From 7d303bdc69232846adc0a0ae3a2b27b168bf6367 Mon Sep 17 00:00:00 2001 From: caoying03 Date: Tue, 30 Jan 2018 18:12:52 +0800 Subject: [PATCH] fix the bug that dropout always use a fixed seed. --- paddle/operators/dropout_op.cc | 7 ++++ paddle/operators/dropout_op.cu | 6 ++- paddle/operators/dropout_op.h | 8 +++- python/paddle/v2/fluid/layers/nn.py | 39 +++++++++++++++++-- .../paddle/v2/fluid/tests/test_dropout_op.py | 8 ++-- 5 files changed, 58 insertions(+), 10 deletions(-) diff --git a/paddle/operators/dropout_op.cc b/paddle/operators/dropout_op.cc index 35cb18797ff..5274aa204e6 100644 --- a/paddle/operators/dropout_op.cc +++ b/paddle/operators/dropout_op.cc @@ -51,6 +51,13 @@ class DropoutOpMaker : public framework::OpProtoAndCheckerMaker { "'dropout_prob' must be between 0.0 and 1.0."); }); AddAttr("is_test", "True if in test phase.").SetDefault(false); + AddAttr("fix_seed", + "A flag indicating whether to use a fixed seed to generate " + "random mask. NOTE: DO NOT set this flag to true in " + "training. Setting this flag to true is only useful in " + "unittest or for debug that always the same output units " + "will be dropped.") + .SetDefault(false); AddAttr("seed", "Dropout random seed.").SetDefault(0); AddComment(R"DOC( diff --git a/paddle/operators/dropout_op.cu b/paddle/operators/dropout_op.cu index c56930336e8..84d78445a4f 100644 --- a/paddle/operators/dropout_op.cu +++ b/paddle/operators/dropout_op.cu @@ -62,7 +62,11 @@ class GPUDropoutKernel : public framework::OpKernel { auto* mask = context.Output("Mask"); auto* mask_data = mask->mutable_data(context.GetPlace()); int size = framework::product(mask->dims()); - int seed = context.Attr("seed"); + + std::random_device rnd; + int seed = + context.Attr("fix_seed") ? context.Attr("seed") : rnd(); + thrust::counting_iterator index_sequence_begin(0); thrust::transform(index_sequence_begin, index_sequence_begin + size, thrust::device_ptr(mask_data), diff --git a/paddle/operators/dropout_op.h b/paddle/operators/dropout_op.h index c90b8d277eb..46e5dbc64ff 100644 --- a/paddle/operators/dropout_op.h +++ b/paddle/operators/dropout_op.h @@ -38,9 +38,15 @@ class CPUDropoutKernel : public framework::OpKernel { if (!context.Attr("is_test")) { auto* mask = context.Output("Mask"); auto* mask_data = mask->mutable_data(context.GetPlace()); - int seed = context.Attr("seed"); + + // NOTE: fixed seed should only be used in unittest or for debug. + // Guarantee to use random seed in training. + std::random_device rnd; std::minstd_rand engine; + int seed = + context.Attr("fix_seed") ? context.Attr("seed") : rnd(); engine.seed(seed); + std::uniform_real_distribution dist(0, 1); size_t size = framework::product(mask->dims()); for (size_t i = 0; i < size; ++i) { diff --git a/python/paddle/v2/fluid/layers/nn.py b/python/paddle/v2/fluid/layers/nn.py index d11dccfd221..c38e21087de 100644 --- a/python/paddle/v2/fluid/layers/nn.py +++ b/python/paddle/v2/fluid/layers/nn.py @@ -847,7 +847,35 @@ def cos_sim(X, Y, **kwargs): return out -def dropout(x, dropout_prob, is_test=False, seed=0, **kwargs): +def dropout(x, dropout_prob, is_test=False, seed=None, **kwargs): + """ + Computes dropout. + + Drop or keep each element of `x` independently. Dropout is a regularization + technique for reducing overfitting by preventing neuron co-adaption during + training. The dropout operator randomly set (according to the given dropout + probability) the outputs of some units to zero, while others are remain + unchanged. + + Args: + x(variable): The input tensor. + dropout_prob(float): Probability of setting units to zero. + is_test(bool): A flag indicating whether it is in test phrase or not. + seed(int): A Python integer used to create random seeds. If this + parameter is set to None, a random seed is used. + NOTE: If an integer seed is given, always the same output + units will be dropped. DO NOT use a fixed seed in training. + + Returns: + Variable: A tensor variable. + + Examples: + .. code-block:: python + + x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32") + droped = fluid.layers.dropout(input=x, dropout_rate=0.5) + """ + helper = LayerHelper('dropout', **kwargs) out = helper.create_tmp_variable(dtype=x.dtype) mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True) @@ -856,9 +884,12 @@ def dropout(x, dropout_prob, is_test=False, seed=0, **kwargs): inputs={'X': [x]}, outputs={'Out': [out], 'Mask': [mask]}, - attrs={'dropout_prob': dropout_prob, - 'is_test': is_test, - 'seed': seed}) + attrs={ + 'dropout_prob': dropout_prob, + 'is_test': is_test, + 'fix_seed': seed is not None, + 'seed': seed if seed is not None else 0 + }) return out diff --git a/python/paddle/v2/fluid/tests/test_dropout_op.py b/python/paddle/v2/fluid/tests/test_dropout_op.py index 107b9567dc4..b0c55df9f58 100644 --- a/python/paddle/v2/fluid/tests/test_dropout_op.py +++ b/python/paddle/v2/fluid/tests/test_dropout_op.py @@ -21,7 +21,7 @@ class TestDropoutOp(OpTest): def setUp(self): self.op_type = "dropout" self.inputs = {'X': np.random.random((32, 64)).astype("float32")} - self.attrs = {'dropout_prob': 0.0, 'is_test': False} + self.attrs = {'dropout_prob': 0.0, 'fix_seed': True, 'is_test': False} self.outputs = { 'Out': self.inputs['X'], 'Mask': np.ones((32, 64)).astype('float32') @@ -38,7 +38,7 @@ class TestDropoutOp2(TestDropoutOp): def setUp(self): self.op_type = "dropout" self.inputs = {'X': np.random.random((32, 64)).astype("float32")} - self.attrs = {'dropout_prob': 1.0, 'is_test': False} + self.attrs = {'dropout_prob': 1.0, 'fix_seed': True, 'is_test': False} self.outputs = { 'Out': np.zeros((32, 64)).astype('float32'), 'Mask': np.zeros((32, 64)).astype('float32') @@ -49,7 +49,7 @@ class TestDropoutOp3(TestDropoutOp): def setUp(self): self.op_type = "dropout" self.inputs = {'X': np.random.random((32, 64, 2)).astype("float32")} - self.attrs = {'dropout_prob': 0.0, 'is_test': False} + self.attrs = {'dropout_prob': 0.0, 'fix_seed': True, 'is_test': False} self.outputs = { 'Out': self.inputs['X'], 'Mask': np.ones((32, 64, 2)).astype('float32') @@ -60,7 +60,7 @@ class TestDropoutOp4(OpTest): def setUp(self): self.op_type = "dropout" self.inputs = {'X': np.random.random((32, 64)).astype("float32")} - self.attrs = {'dropout_prob': 0.35, 'is_test': True} + self.attrs = {'dropout_prob': 0.35, 'fix_seed': True, 'is_test': True} self.outputs = { 'Out': self.inputs['X'] * (1.0 - self.attrs['dropout_prob']) } -- GitLab