Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
7a1d5e9d
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7a1d5e9d
编写于
11月 06, 2017
作者:
G
guosheng
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/paddle
into add-GRUOp-dev
上级
e3d15eee
f8a6bda8
变更
85
展开全部
显示空白变更内容
内联
并排
Showing
85 changed file
with
1695 addition
and
947 deletion
+1695
-947
paddle/framework/executor.cc
paddle/framework/executor.cc
+3
-0
paddle/framework/framework.proto
paddle/framework/framework.proto
+7
-0
paddle/framework/lod_rank_table.cc
paddle/framework/lod_rank_table.cc
+9
-4
paddle/framework/lod_tensor.cc
paddle/framework/lod_tensor.cc
+38
-0
paddle/framework/lod_tensor.h
paddle/framework/lod_tensor.h
+6
-0
paddle/framework/lod_tensor_array.h
paddle/framework/lod_tensor_array.h
+23
-0
paddle/framework/lod_tensor_test.cc
paddle/framework/lod_tensor_test.cc
+42
-0
paddle/framework/var_desc.cc
paddle/framework/var_desc.cc
+22
-4
paddle/gserver/layers/MKLDNNAddtoLayer.cpp
paddle/gserver/layers/MKLDNNAddtoLayer.cpp
+154
-0
paddle/gserver/layers/MKLDNNAddtoLayer.h
paddle/gserver/layers/MKLDNNAddtoLayer.h
+110
-0
paddle/gserver/layers/MKLDNNLayer.cpp
paddle/gserver/layers/MKLDNNLayer.cpp
+8
-6
paddle/gserver/layers/MKLDNNLayer.h
paddle/gserver/layers/MKLDNNLayer.h
+5
-2
paddle/gserver/tests/MKLDNNTester.cpp
paddle/gserver/tests/MKLDNNTester.cpp
+3
-3
paddle/gserver/tests/test_MKLDNN.cpp
paddle/gserver/tests/test_MKLDNN.cpp
+38
-5
paddle/operators/activation_op.cc
paddle/operators/activation_op.cc
+24
-24
paddle/operators/adadelta_op.cc
paddle/operators/adadelta_op.cc
+16
-18
paddle/operators/adagrad_op.cc
paddle/operators/adagrad_op.cc
+8
-4
paddle/operators/adam_op.cc
paddle/operators/adam_op.cc
+13
-16
paddle/operators/adamax_op.cc
paddle/operators/adamax_op.cc
+9
-13
paddle/operators/auc_op.cc
paddle/operators/auc_op.cc
+15
-16
paddle/operators/batch_norm_op.cc
paddle/operators/batch_norm_op.cc
+12
-8
paddle/operators/cast_op.cc
paddle/operators/cast_op.cc
+9
-5
paddle/operators/clip_op.cc
paddle/operators/clip_op.cc
+4
-1
paddle/operators/linear_chain_crf_op.cc
paddle/operators/linear_chain_crf_op.cc
+19
-18
paddle/operators/margin_rank_loss_op.cc
paddle/operators/margin_rank_loss_op.cc
+11
-10
paddle/operators/matmul_op.cc
paddle/operators/matmul_op.cc
+6
-2
paddle/operators/mean_op.cc
paddle/operators/mean_op.cc
+5
-1
paddle/operators/minus_op.cc
paddle/operators/minus_op.cc
+5
-3
paddle/operators/modified_huber_loss_op.cc
paddle/operators/modified_huber_loss_op.cc
+20
-12
paddle/operators/momentum_op.cc
paddle/operators/momentum_op.cc
+15
-9
paddle/operators/mul_op.cc
paddle/operators/mul_op.cc
+8
-3
paddle/operators/multiplex_op.cc
paddle/operators/multiplex_op.cc
+5
-3
paddle/operators/name_convention.md
paddle/operators/name_convention.md
+12
-8
paddle/operators/nccl_op.cc
paddle/operators/nccl_op.cc
+32
-13
paddle/operators/pad_op.cc
paddle/operators/pad_op.cc
+22
-19
paddle/operators/pool_op.cc
paddle/operators/pool_op.cc
+70
-57
paddle/operators/pool_with_index_op.cc
paddle/operators/pool_with_index_op.cc
+75
-60
paddle/operators/precision_recall_op.cc
paddle/operators/precision_recall_op.cc
+31
-29
paddle/operators/prelu_op.cc
paddle/operators/prelu_op.cc
+13
-6
paddle/operators/proximal_adagrad_op.cc
paddle/operators/proximal_adagrad_op.cc
+10
-6
paddle/operators/proximal_gd_op.cc
paddle/operators/proximal_gd_op.cc
+9
-5
paddle/operators/rank_loss_op.cc
paddle/operators/rank_loss_op.cc
+14
-14
paddle/operators/recurrent_op.cc
paddle/operators/recurrent_op.cc
+9
-7
paddle/operators/reduce_op.cc
paddle/operators/reduce_op.cc
+10
-7
paddle/operators/reshape_op.cc
paddle/operators/reshape_op.cc
+6
-3
paddle/operators/rmsprop_op.cc
paddle/operators/rmsprop_op.cc
+15
-14
paddle/operators/seq_expand_op.cc
paddle/operators/seq_expand_op.cc
+3
-1
paddle/operators/sequence_concat_op.cc
paddle/operators/sequence_concat_op.cc
+4
-2
paddle/operators/sequence_conv_op.cc
paddle/operators/sequence_conv_op.cc
+13
-11
paddle/operators/sequence_pool_op.cc
paddle/operators/sequence_pool_op.cc
+29
-26
paddle/operators/sequence_softmax_op.cc
paddle/operators/sequence_softmax_op.cc
+10
-6
paddle/operators/sigmoid_cross_entropy_with_logits_op.cc
paddle/operators/sigmoid_cross_entropy_with_logits_op.cc
+11
-9
paddle/operators/smooth_l1_loss_op.cc
paddle/operators/smooth_l1_loss_op.cc
+9
-6
paddle/operators/softmax_op.cc
paddle/operators/softmax_op.cc
+10
-7
paddle/operators/softmax_with_cross_entropy_op.cc
paddle/operators/softmax_with_cross_entropy_op.cc
+16
-14
paddle/operators/transpose_op.cc
paddle/operators/transpose_op.cc
+7
-4
paddle/pybind/protobuf.cc
paddle/pybind/protobuf.cc
+2
-1
paddle/pybind/pybind.cc
paddle/pybind/pybind.cc
+21
-0
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+12
-1
python/paddle/v2/framework/backward.py
python/paddle/v2/framework/backward.py
+14
-2
python/paddle/v2/framework/framework.py
python/paddle/v2/framework/framework.py
+4
-2
python/paddle/v2/framework/io.py
python/paddle/v2/framework/io.py
+35
-29
python/paddle/v2/framework/layer_helper.py
python/paddle/v2/framework/layer_helper.py
+15
-15
python/paddle/v2/framework/layers.py
python/paddle/v2/framework/layers.py
+31
-30
python/paddle/v2/framework/net_drawer.py
python/paddle/v2/framework/net_drawer.py
+3
-3
python/paddle/v2/framework/nets.py
python/paddle/v2/framework/nets.py
+22
-22
python/paddle/v2/framework/optimizer.py
python/paddle/v2/framework/optimizer.py
+7
-5
python/paddle/v2/framework/tests/test_executor_and_mul.py
python/paddle/v2/framework/tests/test_executor_and_mul.py
+2
-2
python/paddle/v2/framework/tests/test_fit_a_line.py
python/paddle/v2/framework/tests/test_fit_a_line.py
+20
-16
python/paddle/v2/framework/tests/test_image_classification_layer.py
...dle/v2/framework/tests/test_image_classification_layer.py
+35
-31
python/paddle/v2/framework/tests/test_image_classification_train.py
...dle/v2/framework/tests/test_image_classification_train.py
+66
-50
python/paddle/v2/framework/tests/test_inference_model_io.py
python/paddle/v2/framework/tests/test_inference_model_io.py
+10
-10
python/paddle/v2/framework/tests/test_layers.py
python/paddle/v2/framework/tests/test_layers.py
+53
-36
python/paddle/v2/framework/tests/test_lod_rank_table.py
python/paddle/v2/framework/tests/test_lod_rank_table.py
+2
-2
python/paddle/v2/framework/tests/test_lod_tensor_array.py
python/paddle/v2/framework/tests/test_lod_tensor_array.py
+38
-0
python/paddle/v2/framework/tests/test_operator_desc.py
python/paddle/v2/framework/tests/test_operator_desc.py
+2
-2
python/paddle/v2/framework/tests/test_parameter.py
python/paddle/v2/framework/tests/test_parameter.py
+2
-2
python/paddle/v2/framework/tests/test_program.py
python/paddle/v2/framework/tests/test_program.py
+9
-9
python/paddle/v2/framework/tests/test_recognize_digits_conv.py
...n/paddle/v2/framework/tests/test_recognize_digits_conv.py
+25
-19
python/paddle/v2/framework/tests/test_recognize_digits_mlp.py
...on/paddle/v2/framework/tests/test_recognize_digits_mlp.py
+25
-18
python/paddle/v2/framework/tests/test_recommender_system.py
python/paddle/v2/framework/tests/test_recommender_system.py
+66
-64
python/paddle/v2/framework/tests/test_recurrent_op.py
python/paddle/v2/framework/tests/test_recurrent_op.py
+23
-14
python/paddle/v2/framework/tests/test_understand_sentiment_conv.py
...ddle/v2/framework/tests/test_understand_sentiment_conv.py
+3
-3
python/paddle/v2/framework/tests/test_variable.py
python/paddle/v2/framework/tests/test_variable.py
+2
-2
python/paddle/v2/framework/tests/test_word2vec.py
python/paddle/v2/framework/tests/test_word2vec.py
+34
-33
未找到文件。
paddle/framework/executor.cc
浏览文件 @
7a1d5e9d
...
