提交 7e145b7c 编写于 作者: Q Qiao Longfei

optimize test_async_ssa_graph_executor_mnist

上级 9da96aba
......@@ -15,13 +15,13 @@
from __future__ import print_function
import os
from PIL import Image
import unittest
import numpy
import paddle
import paddle.fluid as fluid
BATCH_SIZE = 64
PASS_NUM = 5
def loss_net(hidden, label):
......@@ -51,11 +51,9 @@ def convolutional_neural_network(img, label):
return loss_net(conv_pool_2, label)
def train(use_cuda,
save_dirname=None,
model_filename=None,
params_filename=None):
def train(use_cuda, thread_num, cpu_num):
if use_cuda and not fluid.core.is_compiled_with_cuda():
print("paddle is not compiled with cuda, exit!")
return
img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
......@@ -84,8 +82,6 @@ def train(use_cuda,
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.mnist.train(), buf_size=500),
......@@ -94,24 +90,22 @@ def train(use_cuda,
paddle.dataset.mnist.test(), batch_size=BATCH_SIZE)
feeder = fluid.DataFeeder(feed_list=[img, label], place=place)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
main_program = fluid.default_main_program()
exec_strategy = fluid.ExecutionStrategy()
build_strategy = fluid.BuildStrategy()
cpu_num = int(os.environ.get('CPU_NUM'))
thread_num = int(os.getenv("NUM_THREADS"))
os.environ['CPU_NUM'] = str(cpu_num)
print("cpu_num:" + str(cpu_num))
print("thread_num:" + str(thread_num))
build_strategy.async_mode = True
build_strategy = fluid.BuildStrategy()
build_strategy.async_mode = True # enable async mode
exec_strategy = fluid.ExecutionStrategy()
exec_strategy.num_threads = thread_num
exec_strategy.num_iteration_per_drop_scope = 1
exec_strategy.num_iteration_per_run = 10
exec_strategy.num_iteration_per_run = 2
main_program = fluid.default_main_program()
pe = fluid.ParallelExecutor(
use_cuda=False,
loss_name=avg_loss.name,
......@@ -119,16 +113,12 @@ def train(use_cuda,
build_strategy=build_strategy,
exec_strategy=exec_strategy)
lists = []
step = 0
for epoch_id in range(PASS_NUM):
for step_id, data in enumerate(train_reader()):
loss_val, acc_val = pe.run(feed=feeder.feed(data),
fetch_list=[avg_loss.name, acc.name])
loss_val = pe.run(feed=feeder.feed(data), fetch_list=[avg_loss.name])
loss_val = numpy.mean(loss_val)
acc_val = numpy.mean(acc_val)
if step % 100 == 0:
print("Pass %d, Batch %d, Cost %f" % (epoch_id, step, loss_val))
print("Batch %d, Cost %f" % (step, loss_val))
step += 1
# test for epoch
avg_loss_val, acc_val = train_test(
......@@ -136,79 +126,13 @@ def train(use_cuda,
train_test_reader=test_reader,
train_test_feed=feeder)
print("Test with Epoch %d, avg_cost: %s, acc: %s" %
(epoch_id, avg_loss_val, acc_val))
lists.append((epoch_id, avg_loss_val, acc_val))
if save_dirname is not None:
fluid.io.save_inference_model(
save_dirname, ["img"], [prediction],
exe,
model_filename=model_filename,
params_filename=params_filename)
# find the best pass
best = sorted(lists, key=lambda list: float(list[1]))[0]
print('Best pass is %s, testing Avgcost is %s' % (best[0], best[1]))
print('The classification accuracy is %.2f%%' % (float(best[2]) * 100))
def infer(use_cuda,
save_dirname=None,
model_filename=None,
params_filename=None):
if save_dirname is None:
return
print("Test: avg_cost: %s, acc: %s" % (avg_loss_val, acc_val))
class TestAsyncSSAGraphExecutor(unittest.TestCase):
def test_check_async_ssa_exe_train(self):
train(use_cuda=False, thread_num=2, cpu_num=2)
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
def load_image(file):
im = Image.open(file).convert('L')
im = im.resize((28, 28), Image.ANTIALIAS)
im = numpy.array(im).reshape(1, 1, 28, 28).astype(numpy.float32)
im = im / 255.0 * 2.0 - 1.0
return im
cur_dir = os.path.dirname(os.path.realpath(__file__))
tensor_img = load_image(cur_dir + '/image/infer_3.png')
inference_scope = fluid.core.Scope()
with fluid.scope_guard(inference_scope):
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[inference_program, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(
save_dirname, exe, model_filename, params_filename)
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
results = exe.run(inference_program,
feed={feed_target_names[0]: tensor_img},
fetch_list=fetch_targets)
lab = numpy.argsort(results)
print("Inference result of image/infer_3.png is: %d" % lab[0][0][-1])
def main(use_cuda):
model_filename = None
params_filename = None
save_dirname = "recognize_digits" + ".inference.model"
# call train() with is_local argument to run distributed train
train(
use_cuda=use_cuda,
save_dirname=save_dirname,
model_filename=model_filename,
params_filename=params_filename)
infer(
use_cuda=use_cuda,
save_dirname=save_dirname,
model_filename=model_filename,
params_filename=params_filename)
if __name__ == '__main__':
use_cuda = False
main(use_cuda=use_cuda)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册