttributeMap
attr_input
=
{{
"axes"
,
axes
}};
auto
*
out
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
runner
=
NpuOpRunner
(
"SoftmaxV2"
,
{
*
in
},
{
*
out
},
attr_input
);
auto
stream
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
runner
.
Run
(
stream
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
SoftmaxGradNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
out
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Out"
);
auto
*
dOut
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dX
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
dims
=
dX
->
dims
();
const
int
rank
=
dims
.
size
();
const
int
axis
=
CanonicalAxis
(
ctx
.
Attr
<
int
>
(
"axis"
),
rank
);
int64_t
first_dim
=
1
;
int64_t
sec_dim
=
1
;
for
(
int
i
=
0
;
i
<
axis
;
i
++
)
{
first_dim
*=
dims
[
i
];
}
for
(
int
i
=
axis
;
i
<
rank
;
i
++
)
{
sec_dim
*=
dims
[
i
];
}
Tensor
tmp_out
;
tmp_out
.
ShareDataWith
(
*
out
).
Resize
({
first_dim
,
sec_dim
});
Tensor
tmp_dOut
;
tmp_dOut
.
ShareDataWith
(
*
dOut
).
Resize
({
first_dim
,
sec_dim
});
dX
->
Resize
(
framework
::
make_ddim
({
first_dim
,
sec_dim
}));
dX
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
framework
::
NPUAttributeMap
attr_input
=
{};
auto
runner
=
NpuOpRunner
(
std
::
string
(
"SoftmaxGrad"
),
{
tmp_out
,
tmp_dOut
},
{
*
dX
},
attr_input
);
auto
stream
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
runner
.
Run
(
stream
);
dX
->
Resize
(
dims
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_NPU_KERNEL
(
softmax
,
ops
::
SoftmaxNPUKernel
<
plat
::
NPUDeviceContext
,
float
>
,
ops
::
SoftmaxNPUKernel
<
plat
::
NPUDeviceContext
,
double
>
,
ops
::
SoftmaxNPUKernel
<
plat
::
NPUDeviceContext
,
plat
::
float16
>
);
REGISTER_OP_NPU_KERNEL
(
softmax_grad
,
ops
::
SoftmaxGradNPUKernel
<
plat
::
NPUDeviceContext
,
float
>
,
ops
::
SoftmaxGradNPUKernel
<
plat
::
NPUDeviceContext
,
double
>
,
ops
::
SoftmaxGradNPUKernel
<
plat
::
NPUDeviceContext
,
paddle
::
platform
::
float16
>
);
paddle/fluid/operators/softmax_op_npu_test.cc
0 → 100644
浏览文件 @
7ec8459c
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifndef _WIN32
#include <unistd.h>
#endif
#include <string>
#include <thread> // NOLINT
#include <vector>
#include "gtest/gtest.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/operators/dropout_op.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/string/printf.h"
#include "paddle/fluid/framework/tensor_util.h"
namespace
f
=
paddle
::
framework
;
namespace
p
=
paddle
::
platform
;
namespace
m
=
paddle
::
operators
::
math
;
USE_OP
(
softmax
);
USE_OP_DEVICE_KERNEL
(
softmax
,
NPU
);
template
<
typename
T
>
void
Compare
(
f
::
Scope
*
scope
,
const
p
::
DeviceContext
&
ctx
)
{
// init
auto
x
=
scope
->
Var
(
"X"
);
auto
tensor_x
=
x
->
GetMutable
<
f
::
LoDTensor
>
();
std
::
vector
<
T
>
init
;
for
(
int
i
=
3
;
i
<
9
;
++
i
)
{
init
.
push_back
(
static_cast
<
T
>
(
i
));
}
TensorFromVector
(
init
,
ctx
,
tensor_x
);
tensor_x
->
Resize
({
2
,
3
});
ctx
.
Wait
();
auto
place
=
ctx
.
GetPlace
();
auto
out
=
scope
->
Var
(
"Out"
);
auto
tensor_out
=
out
->
GetMutable
<
f
::
LoDTensor
>
();
tensor_out
->
Resize
({
2
,
3
});
tensor_out
->
mutable_data
<
T
>
(
place
);
// allocate
// run
int
axis
=
1
;
f
::
AttributeMap
attrs
=
{
{
"axis"
,
axis
},
{
"use_cudnn"
,
false
},
{
"use_mkldnn"
,
false
},
{
"mkldnn_data_type"
,
std
::
string
(
"float32"
)},
{
"is_test"
,
false
},
};
auto
op
=
f
::
OpRegistry
::
CreateOp
(
"softmax"
,
{{
"X"
,
{
"X"
}}},
{{
"Out"
,
{
"Out"
}}},
attrs
);
op
->
Run
(
*
scope
,
place
);
ctx
.