...
@@ -23,6 +23,7 @@ limitations under the License. */
#include "paddle/framework/feed_fetch_type.h"
#include "paddle/framework/lod_rank_table.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/lod_tensor_array.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/scope.h"
...
...
@@ -73,6 +74,8 @@ static void CreateTensor(Variable* var, VarDesc::VarType var_type) {
var
->
GetMutable
<
std
::
vector
<
framework
::
Scope
>>
();
}
else
if
(
var_type
==
VarDesc
::
LOD_RANK_TABLE
)
{
var
->
GetMutable
<
LoDRankTable
>
();
}
else
if
(
var_type
==
VarDesc
::
LOD_TENSOR_ARRAY
)
{
var
->
GetMutable
<
LoDTensorArray
>
();
}
else
{
PADDLE_THROW
(
"Variable type %d is not in "
...
...
paddle/framework/framework.proto
浏览文件 @
7a1d5e9d
...
...
@@ -109,6 +109,11 @@ message LoDTensorDesc {
optional
int32
lod_level
=
2
[
default
=
0
];
}
message
LoDTensorArrayDesc
{
required
TensorDesc
tensor
=
1
;
optional
int32
lod_level
=
2
[
default
=
0
];
}
message
VarDesc
{
enum
VarType
{
LOD_TENSOR
=
1
;
...
...
@@ -117,11 +122,13 @@ message VarDesc {
FETCH_LIST
=
4
;
STEP_SCOPES
=
5
;
LOD_RANK_TABLE
=
6
;
LOD_TENSOR_ARRAY
=
7
;
}
required
string
name
=
1
;
required
VarType
type
=
2
;
optional
LoDTensorDesc
lod_tensor
=
3
;
optional
TensorDesc
selected_rows
=
4
;
optional
LoDTensorArrayDesc
tensor_array
=
6
;
optional
bool
persistable
=
5
[
default
=
false
];
}
...
...
paddle/framework/lod_rank_table.cc
浏览文件 @
7a1d5e9d
...
...
@@ -33,7 +33,12 @@ void LoDRankTable::Reset(const LoD& lod, size_t level) {
item
.
length
=
vec
[
i
+
1
]
-
vec
[
i
];
items_
.
emplace_back
(
item
);
}
std
::
sort
(
items_
.
begin
(),
items_
.
end
(),
// NOTE(yuyang18):
//
// The time complexity of stable_sort is O(N*log(N)) if additional memory is
// available. It is easy to debug and unit test when using `stable_sort`
// instead of `sort`. Also, the items of a rank table will not be too large.
std
::
stable_sort
(
items_
.
begin
(),
items_
.
end
(),
[](
const
TableItem
&
a
,
const
TableItem
&
b
)
{
return
a
.
length
>
b
.
length
;
});
...
...
paddle/framework/lod_tensor.cc
浏览文件 @
7a1d5e9d
...
...
@@ -135,5 +135,43 @@ void LoDTensor::ShrinkInLevel(size_t level, size_t elem_begin,
PADDLE_ENFORCE_LT
(
begin
,
end
,
"Cannot shrink, the result tensor is empty."
);
ShareDataWith
(
Slice
(
begin
,
end
));
}
void
GetFineGrainedLoDLength
(
const
LoD
&
lod
,
size_t
start_idx
,
size_t
end_idx
,
std
::
vector
<
std
::
vector
<
size_t
>>*
lod_length
,
size_t
*
start_offset
)
{
lod_length
->
clear
();
PADDLE_ENFORCE
(
start_idx
<
lod
.
size
()
-
1
,
"start_idx should be >= 0 and < lod.size() - 1."
);
PADDLE_ENFORCE
(
end_idx
<
lod
.
size
(),
"end_idx should be >= 0 and < lod.size()."
);
PADDLE_ENFORCE_LE
(
start_idx
,
end_idx
,
"start_idx should be less than end_idx."
);
for
(
size_t
level_idx
=
0
;
level_idx
<
lod
.
size
();
++
level_idx
)
{
std
::
vector
<
size_t
>
level_lens
;
for
(
size_t
i
=
start_idx
;
i
<
end_idx
;
++
i
)
{
level_lens
.
push_back
(
lod
[
level_idx
][
i
+
1
]
-
lod
[
level_idx
][
i
]);
}
lod_length
->
emplace_back
(
level_lens
);
start_idx
=
lod
[
level_idx
][
start_idx
];
end_idx
=
lod
[
level_idx
][
end_idx
];
}
*
start_offset
=
start_idx
;
}
void
AppendLoD
(
LoD
*
lod
,
const
std
::
vector
<
std
::
vector
<
size_t
>>&
lod_length
)
{
PADDLE_ENFORCE_EQ
(
lod
->
size
(),
lod_length
.
size
(),
"The lod_length should has the same size with the appended lod."
);
for
(
size_t
i
=
0
;
i
<
lod
->
size
();
++
i
)
{
auto
&
level
=
(
*
lod
)[
i
];
if
(
level
.
empty
())
{
level
.
push_back
(
0
);
}
for
(
size_t
len
:
lod_length
[
i
])
{
level
.
push_back
(
level
.
back
()
+
len
);
}
}
}
}
// namespace framework
}
// namespace paddle
paddle/framework/lod_tensor.h
浏览文件 @
7a1d5e9d
...
...
@@ -181,5 +181,11 @@ LoDTensor LodExpand(const LoDTensor& source, const LoD& lod, size_t level,
return
tensor
;
}
void
GetFineGrainedLoDLength
(
const
LoD
&
lod
,
size_t
start_idx
,
size_t
end_idx
,
std
::
vector
<
std
::
vector
<
size_t
>>*
lod_length
,
size_t
*
start_offset
);
void
AppendLoD
(
LoD
*
lod
,
const
std
::
vector
<
std
::
vector
<
size_t
>>&
lod_length
);
}
// namespace framework
}
// namespace paddle
paddle/framework/lod_tensor_array.h
0 → 100644
浏览文件 @
7a1d5e9d
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "paddle/framework/lod_tensor.h"
namespace
paddle
{
namespace
framework
{
using
LoDTensorArray
=
std
::
vector
<
LoDTensor
>
;
}
}
// namespace paddle
paddle/framework/lod_tensor_test.cc
浏览文件 @
7a1d5e9d
...
...
@@ -144,5 +144,47 @@ TEST(LodExpand, test) {
}
}
TEST
(
LoD
,
GetFineGrainedLoDLength
)
{
LoD
lod
;
lod
.
push_back
(
std
::
vector
<
size_t
>
{
0
,
2
,
4
,
5
});
lod
.
push_back
(
std
::
vector
<
size_t
>
{
0
,
1
,
6
,
8
,
10
,
11
});
lod
.
push_back
(
std
::
vector
<
size_t
>
{
0
,
2
,
5
,
7
,
10
,
12
,
15
,
17
,
20
,
24
,
26
,
29
});
std
::
vector
<
std
::
vector
<
size_t
>>
lod_length
;
size_t
start_offset
;
paddle
::
framework
::
GetFineGrainedLoDLength
(
lod
,
1
,
2
,
&
lod_length
,
&
start_offset
);
std
::
vector
<
std
::
vector
<
size_t
>>
expected
;
expected
.
push_back
(
std
::
vector
<
size_t
>
{
2
});
expected
.
push_back
(
std
::
vector
<
size_t
>
{
2
,
2
});
expected
.
push_back
(
std
::
vector
<
size_t
>
{
2
,
3
,
4
,
2
});
EXPECT_EQ
(
lod_length
,
expected
);
EXPECT_EQ
(
start_offset
,
15UL
);
}
TEST
(
LoD
,
AppendLoD
)
{
std
::
vector
<
std
::
vector
<
size_t
>>
lod_lens
;
lod_lens
.
push_back
(
std
::
vector
<
size_t
>
{
2
});
lod_lens
.
push_back
(
std
::
vector
<
size_t
>
{
2
,
2
});
lod_lens
.
push_back
(
std
::
vector
<
size_t
>
{
2
,
3
,
4
,
2
});
LoD
origin
;
origin
.
push_back
(
std
::
vector
<
size_t
>
{
0
,
2
});
origin
.
push_back
(
std
::
vector
<
size_t
>
{
0
,
1
,
6
});
origin
.
push_back
(
std
::
vector
<
size_t
>
{
0
,
2
,
5
,
7
,
10
,
12
,
15
});
paddle
::
framework
::
AppendLoD
(
&
origin
,
lod_lens
);
LoD
expected
;
expected
.
push_back
(
std
::
vector
<
size_t
>
{
0
,
2
,
4
});
expected
.
push_back
(
std
::
vector
<
size_t
>
{
0
,
1
,
6
,
8
,
10
});
expected
.
push_back
(
std
::
vector
<
size_t
>
{
0
,
2
,
5
,
7
,
10
,
12
,
15
,
17
,
20
,
24
,
26
});
EXPECT_EQ
(
origin
,
expected
);
}
}
// namespace framework
}
// namespace paddle
paddle/framework/var_desc.cc
浏览文件 @
7a1d5e9d
...
