提交 7c55e08c 编写于 作者: F fengjiayi

stash

上级 b656d97e
...@@ -28,23 +28,28 @@ class CrossEntropyOp : public framework::OperatorWithKernel { ...@@ -28,23 +28,28 @@ class CrossEntropyOp : public framework::OperatorWithKernel {
auto x_dims = ctx->GetInputDim("X"); auto x_dims = ctx->GetInputDim("X");
auto label_dims = ctx->GetInputDim("Label"); auto label_dims = ctx->GetInputDim("Label");
PADDLE_ENFORCE_EQ(x_dims.size(), 2UL, "Input(X)'s rank should be 2."); int rank = x_dims.size();
PADDLE_ENFORCE_EQ(label_dims.size(), 2UL, PADDLE_ENFORCE_EQ(rank, label_dims.size(),
"Input(Label)'s rank should be 2."); "Input(X) and Input(Label) shall have the same rank.");
PADDLE_ENFORCE_EQ(x_dims[0], label_dims[0], PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
"The 1st dimension of Input(X) and Input(Label) should " framework::slice_ddim(label_dims, 0, rank - 1),
"be equal."); "Input(X) and Input(Label) shall have the same shape "
"except the last dimension.");
if (ctx->Attrs().Get<bool>("soft_label")) { if (ctx->Attrs().Get<bool>("soft_label")) {
PADDLE_ENFORCE_EQ(x_dims[1], label_dims[1], PADDLE_ENFORCE_EQ(x_dims[rank - 1], label_dims[rank - 1],
"If Attr(soft_label) == true, the 2nd dimension of " "If Attr(soft_label) == true, the last dimension of "
"Input(X) and Input(Label) should be equal."); "Input(X) and Input(Label) should be equal.");
} else { } else {
PADDLE_ENFORCE_EQ(label_dims[1], 1UL, PADDLE_ENFORCE_EQ(label_dims[rank - 1], 1UL,
"If Attr(softLabel) == false, the 2nd dimension of " "If Attr(softLabel) == false, the last dimension of "
"Input(Label) should be 1."); "Input(Label) should be 1.");
} }
ctx->SetOutputDim("Y", {x_dims[0], 1}); auto out_dim_vec =
framework::vectorize(framework::slice_ddim(x_dims, 0, rank - 1));
out_dim_vec.push_back(1);
ctx->SetOutputDim("Y", framework::make_ddim(out_dim_vec));
ctx->ShareLoD("X", /*->*/ "Y"); ctx->ShareLoD("X", /*->*/ "Y");
} }
...@@ -74,24 +79,28 @@ class CrossEntropyGradientOp : public framework::OperatorWithKernel { ...@@ -74,24 +79,28 @@ class CrossEntropyGradientOp : public framework::OperatorWithKernel {
auto x_dims = ctx->GetInputDim("X"); auto x_dims = ctx->GetInputDim("X");
auto label_dims = ctx->GetInputDim("Label"); auto label_dims = ctx->GetInputDim("Label");
auto dy_dims = ctx->GetInputDim(framework::GradVarName("Y")); auto dy_dims = ctx->GetInputDim(framework::GradVarName("Y"));
PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank should be 2."); int rank = x_dims.size();
PADDLE_ENFORCE_EQ(dy_dims.size(), 2, "Input(Y@Grad)'s rank should be 2."); PADDLE_ENFORCE_EQ(dy_dims.size(), rank,
PADDLE_ENFORCE_EQ(label_dims.size(), 2, "Input(Label)'s rank should be 2."); "Input(Y@Grad) and Input(X) should have the same rank.");
PADDLE_ENFORCE_EQ(x_dims[0], label_dims[0], PADDLE_ENFORCE_EQ(label_dims.size(), rank,
"The 1st dimension of Input(X) and Input(Label) should " "Input(Label) and Input(X) should have the same rank.");
"be equal."); PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
PADDLE_ENFORCE_EQ(x_dims[0], dy_dims[0], framework::slice_ddim(label_dims, 0, rank - 1),
"The 1st dimension of Input(X) and Input(Y@Grad) should " "The Input(X) and Input(Label) should have the same "
"be equal."); "shape except the last dimension.");
PADDLE_ENFORCE_EQ(dy_dims[1], 1, PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
"The 2nd dimension of Input(Y@Grad) should be 1."); framework::slice_ddim(dy_dims, 0, rank - 1),
"The Input(X) and Input(Y@Grad) should have the same "
"shape except the last dimension.");