Wait
();
std
::
vector
<
T
>
out_vec
;
TensorToVector
(
*
tensor_out
,
ctx
,
&
out_vec
);
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
out_vec
.
size
());
++
i
)
{
VLOG
(
3
)
<<
"out_vec["
<<
i
<<
"] : "
<<
out_vec
[
i
];
}
ctx
.
Wait
();
EXPECT_EQ
((
uint32_t
)
out_vec
.
size
(),
(
uint32_t
)(
6
));
}
template
<
typename
T
>
void
CompareGrad
(
f
::
Scope
*
scope
,
const
p
::
DeviceContext
&
ctx
)
{
// init
auto
out
=
scope
->
Var
(
"Out"
);
auto
tensor_out
=
out
->
GetMutable
<
f
::
LoDTensor
>
();
std
::
vector
<
T
>
out_init
;
out_init
.
push_back
(
static_cast
<
T
>
(
0.6670
));
out_init
.
push_back
(
static_cast
<
T
>
(
0.5888
));
out_init
.
push_back
(
static_cast
<
T
>
(
0.4543
));
out_init
.
push_back
(
static_cast
<
T
>
(
0.3330
));
out_init
.
push_back
(
static_cast
<
T
>
(
0.4112
));
out_init
.
push_back
(
static_cast
<
T
>
(
0.5457
));
TensorFromVector
(
out_init
,
ctx
,
tensor_out
);
tensor_out
->
Resize
({
2
,
3
});
ctx
.
Wait
();
auto
dout
=
scope
->
Var
(
"DOut"
);
auto
tensor_dout
=
dout
->
GetMutable
<
f
::
LoDTensor
>
();
std
::
vector
<
T
>
dout_init
;
for
(
int
i
=
0
;
i
<
6
;
++
i
)
{
dout_init
.
push_back
(
static_cast
<
T
>
(
1.0
));
}
TensorFromVector
(
dout_init
,
ctx
,
tensor_dout
);
tensor_dout
->
Resize
({
2
,
3
});
ctx
.
Wait
();
auto
dx
=
scope
->
Var
(
"DX"
);
auto
tensor_dx
=
dx
->
GetMutable
<
f
::
LoDTensor
>
();
ctx
.
Wait
();
// run
f
::
AttributeMap
attrs
;
attrs
=
{
{
"name"
,
std
::
string
(
"softmax_grad"
)},
{
"axis"
,
static_cast
<
int
>
(
0
)},
{
"use_cudnn"
,
false
},
{
"use_mkldnn"
,
false
},
{
"mkldnn_data_type"
,
std
::
string
(
"float32"
)},
{
"is_test"
,
false
},
{
"data_format"
,
std
::
string
(
"AnyLayout"
)},
};
auto
op
=
f
::
OpRegistry
::
CreateOp
(
"softmax_grad"
,
{{
"Out"
,
{
"Out"
}},
{
"Out@GRAD"
,
{
"DOut"
}}},
{{
"X@GRAD"
,
{
"DX"
}}},
attrs
);
auto
place
=
ctx
.
GetPlace
();
op
->
Run
(
*
scope
,
place
);
ctx
.
Wait
();
EXPECT_EQ
((
uint32_t
)
tensor_dx
->
dims
()[
0
],
(
uint32_t
)(
2
));
EXPECT_EQ
((
uint32_t
)
tensor_dx
->
dims
()[
1
],
(
uint32_t
)(
3
));
ctx
.
Wait
();
std
::
vector
<
float
>
out_vec
;
TensorToVector
(
*
tensor_dx
,
ctx
,
&
out_vec
);
ctx
.