...
@@ -37,13 +37,27 @@ std::vector<int64_t> VarDescBind::Shape() const {
DataType
VarDescBind
::
GetDataType
()
const
{
return
tensor_desc
().
data_type
();
}
void
VarDescBind
::
SetLoDLevel
(
int32_t
lod_level
)
{
PADDLE_ENFORCE
(
desc_
.
type
()
==
VarDesc
::
LOD_TENSOR
);
switch
(
desc_
.
type
())
{
case
VarDesc
::
LOD_TENSOR
:
desc_
.
mutable_lod_tensor
()
->
set_lod_level
(
lod_level
);
break
;
case
VarDesc
::
LOD_TENSOR_ARRAY
:
desc_
.
mutable_tensor_array
()
->
set_lod_level
(
lod_level
);
break
;
default:
PADDLE_THROW
(
"Tensor type=%d does not support LoDLevel"
,
desc_
.
type
());
}
}
int32_t
VarDescBind
::
GetLodLevel
()
const
{
PADDLE_ENFORCE
(
desc_
.
type
()
==
VarDesc
::
LOD_TENSOR
);
switch
(
desc_
.
type
())
{
case
VarDesc
::
LOD_TENSOR
:
return
desc_
.
lod_tensor
().
lod_level
();
case
VarDesc
::
LOD_TENSOR_ARRAY
:
return
desc_
.
tensor_array
().
lod_level
();
default:
PADDLE_THROW
(
"Tensor type=%d does not support LoDLevel"
,
desc_
.
type
());
}
}
const
TensorDesc
&
VarDescBind
::
tensor_desc
()
const
{
...
...
@@ -53,6 +67,8 @@ const TensorDesc &VarDescBind::tensor_desc() const {
return
desc_
.
selected_rows
();
case
VarDesc
::
LOD_TENSOR
:
return
desc_
.
lod_tensor
().
tensor
();
case
VarDesc
::
LOD_TENSOR_ARRAY
:
return
desc_
.
tensor_array
().
tensor
();
default:
PADDLE_THROW
(
"Unexpected branch."
);
}
...
...
@@ -66,6 +82,8 @@ TensorDesc *VarDescBind::mutable_tensor_desc() {
return
desc_
.
mutable_selected_rows
();
case
VarDesc
::
LOD_TENSOR
:
return
desc_
.
mutable_lod_tensor
()
->
mutable_tensor
();
case
VarDesc
::
LOD_TENSOR_ARRAY
:
return
desc_
.
mutable_tensor_array
()
->
mutable_tensor
();
default:
PADDLE_THROW
(
"Unexpected branch."
);
}
...
...
paddle/gserver/layers/MKLDNNAddtoLayer.cpp
0 → 100644
浏览文件 @
7a1d5e9d
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "MKLDNNAddtoLayer.h"
using
namespace
mkldnn
;
// NOLINT
namespace
paddle
{
REGISTER_LAYER
(
mkldnn_addto
,
MKLDNNAddtoLayer
);
bool
MKLDNNAddtoLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
if
(
!
MKLDNNLayer
::
init
(
layerMap
,
parameterMap
))
{
return
false
;
}
layerSize_
=
getSize
();
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
i
++
)
{
CHECK_EQ
(
layerSize_
,
inputLayers_
[
i
]
->
getSize
())
<<
"input size must equal"
;
}
if
(
biasParameter_
.
get
()
!=
NULL
)
{
biases_
=
std
::
unique_ptr
<
Weight
>
(
new
Weight
(
1
,
layerSize_
,
biasParameter_
,
0
));
}
return
true
;
}
void
MKLDNNAddtoLayer
::
reshape
(
int
&
bs
,
int
&
ic
,
int
&
ih
,
int
&
iw
,
int
oc
,
int
&
oh
,
int
&
ow
)
{
CHECK_EQ
(
layerSize_
,
getSize
())
<<
"this layer size can not be changed"
;
reshapeInput
(
bs
,
ih
,
iw
);
ic
=
inputLayers_
[
0
]
->
getSize
()
/
ih
/
iw
;
CHECK_EQ
((
size_t
)
ic
*
ih
*
iw
,
inputLayers_
[
0
]
->
getSize
());
CHECK_EQ
(
inputElemenCnt_
,
(
size_t
)
bs
*
ic
*
ih
*
iw
);
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
i
++
)
{
CHECK_EQ
(
int64_t
(
bs
),
inputLayers_
[
i
]
->
getOutput
().
getBatchSize
());
CHECK_EQ
(
layerSize_
,
inputLayers_
[
i
]
->
getSize
());
}
oc
=
ic
;
oh
=
ih
;
ow
=
iw
;
reshapeOutput
(
oh
,
ow
);
resizeOutput
(
bs
,
oc
*
oh
*
ow
);
printSizeInfo
();
}
void
MKLDNNAddtoLayer
::
resetFwd
(
std
::
vector
<
primitive
>&
pipeline
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
{
if
(
biases_
)
{
LOG
(
FATAL
)
<<
"not implemented yet"
;
}
resetFwdBuffers
(
inVals_
,
out
);
in
=
inVals_
[
0
];
std
::
shared_ptr
<
sum
::
primitive_desc
>
fwdPD
;
resetFwdPD
(
fwdPD
,
inVals_
,
out
);
resetFwdPipeline
(
pipeline
,
fwdPD
,
inVals_
,
out
);
}
void
MKLDNNAddtoLayer
::
resetBwd
(
std
::
vector
<
primitive
>&
pipeline
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
{
resetBwdBuffers
(
inGrads_
,
out
);
in
=
inGrads_
[
0
];
// backward only need share output grad to input grad
for
(
size_t
i
=
0
;
i
<
inGrads_
.
size
();
i
++
)
{
if
(
inGrads_
[
i
]
!=
nullptr
)
{
inGrads_
[
i
]
=
out
;
inputLayers_
[
i
]
->
getOutputGrad
()
->
setData
(
inGrads_
[
i
]
->
getData
());
}
}
}
void
MKLDNNAddtoLayer
::
updateWeights
(
const
UpdateCallback
&
callback
)
{
if
(
biases_
&&
biases_
->
getWGrad
())
{
biases_
->
getParameterPtr
()
->
incUpdate
(
callback
);
}
}
void
MKLDNNAddtoLayer
::
resetFwdBuffers
(
std
::
vector
<
MKLDNNMatrixPtr
>&
inputs
,
MKLDNNMatrixPtr
&
out
)
{
inputs
.
resize
(
inputLayers_
.
size
());
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
i
++
)
{
resetInValue
(
inputs
[
i
],
nullptr
,
i
);
CHECK
(
inputs
[
i
]);
inputs
[
i
]
->
downSpatial
();
}
for
(
size_t
i
=
1
;
i
<
inputs
.
size
();
i
++
)
{
CHECK_PRIMITIVE_DESC_EQ
(
inputs
[
i
],
inputs
[
0
]
->
getPrimitiveDesc
());
}
resetOutValue
(
out
,
inputs
[
0
]
->
getPrimitiveDesc
());
}
void
MKLDNNAddtoLayer
::
resetFwdPD
(
std
::
shared_ptr
<
sum
::
primitive_desc
>&
pd
,
std
::
vector
<
MKLDNNMatrixPtr
>&
inputs
,
MKLDNNMatrixPtr
out
)
{
std
::
vector
<
double
>
scales
(
inputs
.
size
(),
1.0
);
std
::
vector
<
memory
::
primitive_desc
>
srcPDs
;
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
i
++
)
{
srcPDs
.
push_back
(
inputs
[
i
]
->
getPrimitiveDesc
());
}
CHECK
(
out
);
pd
.
reset
(
new
sum
::
primitive_desc
(
out
->
getMemoryDesc
(),
scales
,
srcPDs
));
CHECK_PRIMITIVE_DESC_EQ
(
out
,
pd
->
dst_primitive_desc
());
}
void
MKLDNNAddtoLayer
::
resetFwdPipeline
(
std
::
vector
<
primitive
>&
pipeline
,
std
::
shared_ptr
<
sum
::
primitive_desc
>&
pd
,
std
::
vector
<
MKLDNNMatrixPtr
>&
inputs
,
MKLDNNMatrixPtr
&
out
)
{
std
::
vector
<
primitive
::
at
>
srcs
;
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
i
++
)
{
srcs
.
push_back
(
*
(
inputs
[
i
]));
}
fwd_
.
reset
(
new
sum
(
*
pd
,
srcs
,
*
out
));
pipeline
.
push_back
(
*
fwd_
);
}
void
MKLDNNAddtoLayer
::
resetBwdBuffers
(
std
::
vector
<
MKLDNNMatrixPtr
>&
inputs
,
MKLDNNMatrixPtr
&
out
)
{
CHECK
(
outVal_
);
resetOutGrad
(
out
,
outVal_
->
getPrimitiveDesc
());
CHECK
(
out
);
inputs
.
resize
(
inputLayers_
.
size
());
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
i
++
)
{
resetInGrad
(
inputs
[
i
],
inVal_
->
getPrimitiveDesc
(),
i
);
CHECK_PRIMITIVE_DESC_EQ
(
inputs
[
i
],
out
->
getPrimitiveDesc
());
}
}
}
// namespace paddle
paddle/gserver/layers/MKLDNNAddtoLayer.h
0 → 100644
浏览文件 @
7a1d5e9d
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "MKLDNNLayer.h"
#include "mkldnn.hpp"
namespace
paddle
{
/**
* @brief A subclass of MKLDNNLayer Addto layer.
