diff --git a/develop/doc/operators.json b/develop/doc/operators.json index 2664776d4d433113480579ef61f31651a072536a..b615714548fa6f6bbfe20b39342199d59d8c7705 100644 --- a/develop/doc/operators.json +++ b/develop/doc/operators.json @@ -1140,6 +1140,24 @@ "intermediate" : 0 } ], "attrs" : [ ] +},{ + "type" : "log", + "comment" : "\nLog Activation Operator.\n\n$out = \\ln(x)$\n\nNatural logarithm of x.\n\n", + "inputs" : [ + { + "name" : "X", + "comment" : "Input of Log operator", + "duplicable" : 0, + "intermediate" : 0 + } ], + "outputs" : [ + { + "name" : "Out", + "comment" : "Output of Log operator", + "duplicable" : 0, + "intermediate" : 0 + } ], + "attrs" : [ ] },{ "type" : "softmax", "comment" : "\nSoftmax Operator.\n\nThe input of the softmax operator is a 2-D tensor with shape N x K (N is the\nbatch_size, K is the dimension of input feature). The output tensor has the\nsame shape as the input tensor.\n\nFor each row of the input tensor, the softmax operator squashes the\nK-dimensional vector of arbitrary real values to a K-dimensional vector of real\nvalues in the range [0, 1] that add up to 1.\nIt computes the exponential of the given dimension and the sum of exponential\nvalues of all the other dimensions in the K-dimensional vector input.\nThen the ratio of the exponential of the given dimension and the sum of\nexponential values of all the other dimensions is the output of the softmax\noperator.\n\nFor each row $i$ and each column $j$ in Input(X), we have:\n $$Out[i, j] = \\frac{\\exp(X[i, j])}{\\sum_j(exp(X[i, j])}$$\n\n", @@ -2516,6 +2534,40 @@ "comment" : "(bool, default false) If true, output a scalar reduced along all dimensions.", "generated" : 0 } ] +},{ + "type" : "im2sequence", + "comment" : "\nThis op uses kernels to scan images and converts these images to sequences.\nAfter expanding, The number of time steps are output_height * output_width\nand the dimension of each time step is kernel_height * kernel_width * channels,\nin which:\n\noutput_height =\n 1 + (padding_height + padding_down + img_height - kernel_height + stride_height - 1) /\n stride_height;\noutput_width =\n 1 + (padding_left + padding+right + img_width - kernel_width + stride_width - 1) /\n stride_width;\n\nThis op can be used after convolution neural network, and before recurrent neural network.\n\nGiven:\n\nx = [[[[ 6. 2. 1.]\n [ 8. 3. 5.]\n [ 0. 2. 6.]]\n\n [[ 2. 4. 4.]\n [ 6. 3. 0.]\n [ 6. 4. 7.]]]\n\n [[[ 6. 7. 1.]\n [ 5. 7. 9.]\n [ 2. 4. 8.]]\n\n [[ 1. 2. 1.]\n [ 1. 3. 5.]\n [ 9. 0. 8.]]]]\nx.dims = {2, 2, 3, 3}\n\nAnd:\n\nkernels = [2, 2]\nstrides = [1, 1]\npaddings = [0, 0, 0, 0]\n\nThen:\n\noutput.data = [[ 6. 2. 8. 3. 2. 4. 6. 3.]\n [ 2. 1. 3. 5. 4. 4. 3. 0.]\n [ 8. 3. 0. 2. 6. 3. 6. 4.]\n [ 3. 5. 2. 6. 3. 0. 4. 7.]\n [ 6. 7. 5. 7. 1. 2. 1. 3.]\n [ 7. 1. 7. 9. 2. 1. 3. 5.]\n [ 5. 7. 2. 4. 1. 3. 9. 0.]\n [ 7. 9. 4. 8. 3. 5. 0. 8.]]\noutput.dims = {8, 9}\noutput.lod = [[0, 4, 8]]\n\n", + "inputs" : [ + { + "name" : "X", + "comment" : "(Tensor) The input tensor has NCHW format.N: batch sizeC: channelsH: heightW: width", + "duplicable" : 0, + "intermediate" : 0 + } ], + "outputs" : [ + { + "name" : "Out", + "comment" : "(LodTensor) The output data of im2sequence op,", + "duplicable" : 0, + "intermediate" : 0 + } ], + "attrs" : [ + { + "name" : "kernels", + "type" : "int array", + "comment" : "(vector), the kernels(kernel_height, kernel_width)", + "generated" : 0 + }, { + "name" : "strides", + "type" : "int array", + "comment" : "(vector default:{1, 1}), the strides(h_stride, w_stride)", + "generated" : 0 + }, { + "name" : "paddings", + "type" : "int array", + "comment" : "(vector default:{0, 0, 0, 0}), the paddings(up_pad, left_pad, down_pad, right_pad)", + "generated" : 0 + } ] },{ "type" : "stanh", "comment" : "\nSTanh Activation Operator.\n\n$$out = b * \\frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$\n\n", @@ -5318,24 +5370,6 @@ "comment" : "(float, default 1.0e-6) Constant for numerical stability", "generated" : 0 } ] -},{ - "type" : "log", - "comment" : "\nLog Activation Operator.\n\n$out = \\ln(x)$\n\nNatural logarithm of x.\n\n", - "inputs" : [ - { - "name" : "X", - "comment" : "Input of Log operator", - "duplicable" : 0, - "intermediate" : 0 - } ], - "outputs" : [ - { - "name" : "Out", - "comment" : "Output of Log operator", - "duplicable" : 0, - "intermediate" : 0 - } ], - "attrs" : [ ] },{ "type" : "nce", "comment" : "\nCompute and return the noise-contrastive estimation training loss.\nSee [Noise-contrastive estimation: A new estimation principle for unnormalized statistical models](http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf).\nBy default this operator uses a uniform distribution for sampling.\n",