Wait
();
EXPECT_EQ
((
uint32_t
)
out_vec
.
size
(),
(
uint32_t
)(
6
));
EXPECT_NEAR
((
float
)
out_vec
[
0
],
(
float
)(
-
0.4737
),
0.1
);
EXPECT_NEAR
((
float
)
out_vec
[
1
],
(
float
)(
-
0.4181
),
0.1
);
EXPECT_NEAR
((
float
)
out_vec
[
2
],
(
float
)(
-
0.3226
),
0.1
);
EXPECT_NEAR
((
float
)
out_vec
[
3
],
(
float
)(
-
0.0965
),
0.1
);
EXPECT_NEAR
((
float
)
out_vec
[
4
],
(
float
)(
-
0.1192
),
0.1
);
EXPECT_NEAR
((
float
)
out_vec
[
5
],
(
float
)(
-
0.1582
),
0.1
);
}
TEST
(
softmax
,
NPU_fp32
)
{
f
::
Scope
scope
;
p
::
NPUDeviceContext
ctx
(
p
::
NPUPlace
(
0
));
Compare
<
float
>
(
&
scope
,
ctx
);
}
TEST
(
softmax_grad
,
NPU_fp32
)
{
f
::
Scope
scope
;
p
::
NPUDeviceContext
ctx
(
p
::
NPUPlace
(
0
));
CompareGrad
<
float
>
(
&
scope
,
ctx
);
}
python/paddle/fluid/tests/unittests/npu/test_softmax_op_npu.py
0 → 100644
浏览文件 @
7ec8459c
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
unittest
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid
import
core
paddle
.
enable_static
()
SEED
=
2021
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestSoftmax
(
OpTest
):
def
setUp
(
self
):
self
.
set_npu
()
self
.
place
=
paddle
.
NPUPlace
(
0
)
self
.
op_type
=
"softmax"
self
.
init_dtype
()
x
=
np
.
random
.
random
([
3
,
3
]).
astype
(
self
.
dtype
)
np_out
=
np
.
exp
(
x
)
/
np
.
sum
(
np
.
exp
(
x
),
axis
=
1
,
keepdims
=
True
)
self
.
inputs
=
{
'X'
:
x
}
self
.
attrs
=
{}
self
.
outputs
=
{
'Out'
:
np_out
}
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
self
.
__class__
.
no_need_check_grad
=
True
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
check_dygraph
=
False
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestSoftmaxNet
(
unittest
.
TestCase
):
def
_test
(
self
,
run_npu
=
True
):
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
SEED
startup_prog
.
random_seed
=
SEED
np
.
random
.
seed
(
SEED
)
a_np
=
np
.
random
.
random
(
size
=
(
4
,
32
)).
astype
(
'float32'
)
b_np
=
np
.
random
.
random
(
size
=
(
4
,
32
)).
astype
(
'float32'
)
label_np
=
np
.
random
.
randint
(
2
,
size
=
(
4
,
1
)).
astype
(
'int64'
)
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
a
=
paddle
.
static
.
data
(
name
=
"a"
,
shape
=
[
4
,
32
],
dtype
=
'float32'
)
b
=
paddle
.
static
.
data
(
name
=
"b"
,
shape
=
[
4
,
32
],
dtype
=
'float32'
)
label
=
paddle
.
static
.
data
(
name
=
"label"
,
shape
=
[
4
,
1
],
dtype
=
'int64'
)
c
=
paddle
.
multiply
(
a
,
b
)
d
=
paddle
.
sqrt
(
c
)
# 4 x 128
fc_1
=
fluid
.
layers
.
fc
(
input
=
d
,
size
=
128
)
# 4 x 2
prediction
=
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
2
)
# 4 x 2
prob
=
fluid
.
layers
.
softmax
(
prediction
,
axis
=
1
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prob
,
label
=
label
)
loss
=
fluid
.
layers
.
mean
(
cost
)
sgd
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
sgd
.
minimize
(
loss
)
if
run_npu
:
place
=
paddle
.
NPUPlace
(
0
)
else
:
place
=
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
print
(
"Start run on {}"
.
format
(
place
))
for
epoch
in
range
(
100
):
pred_res
,
loss_res
=
exe
.
run
(
main_prog
,
feed
=
{
"a"
:
a_np
,
"b"
:
b_np
,
"label"
:
label_np
},
fetch_list
=
[
prediction
,
loss
])
if
epoch
%
10
==
0
:
print
(
"Epoch {} | Prediction[0]: {}, Loss: {}"
.
format
(
epoch
,
pred_res
[
0
],
loss_res
))
return
pred_res
,
loss_res
def
test_npu
(
self
):
cpu_pred
,
cpu_loss
=
self
.
_test
(
False
)
npu_pred
,
npu_loss
=
self
.
_test
(
True
)
self
.
assertTrue
(
np
.
allclose
(
npu_pred
,
cpu_pred
,
rtol
=
1e-2
))
self
.
assertTrue
(
np
.
allclose
(
npu_loss
,
cpu_loss
,
rtol
=
1e-2
))
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录