*
* The config file api is mkldnn_addto
*/
class
MKLDNNAddtoLayer
:
public
MKLDNNLayer
{
protected:
std
::
vector
<
MKLDNNMatrixPtr
>
inVals_
;
std
::
vector
<
MKLDNNMatrixPtr
>
inGrads_
;
// layer size == ic * ih * iw == oc * oh *ow, and can not be changed
size_t
layerSize_
;
// TODO(TJ): this part has not been optimized by MKL-DNN
std
::
unique_ptr
<
Weight
>
biases_
;
public:
explicit
MKLDNNAddtoLayer
(
const
LayerConfig
&
config
)
:
MKLDNNLayer
(
config
)
{}
~
MKLDNNAddtoLayer
()
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
override
;
void
reshape
(
int
&
bs
,
int
&
ic
,
int
&
ih
,
int
&
iw
,
int
oc
,
int
&
oh
,
int
&
ow
)
override
;
void
resetFwd
(
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
override
;
void
resetBwd
(
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
override
;
void
updateWeights
(
const
UpdateCallback
&
callback
)
override
;
void
printValueFormat
()
override
{
for
(
size_t
i
=
0
;
i
<
inVals_
.
size
();
++
i
)
{
VLOG
(
MKLDNN_FMTS
)
<<
i
<<
" input: "
<<
inVals_
[
i
]
->
getFormat
()
<<
" >>>"
;
}
if
(
outVal_
)
{
VLOG
(
MKLDNN_FMTS
)
<<
outVal_
->
getFormat
()
<<
" >>> "
;
}
if
(
extOutVal_
)
{
VLOG
(
MKLDNN_FMTS
)
<<
extOutVal_
->
getFormat
();
}
}
void
printGradFormat
()
override
{
if
(
extOutGrad_
)
{
VLOG
(
MKLDNN_FMTS
)
<<
extOutGrad_
->
getFormat
();
}
if
(
outGrad_
)
{
VLOG
(
MKLDNN_FMTS
)
<<
outGrad_
->
getFormat
()
<<
" <<< "
;
}
for
(
size_t
i
=
0
;
i
<
inGrads_
.
size
();
++
i
)
{
VLOG
(
MKLDNN_FMTS
)
<<
i
<<
" input: "
<<
inGrads_
[
i
]
->
getFormat
()
<<
"<<<"
;
}
}
protected:
/**
* Forward functions: reset buffers(inputs, output, bias),
* reset primitive descriptor,
* reset pipeline.
*/
void
resetFwdBuffers
(
std
::
vector
<
MKLDNNMatrixPtr
>&
inputs
,
MKLDNNMatrixPtr
&
out
);
void
resetFwdPD
(
std
::
shared_ptr
<
mkldnn
::
sum
::
primitive_desc
>&
pd
,
std
::
vector
<
MKLDNNMatrixPtr
>&
inputs
,
MKLDNNMatrixPtr
out
);
void
resetFwdPipeline
(
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
,
std
::
shared_ptr
<
mkldnn
::
sum
::
primitive_desc
>&
pd
,
std
::
vector
<
MKLDNNMatrixPtr
>&
inputs
,
MKLDNNMatrixPtr
&
out
);
/**
* Backward functions: reset buffers(inputs, output, bias)
*/
void
resetBwdBuffers
(
std
::
vector
<
MKLDNNMatrixPtr
>&
inputs
,
MKLDNNMatrixPtr
&
out
);
};
}
// namespace paddle
paddle/gserver/layers/MKLDNNLayer.cpp
浏览文件 @
7a1d5e9d
...
...
@@ -77,7 +77,7 @@ void MKLDNNLayer::forward(PassType passType) {
needResetBwd_
=
true
;
}
if
(
inputLayers_
[
0
]
->
getType
()
==
"data"
)
{
if
(
inputLayers_
[
0
]
->
getType
()
==
"data"
&&
inputLayers_
.
size
()
==
1
)
{
// Update input value data when input layer is "data" type,
// since the input value data address might be changed.
CHECK
(
extInVal_
);
...
...
@@ -171,14 +171,16 @@ void MKLDNNLayer::resetWithMatrix(MKLDNNMatrixPtr& dnn,
}
void
MKLDNNLayer
::
resetInValue
(
MKLDNNMatrixPtr
&
in
,
const
std
::
shared_ptr
<
memory
::
primitive_desc
>&
intPD
)
{
MKLDNNMatrixPtr
&
in
,
const
std
::
shared_ptr
<
memory
::
primitive_desc
>&
intPD
,
size_t
inputIdx
)
{
cvtInVal_
=
nullptr
;
extInVal_
=
nullptr
;
in
=
nullptr
;
CHECK_GT
(
bs_
*
ic_
*
ih_
*
iw_
,
0
);
auto
extPD
=
MKLDNNMatrix
::
createPrimitiveDesc
(
{
bs_
,
ic_
,
ih_
,
iw_
},
format
::
nchw
,
engine_
);
const
MatrixPtr
&
inMat
=
inputLayers_
[
0
]
->
getOutputValue
();
const
MatrixPtr
&
inMat
=
inputLayers_
[
inputIdx
]
->
getOutputValue
();
in
=
std
::
dynamic_pointer_cast
<
MKLDNNMatrix
>
(
inMat
);
CHECK_EQ
(
inputIsOnlyMKLDNN
(),
in
!=
nullptr
);
if
(
in
==
nullptr
||
in
->
getFormat
()
==
format
::
nc
)
{
...
...
@@ -216,11 +218,12 @@ void MKLDNNLayer::resetOutValue(MKLDNNMatrixPtr& out,
}
void
MKLDNNLayer
::
resetInGrad
(
MKLDNNMatrixPtr
&
in
,
memory
::
primitive_desc
intPD
)
{
memory
::
primitive_desc
intPD
,
size_t
inputIdx
)
{
cvtInGrad_
=
nullptr
;
extInGrad_
=
nullptr
;
in
=
nullptr
;
LayerPtr
&
input
=
inputLayers_
[
0
];
LayerPtr
&
input
=
inputLayers_
[
inputIdx
];
if
(
input
->
getOutputGrad
()
==
nullptr
)
{
// no need input grad
return
;
...
...
@@ -245,7 +248,6 @@ void MKLDNNLayer::resetInGrad(MKLDNNMatrixPtr& in,
return
;
}
// need create reorder
// TODO(TJ): add macro definition to simplify it
CHECK
(
extInVal_
!=
nullptr
&&
isPaddleFormat
(
extInVal_
->
getFormat
()))
<<
"should have external input value and the format must be nchw(nc)"
;
extInGrad_
=
MKLDNNMatrix
::
create
(
extInVal_
->
getPrimitiveDesc
(),
inMat
);
...
...
paddle/gserver/layers/MKLDNNLayer.h
浏览文件 @
7a1d5e9d
...
...
@@ -199,7 +199,8 @@ protected:
*/
void
resetInValue
(
MKLDNNMatrixPtr
&
in
,
const
std
::
shared_ptr
<
mkldnn
::
memory
::
primitive_desc
>&
intPD
=
nullptr
);
const
std
::
shared_ptr
<
mkldnn
::
memory
::
primitive_desc
>&
intPD
=
nullptr
,
size_t
inputIdx
=
0
);
/**
* reset output value from internal primitive desc.
...
...
@@ -212,7 +213,9 @@ protected:
* reset input grad from internal primitive desc.
* reset both internal and external buffer and create reorder if necessary.
*/
void
resetInGrad
(
MKLDNNMatrixPtr
&
in
,
mkldnn
::
memory
::
primitive_desc
intPD
);
void
resetInGrad
(
MKLDNNMatrixPtr
&
in
,
mkldnn
::
memory
::
primitive_desc
intPD
,
size_t
inputIdx
=
0
);
/**
* reset output grad from internal primitive desc.
...
...
paddle/gserver/tests/MKLDNNTester.cpp
浏览文件 @
7a1d5e9d
...
...
