提交 7d73b8fc 编写于 作者: C chengduoZH

fix unit test (conv3d)

上级 271fc9c1
...@@ -181,6 +181,7 @@ class Col2VolFunctor<platform::CPUPlace, T> { ...@@ -181,6 +181,7 @@ class Col2VolFunctor<platform::CPUPlace, T> {
((cIm * input_depth + d_pad) * input_height + h_pad) * ((cIm * input_depth + d_pad) * input_height + h_pad) *
input_width + input_width +
w_pad; w_pad;
int col_idx = int col_idx =
((c * output_depth + d) * output_height + h) * output_width + ((c * output_depth + d) * output_height + h) * output_width +
w; w;
......
...@@ -10,26 +10,39 @@ def conv3d_forward_naive(input, filter, group, conv_param): ...@@ -10,26 +10,39 @@ def conv3d_forward_naive(input, filter, group, conv_param):
assert np.mod(out_c, group) == 0 assert np.mod(out_c, group) == 0
sub_out_c = out_c / group sub_out_c = out_c / group
stride, pad = conv_param['stride'], conv_param['pad'] stride, pad, dilation = conv_param['stride'], conv_param['pad'], conv_param[
out_d = 1 + (in_d + 2 * pad[0] - f_h) / stride[0] 'dilations']
out_h = 1 + (in_h + 2 * pad[1] - f_h) / stride[1]
out_w = 1 + (in_w + 2 * pad[2] - f_w) / stride[2] out_d = 1 + (in_d + 2 * pad[0] - (dilation[0] * (f_d - 1) + 1)) / stride[0]
out_h = 1 + (in_h + 2 * pad[1] - (dilation[1] * (f_h - 1) + 1)) / stride[1]
out_w = 1 + (in_w + 2 * pad[2] - (dilation[2] * (f_w - 1) + 1)) / stride[2]
out = np.zeros((in_n, out_c, out_d, out_h, out_w)) out = np.zeros((in_n, out_c, out_d, out_h, out_w))
d_bolck_d = (dilation[0] * (f_d - 1) + 1)
d_bolck_h = (dilation[1] * (f_h - 1) + 1)
d_bolck_w = (dilation[2] * (f_w - 1) + 1)
input_pad = np.pad(input, ((0, ), (0, ), (pad[0], ), (pad[1], ), input_pad = np.pad(input, ((0, ), (0, ), (pad[0], ), (pad[1], ),
(pad[2], )), (pad[2], )),
mode='constant', mode='constant',
constant_values=0) constant_values=0)
filter_dilation = np.zeros((out_c, f_c, d_bolck_d, d_bolck_h, d_bolck_w))
filter_dilation[:, :, 0:d_bolck_d:dilation[0], 0:d_bolck_h:dilation[1], 0:
d_bolck_w:dilation[2]] = filter
for d in range(out_d): for d in range(out_d):
for i in range(out_h): for i in range(out_h):
for j in range(out_w): for j in range(out_w):
for g in range(group): for g in range(group):
input_pad_masked = \ input_pad_masked = \
input_pad[:, g * f_c:(g + 1) * f_c, input_pad[:, g * f_c:(g + 1) * f_c,
d * stride[0]:d * stride[0] + f_d, d * stride[0]:d * stride[0] + d_bolck_d,
i * stride[1]:i * stride[1] + f_h, i * stride[1]:i * stride[1] + d_bolck_h,
j * stride[2]:j * stride[2] + f_w] j * stride[2]:j * stride[2] + d_bolck_w]
f_sub = filter[g * sub_out_c:(g + 1) *
f_sub = filter_dilation[g * sub_out_c:(g + 1) *
sub_out_c, :, :, :, :] sub_out_c, :, :, :, :]
for k in range(sub_out_c): for k in range(sub_out_c):
out[:, g * sub_out_c + k, d, i, j] = \ out[:, g * sub_out_c + k, d, i, j] = \
...@@ -43,9 +56,14 @@ class TestConv3dOp(OpTest): ...@@ -43,9 +56,14 @@ class TestConv3dOp(OpTest):
def setUp(self): def setUp(self):
self.init_group() self.init_group()
self.init_op_type() self.init_op_type()
self.init_dilation()
self.init_test_case() self.init_test_case()
conv3d_param = {'stride': self.stride, 'pad': self.pad} conv3d_param = {
'stride': self.stride,
'pad': self.pad,
'dilations': self.dilations
}
input = np.random.random(self.input_size).astype("float32") input = np.random.random(self.input_size).astype("float32")
filter = np.random.random(self.filter_size).astype("float32") filter = np.random.random(self.filter_size).astype("float32")
output = conv3d_forward_naive(input, filter, self.groups, output = conv3d_forward_naive(input, filter, self.groups,
...@@ -55,7 +73,8 @@ class TestConv3dOp(OpTest): ...@@ -55,7 +73,8 @@ class TestConv3dOp(OpTest):
self.attrs = { self.attrs = {
'strides': self.stride, 'strides': self.stride,
'paddings': self.pad, 'paddings': self.pad,
'groups': self.groups 'groups': self.groups,
'dilations': self.dilations
} }
self.outputs = {'Output': output} self.outputs = {'Output': output}
...@@ -88,6 +107,9 @@ class TestConv3dOp(OpTest): ...@@ -88,6 +107,9 @@ class TestConv3dOp(OpTest):
f_c = self.input_size[1] / self.groups f_c = self.input_size[1] / self.groups
self.filter_size = [6, f_c, 3, 3, 3] self.filter_size = [6, f_c, 3, 3, 3]
def init_dilation(self):
self.dilations = [1, 1, 1]
def init_group(self): def init_group(self):
self.groups = 1 self.groups = 1
...@@ -104,27 +126,47 @@ class TestCase1(TestConv3dOp): ...@@ -104,27 +126,47 @@ class TestCase1(TestConv3dOp):
f_c = self.input_size[1] / self.groups f_c = self.input_size[1] / self.groups
self.filter_size = [6, f_c, 3, 3, 3] self.filter_size = [6, f_c, 3, 3, 3]
def init_group(self):
self.groups = 1
def init_op_type(self): class TestWithGroup1(TestConv3dOp):
self.op_type = "conv3d" def init_group(self):
self.groups = 3
class TestWithGroup1(TestConv3dOp): class TestWithGroup2(TestCase1):
def init_group(self): def init_group(self):
self.groups = 3 self.groups = 3
def init_op_type(self):
self.op_type = "conv3d"
class TestWith1x1(TestConv3dOp):
def init_test_case(self):
self.pad = [0, 0, 0]
self.stride = [1, 1, 1]
self.input_size = [2, 3, 4, 4, 4] # NCHW
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] / self.groups
self.filter_size = [6, f_c, 1, 1, 1]
def init_dilation(self):
self.dilations = [1, 1, 1]
class TestWithGroup2(TestCase1):
def init_group(self): def init_group(self):
self.groups = 3 self.groups = 3
def init_op_type(self):
self.op_type = "conv3d" class TestWithDilation(TestConv3dOp):
def init_test_case(self):
self.pad = [0, 0, 0]
self.stride = [1, 1, 1]
self.input_size = [2, 3, 6, 6, 6] # NCDHW
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] / self.groups
self.filter_size = [6, f_c, 2, 2, 2]
def init_dilation(self):
self.dilations = [2, 2, 2]
def init_group(self):
self.groups = 3
if __name__ == '__main__': if __name__ == '__main__':
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册