PADDLE_ENFORCE_EQ(dy_dims[rank - 1], 1,
"The last dimension of Input(Y@Grad) should be 1.");
if (ctx->Attrs().Get<bool>("soft_label")) { if (ctx->Attrs().Get<bool>("soft_label")) {
PADDLE_ENFORCE_EQ(x_dims[1], label_dims[1], PADDLE_ENFORCE_EQ(x_dims[rank - 1], label_dims[rank - 1],
"When Attr(soft_label) == true, the 2nd dimension of " "When Attr(soft_label) == true, the last dimension of "
"Input(X) and Input(Label) should be equal."); "Input(X) and Input(Label) should be equal.");
} else { } else {
PADDLE_ENFORCE_EQ(label_dims[1], 1, PADDLE_ENFORCE_EQ(label_dims[rank - 1], 1,
"When Attr(soft_label) == false, the 2nd dimension of " "When Attr(soft_label) == false, the last dimension of "
"Input(Label) should be 1."); "Input(Label) should be 1.");
} }
ctx->SetOutputDim(framework::GradVarName("X"), x_dims); ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
...@@ -113,18 +122,20 @@ class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -113,18 +122,20 @@ class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
public: public:
void Make() override { void Make() override {
AddInput("X", AddInput("X",
"(Tensor, default Tensor<float>), a 2-D tensor with shape [N x D]," "(Tensor, default Tensor<float>), a tensor whose last dimension "
" where N is the batch size and D is the number of classes. " "size is equal to the number of classes. This input is a "
"This input is a probability computed by the previous operator, " "probability computed by the previous operator, which is almost "
"which is almost always the result of a softmax operator."); "always the result of a softmax operator.");
AddInput("Label", AddInput(
"(Tensor), the ground truth which is a 2-D tensor. When " "Label",
"soft_label is set to false, Label is a Tensor<int64> with shape " "(Tensor), the tensor which represents the ground truth. It has the "
"[N x 1]. When soft_label is set to true, Label is a " "same shape with 'X' except the last dimension. When soft_label is set "
"Tensor<float/double> with shape [N x D]."); "to false, the last dimension size is 1; when soft_label is set to "
"true, the last dimension size is equal to the number of classes.");
AddOutput("Y", AddOutput("Y",
"(Tensor, default Tensor<float>), a 2-D tensor with shape " "(Tensor, default Tensor<float>), a tensor whose shape is same "
"[N x 1]. The cross entropy loss."); "with 'X' except that the last dimension size is 1. It "
"represents the cross entropy loss.");
AddAttr<bool>("soft_label", AddAttr<bool>("soft_label",
"(bool, default false), a flag indicating whether to " "(bool, default false), a flag indicating whether to "
"interpretate the given labels as soft labels.") "interpretate the given labels as soft labels.")
...@@ -132,6 +143,12 @@ class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -132,6 +143,12 @@ class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment(R"DOC( AddComment(R"DOC(
CrossEntropy Operator. CrossEntropy Operator.
The input 'X' and 'Label' will first be logically flattened to 2-D matrixs.
The matrix's second dimension(row length) is as same as the original last
dimension, and the first dimension(column length) is the product of all other
original dimensions. Then the softmax computation will take palce on each raw
of flattened matrixs.
It supports both standard cross-entropy and soft-label cross-entropy loss It supports both standard cross-entropy and soft-label cross-entropy loss
computation. computation.
1) One-hot cross-entropy: 1) One-hot cross-entropy:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册