@@ -132,7 +132,7 @@ void MKLDNNTester::checkForward() {
VLOG
(
MKLDNN_TESTS
)
<<
"Check Forward"
;
printTopDatas
();
double
delta
=
compareMatrix
(
dnnLayer_
->
getOutputValue
(),
ref
Layer_
->
getOutputValue
());
compareMatrix
(
refLayer_
->
getOutputValue
(),
dnn
Layer_
->
getOutputValue
());
EXPECT_LE
(
fabs
(
delta
),
eps_
);
}
...
...
@@ -147,7 +147,7 @@ void MKLDNNTester::checkBackwardData() {
VLOG
(
MKLDNN_ALL
)
<<
"Reference Backward Result: InputGrad "
<<
i
;
printMatrix
(
refDiff
);
double
delta
=
compareMatrix
(
dnnDiff
,
ref
Diff
);
double
delta
=
compareMatrix
(
refDiff
,
dnn
Diff
);
EXPECT_LE
(
fabs
(
delta
),
eps_
);
if
(
isBN
)
{
// the other two inputs in batch norm are for moving mean and var
...
...
@@ -177,7 +177,7 @@ void MKLDNNTester::checkBackwardWgts() {
<<
parameters_
[
REF
][
i
]
->
getName
();
printVector
(
ref
);
double
delta
=
compareVector
(
dnn
,
ref
);
double
delta
=
compareVector
(
ref
,
dnn
);
EXPECT_LE
(
fabs
(
delta
),
eps_
);
}
...
...
paddle/gserver/tests/test_MKLDNN.cpp
浏览文件 @
7a1d5e9d
...
...
@@ -271,20 +271,53 @@ TEST(MKLDNNLayer, BatchNormLayer) {
testBatchNormLayer
({
16
,
32
,
16
,
16
});
}
struct
test
Act
Desc
{
struct
test
Image
Desc
{
int
bs
,
ic
,
ih
,
iw
;
};
static
void
getAddtoConfig
(
TestConfig
&
cfg
,
const
testActDesc
&
pm
)
{
static
void
getAddtoConfig
(
TestConfig
&
cfg
,
const
testImageDesc
&
pm
,
const
size_t
nInputs
=
1
)
{
cfg
.
biasSize
=
0
;
cfg
.
layerConfig
.
set_type
(
"addto"
);
size_t
layerSize
=
pm
.
ic
*
pm
.
ih
*
pm
.
iw
;
cfg
.
layerConfig
.
set_size
(
layerSize
);
cfg
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
layerSize
,
0
});
cfg
.
layerConfig
.
add_inputs
();
cfg
.
layerConfig
.
set_active_type
(
"relu"
);
for
(
size_t
i
=
0
;
i
<
nInputs
;
++
i
)
{
std
::
stringstream
ss
;
ss
<<
"layer_"
<<
i
;
cfg
.
inputDefs
.
push_back
({
INPUT_DATA
,
ss
.
str
(),
layerSize
,
0
});
LayerInputConfig
*
input
=
cfg
.
layerConfig
.
add_inputs
();
ImageConfig
*
img_conf
=
input
->
mutable_image_conf
();
img_conf
->
set_channels
(
pm
.
ic
);
img_conf
->
set_img_size_y
(
pm
.
ih
);
img_conf
->
set_img_size
(
pm
.
iw
);
}
}
void
testAddtoLayer
(
const
testImageDesc
&
pm
,
const
size_t
nInputs
)
{
CHECK_GE
(
nInputs
,
1
);
TestConfig
dnnConfig
;
getAddtoConfig
(
dnnConfig
,
pm
,
nInputs
);
dnnConfig
.
layerConfig
.
set_type
(
"mkldnn_addto"
);
// TODO(TJ): test with bias
for
(
auto
withBias
:
{
false
})
{
if
(
withBias
)
{
dnnConfig
.
biasSize
=
pm
.
ic
*
pm
.
ih
*
pm
.
iw
;
}
else
{
dnnConfig
.
biasSize
=
0
;
}
RUN_MKLDNN_TEST_LAYER
(
dnnConfig
,
"addto"
,
pm
)
}
}
TEST
(
MKLDNNLayer
,
AddtoLayer
)
{
testAddtoLayer
({
16
,
5
,
14
,
14
},
1
);
testAddtoLayer
({
8
,
10
,
8
,
8
},
2
);
testAddtoLayer
({
4
,
12
,
1
,
1
},
3
);
}
void
testActivation
(
std
::
string
actType
,
const
test
Act
Desc
&
pm
)
{
void
testActivation
(
std
::
string
actType
,
const
test
Image
Desc
&
pm
)
{
// TODO(TJ): remove me when paddle support elu activation
if
(
actType
==
"mkldnn_elu"
)
{
return
;
...
...
paddle/operators/activation_op.cc
浏览文件 @
7a1d5e9d
...
...
@@ -44,7 +44,7 @@ class SigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"Input of Sigmoid operator"
);
AddOutput
(
"Y"
,
"Output of Sigmoid operator"
);
AddComment
(
R"DOC(
Sigmoid
activation o
perator.
Sigmoid
Activation O
perator.
$y = 1 / (1 + e^{-x})$
...
...
@@ -60,7 +60,7 @@ class LogSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"Input of LogSigmoid operator"
);
AddOutput
(
"Y"
,
"Output of LogSigmoid operator"
);
AddComment
(
R"DOC(
Logsigmoid
activation o
perator.
Logsigmoid
Activation O
perator.
$y = \log(1 / (1 + e^{-x}))$
...
...
@@ -75,7 +75,7 @@ class ExpOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"Input of Exp operator"
);
AddOutput
(
"Y"
,
"Output of Exp operator"
);
AddComment
(
R"DOC(
Exp
activation o
perator.
Exp
Activation O
perator.
$y = e^x$
...
...
@@ -90,7 +90,7 @@ class ReluOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"Input of Relu operator"
);
AddOutput
(
"Y"
,
"Output of Relu operator"
);
AddComment
(
R"DOC(
Relu
activation o
perator.
Relu
Activation O
perator.
$y = \max(x, 0)$
...
...
@@ -109,7 +109,7 @@ class LeakyReluOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
AttrType
>
(
"alpha"
,
"The small negative slope"
)
.
SetDefault
(
static_cast
<
AttrType
>
(
0.02
f
));
AddComment
(
R"DOC(
LeakyRelu
activation o
perator.
LeakyRelu
Activation O
perator.
$y = \max(x, \alpha * x)$
...
...
@@ -128,7 +128,7 @@ class SoftShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
AttrType
>
(
"lambda"
,
"non-negative offset"
)
.
SetDefault
(
static_cast
<
AttrType
>
(
0.5
f
));
AddComment
(
R"DOC(
Softshrink
activation o
perator.
Softshrink
Activation O
perator.
$$
y = \begin{cases}
...
...
@@ -149,7 +149,7 @@ class TanhOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"Input of Tanh operator"
);
AddOutput
(
"Y"
,
"Output of Tanh operator"
);
AddComment
(
R"DOC(
Tanh
activation o
perator.
Tanh
Activation O
perator.
$$y = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
...
...
@@ -165,7 +165,7 @@ class TanhShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"Input of TanhShrink operator"
);
AddOutput
(
"Y"
,
"Output of TanhShrink operator"
);
AddComment
(
R"DOC(
TanhShrink
activation o
perator.
TanhShrink
Activation O
perator.
$$y = x - \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
...
...
@@ -184,7 +184,7 @@ class HardShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
AttrType
>
(
"threshold"
,
"The value of threshold for HardShrink"
)
.
SetDefault
(
static_cast
<
AttrType
>
(
0.5
));
AddComment
(
R"DOC(
HardShrink
activation o
perator.
HardShrink
Activation O
perator.
$$
y = \begin{cases}
...
...
@@ -205,7 +205,7 @@ class SqrtOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"Input of Sqrt operator"
);
AddOutput
(
"Y"
,
"Output of Sqrt operator"
);
AddComment
(
R"DOC(
Sqrt
activation o
perator.
Sqrt
Activation O
perator.
$y = \sqrt{x}$
...
...
@@ -220,7 +220,7 @@ class AbsOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"Input of Abs operator"
);
AddOutput
(
"Y"
,
"Output of Abs operator"
);
AddComment
(
R"DOC(
Abs
activation o
perator.
Abs
Activation O
perator.
$y = |x|$
...
...
@@ -236,7 +236,7 @@ class ReciprocalOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"Input of Reciprocal operator"
);
AddOutput
(
"Y"
,
"Output of Reciprocal operator"
);
AddComment
(
R"DOC(
Reciprocal
activation o
perator.
Reciprocal
Activation O
perator.
$$y = \frac{1}{x}$$
...
...
@@ -251,7 +251,7 @@ class LogOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"Input of Log operator"
);
AddOutput
(
"Y"
,
"Output of Log operator"
);
AddComment
(
R"DOC(
Log
activation o
perator.
Log
Activation O
perator.
$y = \ln(x)$
...
...
@@ -268,7 +268,7 @@ class SquareOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"Input of Square operator"
);
AddOutput
(
"Y"
,
"Output of Square operator"
);
AddComment
(
R"DOC(
Square
activation o
perator.
Square
Activation O
perator.
$y = x^2$
...
...
@@ -284,7 +284,7 @@ class SoftplusOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"Input of Softplus operator"
);
AddOutput
(
"Y"
,
"Output of Softplus operator"
);
AddComment
(
R"DOC(
Softplus
activation o
perator.
Softplus
Activation O
perator.
$y = \ln(1 + e^{x})$
...
...
@@ -300,7 +300,7 @@ class SoftsignOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"Input of Softsign operator"
);
AddOutput
(
"Y"
,
"Output of Softsign operator"
);
AddComment
(
R"DOC(
Softsign
activation o
perator.
Softsign
Activation O
perator.
$$y = \frac{x}{1 + |x|}$$
...
...
@@ -320,7 +320,7 @@ class BReluOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
AttrType
>
(
"t_max"
,
"The max marginal value of BRelu"
)
.
SetDefault
(
static_cast
<
AttrType
>
(
24
));
AddComment
(
R"DOC(
BRelu
activation o
perator.
BRelu
Activation O
perator.
$y = \max(\min(x, t_{min}), t_{max})$
...
...
@@ -339,7 +339,7 @@ class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
AttrType
>
(
"threshold"
,
"The threshold value of SoftRelu"
)
.
SetDefault
(
static_cast
<
AttrType
>
(
40
));
AddComment
(
R"DOC(
SoftRelu
activation o
perator.
SoftRelu
Activation O
perator.
$y = \ln(1 + \exp(\max(\min(x, threshold), threshold))$
...
...
@@ -357,7 +357,7 @@ class ELUOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
AttrType
>
(
"alpha"
,
"The alpha value of ELU"
)
.
SetDefault
(
static_cast
<
AttrType
>
(
1.0
f
));
AddComment
(
R"DOC(
ELU
activation o
perator.
ELU
Activation O
perator.
Applies the following element-wise computation on the input according to
https://arxiv.org/abs/1511.07289.
...
...
@@ -378,7 +378,7 @@ class Relu6OpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
AttrType
>
(
"threshold"
,
"The threshold value of Relu6"
)
.
SetDefault
(
static_cast
<
AttrType
>
(
6
));
AddComment
(
R"DOC(
Relu6
activation o
perator.
Relu6
Activation O
perator.
$y = \min(\max(0, x), 6)$
...
...
@@ -396,7 +396,7 @@ class PowOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
AttrType
>
(
"factor"
,
"The exponential factor of Pow"
)
.
SetDefault
(
static_cast
<
AttrType
>
(
1
));
AddComment
(
R"DOC(
Pow
activation o
perator.
Pow
Activation O
perator.
$y = x^{factor}$
...
...
@@ -416,7 +416,7 @@ class STanhOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
AttrType
>
(
"scale_b"
,
"The scale parameter of b for the input"
)
.
SetDefault
(
static_cast
<
AttrType
>
(
1.7159
));
AddComment
(
R"DOC(
STanh
activation o
perator.
STanh
Activation O
perator.
$$y = b * \frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$
...
...
@@ -435,7 +435,7 @@ class ThresholdedReluOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
AttrType
>
(
"threshold"
,
"The threshold location of activation"
)
.
SetDefault
(
static_cast
<
AttrType
>
(
1.0
));
AddComment
(
R"DOC(
ThresholdedRelu
activation o
perator.
ThresholdedRelu
Activation O
perator.
$$
y = \begin{cases}
...
...
@@ -461,7 +461,7 @@ class HardSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
AttrType
>
(
"offset"
,
"Offset for linear approximation of sigmoid"
)
.
SetDefault
(
static_cast
<
AttrType
>
(
0.5
));
AddComment
(
R"DOC(
HardSigmoid
activation o
perator.
HardSigmoid
Activation O
perator.
Segment-wise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
which is much faster than sigmoid.
...
...
paddle/operators/adadelta_op.cc
浏览文件 @
7a1d5e9d
...
...
@@ -64,16 +64,15 @@ class AdadeltaOpMaker : public framework::OpProtoAndCheckerMaker {
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"Param"
,
"(Tensor) Input parameter"
);
AddInput
(
"Grad"
,
"(Tensor) Input gradient"
);
AddInput
(
"AvgSquaredGrad"
,
"(Tensor) Input expectation of squared gradient"
);
AddInput
(
"AvgSquaredGrad"
,
"(Tensor) Input average of squared gradient"
);
AddInput
(
"AvgSquaredUpdate"
,
"(Tensor) Input
expectation
of squared parameter updates"
);
"(Tensor) Input
average
of squared parameter updates"
);
AddOutput
(
"ParamOut"
,
"(Tensor) Output parameter"
);
AddOutput
(
"AvgSquaredGradOut"
,
"(Tensor) Output
expectation
of squared gradient"
);
"(Tensor) Output
average
of squared gradient"
);
AddOutput
(
"AvgSquaredUpdateOut"
,
"(Tensor) Output
expectation
of squared parameter updates"
);
"(Tensor) Output
average
of squared parameter updates"
);
AddAttr
<
float
>
(
"rho"
,
"(float, default 0.95) Exponential decay rate "
...
...
@@ -84,22 +83,21 @@ class AdadeltaOpMaker : public framework::OpProtoAndCheckerMaker {
"numerical stability"
)
.
SetDefault
(
1.0e-6
f
);
AddComment
(
R"DOC(
Adadelta
Updates Operato
r.
Adadelta
Optimize
r.
This implements the Adadelta optimizer[1]. Adadelta is a per-dimension
adaptive learning rate method for gradient descent.
Adadelta optimizer is implemented as explained in:
https://arxiv.org/abs/1212.5701
Adadelta is a per-dimension adaptive learning rate method used
for gradient descent.
Adadelta updates:
Adadelta updates
are as follows
:
avg_squared_grad_out = rho * avg_squared_grad + (1 - rho) * grad * grad
param_update = - sqrt((avg_squared_update + epsilon) /
(avg_squared_grad_out + epsilon)) * grad
avg_squared_update_out = rho * avg_squared_update + (1 - rho) * param_update**2
param_out = param + param_update
References:
[1] ADADELTA: An Adaptive Learning Rate Method
https://arxiv.org/abs/1212.5701
$$avgSquaredGradOut = \rho * avgSquaredGrad + (1 - \rho) * grad * grad \break
paramUpdate = - $\sqrt{((avgSquaredUpdate + \epsilon) /
(avgSquaredGrad_out + \epsilon))}$ * grad \break
avgSquaredUpdateOut = \rho * avgSquaredUpdate + (1 - \rho) *
{(paramUpdate)}^2 \break
paramOut = param + paramUpdate$$
)DOC"
);
}
...
...
paddle/operators/adagrad_op.cc
浏览文件 @
7a1d5e9d
...
...
@@ -73,12 +73,16 @@ class AdagradOpMaker : public framework::OpProtoAndCheckerMaker {
Adaptive Gradient Algorithm (Adagrad).
moment_out = moment + grad * grad
param_out = param - learning_rate * grad / (sqrt(moment_out) + epsilon)
The update is done as follows:
$$momentOut = moment + grad * grad \break
paramOut = param - learningRate * grad / ($\sqrt{momentOut}$ + \epsilon) \break
$$
The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
does not have the epsilon attribute. It is added here for numerical stability
by avoiding division by zero.
does not have the epsilon attribute. It is added here in our implementation
as also proposed here: http://cs231n.github.io/neural-networks-3/#ada
for numerical stability to avoid the division by zero error.
)DOC"
);
}
...
...
paddle/operators/adam_op.cc
浏览文件 @
7a1d5e9d
...
...
@@ -51,8 +51,8 @@ class AdamOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ
(
framework
::
product
(
beta1_pow_dims
),
1
,
"Beta1 power accumulator should have 1 dimension"
);
auto
beta2_pow_dims
=
ctx
->
GetInputDim
(
"Beta2Pow"
);
PADDLE_ENFORCE_EQ
(
framework
::
product
(
beta
1
_pow_dims
),
1
,
"Beta
1
power accumulator should have 1 dimension"
);
PADDLE_ENFORCE_EQ
(
framework
::
product
(
beta
2
_pow_dims
),
1
,
"Beta
2
power accumulator should have 1 dimension"
);
auto
param_dims
=
ctx
->
GetInputDim
(
"Param"
);
PADDLE_ENFORCE_EQ
(
...
...
@@ -60,10 +60,10 @@ class AdamOp : public framework::OperatorWithKernel {
"Param and Grad input of AdamOp should have same dimension"
);
PADDLE_ENFORCE_EQ
(
param_dims
,
ctx
->
GetInputDim
(
"Moment1"
),
"Param and Moment input of AdamOp should have same dimension"
);
"Param and Moment
1
input of AdamOp should have same dimension"
);
PADDLE_ENFORCE_EQ
(
param_dims
,
ctx
->
GetInputDim
(
"Moment2"
),
"Param and
InfNorm
input of AdamOp should have same dimension"
);
"Param and
Moment2
input of AdamOp should have same dimension"
);
ctx
->
SetOutputDim
(
"ParamOut"
,
param_dims
);
ctx
->
SetOutputDim
(
"Moment1Out"
,
param_dims
);
...
...
@@ -103,23 +103,20 @@ class AdamOpMaker : public framework::OpProtoAndCheckerMaker {
.
SetDefault
(
1.0e-8
f
);
AddComment
(
R"DOC(
Adam
Updates Operato
r.
Adam
Optimize
r.
This implements the Adam optimizer from Section 2 of the Adam
paper[1]. Adam is a first-order gradient-based optimization
method based on adaptive estimates of lower-order moments.
paper : https://arxiv.org/abs/1412.6980.
Adam is a first-order gradient-based optimization method based on
adaptive estimates of lower-order moments.
Adam updates:
moment1_out = beta1 * moment1 + (1 − beta1) * grad
moment2_out = beta2 * moment2 + (1 − beta2) * grad * grad
learning_rate_t = learning_rate_t *
sqrt(1 - beta2_pow) / (1 - beta1_pow)
param_out = param - learning_rate_t * moment1/ (sqrt(moment2) + epsilon)
References:
[1] Adam: A Method for Stochastic Optimization
(https://arxiv.org/abs/1412.6980)
$$moment_1_{out} = \beta_1 * moment_1 + (1 - \beta_1) * grad \break
moment_2_{out} = \beta_2 * moment_2 + (1 - \beta_2) * grad * grad \break
learningRate = learningRate *
$\sqrt{(1 - \beta_2_{pow})}$ / (1 - \beta_1_{pow}) \break
paramOut = param - learningRate * moment_1/ ($\sqrt{(moment_2)} + \epsilon)$$
)DOC"
);
}
...
...
paddle/operators/adamax_op.cc
浏览文件 @
7a1d5e9d
...
...
@@ -99,26 +99,22 @@ class AdamaxOpMaker : public framework::OpProtoAndCheckerMaker {
"Constant for numerical stability"
)
.
SetDefault
(
1.0e-8
f
);
AddComment
(
R"DOC(
Adamax
Updates Operato
r.
Adamax
Optimize
r.
This implements
the Adamax optimizer from Section 7 of the Adam
paper
[1]
. Adamax is a variant of the
We implement
the Adamax optimizer from Section 7 of the Adam
paper
: https://arxiv.org/abs/1412.6980
. Adamax is a variant of the
Adam algorithm based on the infinity norm.
Adamax updates:
moment_out = beta1 * moment + (1 - beta1) * grad
inf
_norm_out = max(beta2 * inf_norm + epsilon, abs(grad))
learning
_rate_t = learning_rate/(1 - beta1_pow)
param
_out = param - learning_rate_t * moment_out/inf_norm_out
$$momentOut = \beta_1 * moment + (1 - \beta_1) * grad \break
inf
NormOut = max(\beta_2 * infNorm + \epsilon, |grad|) \break
learning
Rate = learningRate /(1 - \beta_1_{pow}) \break
param
Out = param - learningRate * momentPut / infNormOut$$
The original paper does not have an epsilon attribute.
However, it is added here for numerical stability
by preventing divide by 0.
References:
[1] Adam: A Method for Stochastic Optimization
(https://arxiv.org/abs/1412.6980)
However, it is added here for numerical stability to prevent the
division by 0 error.
)DOC"
);
}
...
...
paddle/operators/auc_op.cc
浏览文件 @
7a1d5e9d
...
...
@@ -23,11 +23,11 @@ class AucOp : public framework::OperatorWithKernel {
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Out"
),
"Input of Out
must be initialized
."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Out"
),
"Input of Out
should not be null
."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Indices"
),
"Input of Indices
must be initialized
."
);
"Input of Indices
should not be null
."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Label"
),
"Input of Label
must be initialized
."
);
"Input of Label
should not be null
."
);
auto
inference_height
=
ctx
->
GetInputDim
(
"Out"
)[
0
];
auto
label_height
=
ctx
->
GetInputDim
(
"Label"
)[
0
];
...
...
@@ -52,20 +52,20 @@ class AucOpMaker : public framework::OpProtoAndCheckerMaker {
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"Out"
,
"A floating point 2D tensor, values are in the range [0, 1]."
"Each row is
descend sorted
. This input should be the"
"Each row is
sorted in descending order
. This input should be the"
"output of topk."
"Typically, this tensor indicates the probability of each label"
);
AddInput
(
"Indices"
,
"An int 2D tensor, indicating the indices of original"
"tensor before sort
. Typically, this tensor indicates which label
"
"the probability stands for."
);
"tensor before sort
ing. Typically, this tensor indicates which
"
"
label
the probability stands for."
);
AddInput
(
"Label"
,
"A 2D int tensor indicating the label of the training data."
"The height is batch size and width is always 1."
);
// TODO(typhoonzero): support weight input
AddOutput
(
"AUC"
,
"A scalar representing the "
"current area-under-curve."
);
"current area-under-
the-
curve."
);
AddAttr
<
std
::
string
>
(
"curve"
,
"Curve type, can be 'ROC' or 'PR'."
)
.
SetDefault
(
"ROC"
);
...
...
@@ -74,19 +74,18 @@ class AucOpMaker : public framework::OpProtoAndCheckerMaker {
" roc curve."
)
.
SetDefault
(
200
);
AddComment
(
R"DOC(Computes the AUC according forward output and label.
Best to use for binary classification evaluations.
AddComment
(
R"DOC(
Area Under The Curve (AUC) Operator.
This implementation computes the AUC according to forward output and label.
It is used very widely in binary classification evaluation. As a note:
If input label contains values other than 0 and 1, it will be cast
to bool.
You can find the definations here:
to bool. You can find the relevant definitions here:
https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve
Possible curves are
:
-
ROC: Receiver operating characteristic
-
PR: Precision Recall
There are two types of possible curves
:
1.
ROC: Receiver operating characteristic
2.
PR: Precision Recall
)DOC"
);
}
};
...
...
paddle/operators/batch_norm_op.cc
浏览文件 @
7a1d5e9d
...
...
@@ -70,7 +70,7 @@ class BatchNormOp : public framework::OperatorWithKernel {
:
x_dims
[
x_dims
.
size
()
-
1
]);
PADDLE_ENFORCE
(
x_dims
.
size
()
>=
3
&&
x_dims
.
size
()
<=
5
,
"Input
x
must have 3 to 5 dimensions."
);
"Input
X
must have 3 to 5 dimensions."
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"Scale"
).
size
(),
1UL
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"Scale"
)[
0
],
C
);
...
...
@@ -97,16 +97,16 @@ class BatchNormOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"The input tensor"
);
AddInput
(
"Scale"
,
"Scale is a 1-dimensional tensor of size C "
"t
o be
applied to the output"
);
"t
hat is
applied to the output"
);
AddInput
(
"Bias"
,
"Bias is a 1-dimensional tensor of size C "
"t
o be
applied to the output"
);
"t
hat is
applied to the output"
);
AddInput
(
"Mean"
,
"The global mean (for training) or
the
"
"The global mean (for training) or "
"estimated mean (for testing)"
);
AddInput
(
"Variance"
,
"The global variance (for training) "
"or
the
estimated Variance (for testing)"
);
"or estimated Variance (for testing)"
);
AddOutput
(
"Y"
,
"result after normalization"
);
AddOutput
(
"MeanOut"
,
"Share memory with Mean. "
...
...
@@ -123,10 +123,14 @@ class BatchNormOpMaker : public framework::OpProtoAndCheckerMaker {
"will apply to output when training"
)
.
AsIntermediate
();
AddComment
(
R"DOC(
https://arxiv.org/pdf/1502.03167.pdf
Batch Normalization.
NHWC `[batch, in_height, in_width, in_channels]`
NCHW `[batch, in_channels, in_height, in_width]`
Batch Norm has been implemented as discussed in the paper:
https://arxiv.org/pdf/1502.03167.pdf
Can be used as a normalizer function for conv2d and fully_connected operations.
The required data format for this layer is one of the following:
1. NHWC `[batch, in_height, in_width, in_channels]`
2. NCHW `[batch, in_channels, in_height, in_width]`
)DOC"
);
}
...
...
paddle/operators/cast_op.cc
浏览文件 @
7a1d5e9d
...
...
@@ -23,13 +23,17 @@ class CastOpProtoMaker : public framework::OpProtoAndCheckerMaker {
CastOpProtoMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"the input tensor of cast op"
);
AddOutput
(
"Out"
,
"the output tensor of cast op"
);
AddComment
(
R"DOC(Cast operator.
cast the input tensor to other data type.
)DOC"
);
AddInput
(
"X"
,
"The input tensor of cast op"
);
AddOutput
(
"Out"
,
"The output tensor of cast op"
);
AddAttr
<
int
>
(
"out_data_type"
,
"output data type"
);
AddAttr
<
int
>
(
"in_data_type"
,
"input data type"
);
AddComment
(
R"DOC(
Cast Operator.
This Operator casts the input tensor to another data type and
returns tha Output Tensor.
)DOC"
);
}
};
...
...
paddle/operators/clip_op.cc
浏览文件 @
7a1d5e9d
...
...
@@ -49,8 +49,11 @@ class ClipOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
AttrType
>
(
"max"
,
"(float)Maximum value, above which element is replaced by max"
);
AddComment
(
R"DOC(
Clip operator limits the given input within an interval. The interval is
Clip Operator.
The clip operator limits the value of given input within an interval. The interval is
specified with arguments 'min' and 'max'.
)DOC"
);
}
};
...
...
paddle/operators/linear_chain_crf_op.cc
浏览文件 @
7a1d5e9d
...
...
@@ -23,21 +23,21 @@ class LinearChainCRFOpMaker : public framework::OpProtoAndCheckerMaker {
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"Emission"
,
"(LoDTensor, default
: LoDTensor<float>).
"
"A 2-D LoDTensor with shape [N x D] where N is the size of the "
"(LoDTensor, default
LoDTensor<float>)
"
"A 2-D LoDTensor with shape [N x D]
,
where N is the size of the "
"mini-batch and D is the total tag number. The unscaled emission "
"weight matrix for the linear chain CRF. "
);
AddInput
(
"Transition"
,
"(Tensor, default
: Tensor<float>).
A 2-D Tensor with shape "
"(Tensor, default
Tensor<float>)
A 2-D Tensor with shape "
"[(D + 2) x D]. The learnable parameter for the linear_chain_crf "
"operator. See more details in the operator's comments."
);
AddInput
(
"Label"
,
"(LoDTensor, default
: LoDTensor<int>).
A LoDTensor with shape "
"(LoDTensor, default
LoDTensor<int>)
A LoDTensor with shape "
"[N x 1], where N is the total element number in a mini-batch. "
"The ground truth."
);
AddOutput
(
"Alpha"
,
"(Tensor, default
: Tensor<float>).
A 2-D Tensor with shape [N x D]. "
"(Tensor, default
Tensor<float>)
A 2-D Tensor with shape [N x D]. "
"The forward vectors for the entire batch. Denote it as
\f
$
\a
lpha
\f
$. "
"
\f
$
\a
lpha$
\f
is a memo table used to calculate the normalization "
"factor in CRF.
\f
$
\a
lpha[k, v]$
\f
stores the unnormalized "
...
...
@@ -49,26 +49,28 @@ class LinearChainCRFOpMaker : public framework::OpProtoAndCheckerMaker {
.
AsIntermediate
();
AddOutput
(
"EmissionExps"
,
"(Tensor, default
: Tensor<float>).
A 2-D Tensor with shape [N x D]. "
"(Tensor, default
Tensor<float>)
A 2-D Tensor with shape [N x D]. "
"The exponentials of Input(Emission). This is an intermediate "
"computational result in forward computation, and will be reused in "
"backward computation."
)
.
AsIntermediate
();
AddOutput
(
"TransitionExps"
,
"(Tensor, default
: Tensor<float>).
A 2-D Tensor with shape "
"(Tensor, default
Tensor<float>)
A 2-D Tensor with shape "
"[(D + 2) x D]. The exponentials of Input(Transition). This is an "
"intermediate computational result in forward computation, and "
"will be reused in backward computation."
)
.
AsIntermediate
();
AddOutput
(
"LogLikelihood"
,
"(Tensor, default
: Tensor<float>).
The logarithm of the conditional "
"(Tensor, default
Tensor<float>)
The logarithm of the conditional "
"likelihood of each training sample in a mini-batch. This is a 2-D "
"tensor with shape [S x 1], where S is the sequence number in a "
"mini-batch. Note: S is equal to the sequence number in a mini-batch. "
"The output is no longer a LoDTensor."
);
AddComment
(
R"DOC(
LinearChainCRF Operator.
Conditional Random Field defines an undirected probabilistic graph with nodes
denoting random variables and edges denoting dependencies between these
variables. CRF learns the conditional probability \f$P(Y|X)\f$, where
...
...
@@ -82,29 +84,28 @@ and output must be linear sequences. Thus, the graph of such a CRF is a simple
chain or a line, which results in the linear chain CRF.
This operator implements the Forward-Backward algorithm for the linear chain
CRF. Please
see
http://www.cs.columbia.edu/~mcollins/fb.pdf and
http://cseweb.ucsd.edu/~elkan/250Bwinter2012/loglinearCRFs.pdf for
reference
.
CRF. Please
refer to
http://www.cs.columbia.edu/~mcollins/fb.pdf and
http://cseweb.ucsd.edu/~elkan/250Bwinter2012/loglinearCRFs.pdf for
details
.
Equation:
- Denote Input(Emission) to this operator as \f$x\f$ here.
- The first D values of Input(Transition) to this operator are for starting
1. Denote Input(Emission) to this operator as \f$x\f$ here.
2. The first D values of Input(Transition) to this operator are for starting
weights, denoted as \f$a\f$ here.
-
The next D values of Input(Transition) of this operator are for ending
3.
The next D values of Input(Transition) of this operator are for ending
weights, denoted as \f$b\f$ here.
-
The remaning values of Input(Transition) are for transition weights,
4.
The remaning values of Input(Transition) are for transition weights,
denoted as \f$w\f$ here.
-
Denote Input(Label) as \f$s\f$ here.
5.
Denote Input(Label) as \f$s\f$ here.
The probability of a sequence \f$s\f$ of length \f$L\f$ is defined as:
\f$P(s) = (1/Z) exp(a_{s_1} + b_{s_L}
\f$P(s) = (1/Z)
\
exp(a_{s_1} + b_{s_L}
+ \sum_{l=1}^L x_{s_l}
+ \sum_{l=2}^L w_{s_{l-1},s_l})\f$
where \f$Z\f$ is a normalization value so that the sum of \f$P(s)\f$ over
all possible sequences is \f$1\f$, and \f$x\f$ is the emission feature weight
to the linear chain CRF.
Finaly, the linear chain CRF operator outputs the logarithm of the conditional
Final
l
y, the linear chain CRF operator outputs the logarithm of the conditional
likelihood of each training sample in a mini-batch.
NOTE:
...
...
paddle/operators/margin_rank_loss_op.cc
浏览文件 @
7a1d5e9d
...
...
@@ -55,8 +55,6 @@ class MarginRankLossOpMaker : public framework::OpProtoAndCheckerMaker {
"(2-D tensor with shape [batch_size x 1]) "
"The label indicating X1 ranked higher than X2 or not, "
"can only be +1 or -1."
);
AddAttr
<
T
>
(
"margin"
,
"(scalar, default 0) Margin for MarginRankLossOp."
)
.
SetDefault
(
static_cast
<
T
>
(
0
));
AddOutput
(
"Activated"
,
"(2-D tensor with shape [batch_size x 1]) Intermediate tensor "
"to indicate whether each element of Output(Out) is activated."
)
...
...
@@ -64,23 +62,26 @@ class MarginRankLossOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput
(
"Out"
,
"(2-D tensor with shape [batch_size x 1]) "
"The output loss of MarginRankLoss operator."
);
AddAttr
<
T
>
(
"margin"
,
"(scalar, default 0) Margin for MarginRankLossOp."
)
.
SetDefault
(
static_cast
<
T
>
(
0
));
AddComment
(
R"DOC(
MarginRankLoss Operator.
MarginRankLos
s operator measures the loss given a pair of training sample
Thi
s operator measures the loss given a pair of training sample
{`X1`, `X2`} and the `Label` with attribute `margin`, where `Label = +1`
indicating X1 is ranked higher than `X2`
, otherwise `Label = -1`
. The loss
turns out
indicating X1 is ranked higher than `X2`
and `Label = -1` otherwise
. The loss
is calculated as:
loss(X1, X2, Label) = max(0, -Label * (X1 - X2) + margin).
$loss(X1, X2, Label) = \max(0, -Label * (X1 - X2) + margin)$
The attribute `margin`
involved
here helps make the predictions more robust.
The attribute `margin` here helps make the predictions more robust.
Denote the item ranked higher as the positive sample, otherwise the negative
sample. If the score of the two samples satisfies
positive sample - negative sample < margin,
$positive sample - negative sample < margin$
the pair of samples will contribute to the final loss, which will backprop
o
gate
and train the ranking model to enlarge the difference
of the two score
.
the pair of samples will contribute to the final loss, which will backprop
a
gate
and train the ranking model to enlarge the difference
between the two scores
.
For batch input with size `batch_size`, `X1`, `X2` and `Label`
all have the same shape [batch_size x 1].
...
...
paddle/operators/matmul_op.cc
浏览文件 @
7a1d5e9d
...
...
@@ -144,7 +144,10 @@ class MatMulOpMaker : public framework::OpProtoAndCheckerMaker {
)DOC"
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
The MatMul operator is used to perform (batched) matrix multiplication
MatMul Operator.
This operator is used to perform (batched) matrix multiplication
over the last two dimensions of the input tensors `X` and `Y`.
If a transpose flag is specified, the last two dimensions of the
...
...
@@ -166,7 +169,8 @@ The differences are:
- We add `transpose_X` and `transpose_Y` flags.
Both the input `X` and `Y` can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD with input `X`.
or not. But the output only shares the LoD information with input `X`.
)DOC"
);
}
};
...
...
paddle/operators/mean_op.cc
浏览文件 @
7a1d5e9d
...
...
@@ -36,7 +36,11 @@ class MeanOpMaker : public framework::OpProtoAndCheckerMaker {
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"The input of mean op"
);
AddOutput
(
"Out"
,
"The output of mean op"
);
AddComment
(
R"DOC( Mean Operator
AddComment
(
R"DOC(
Mean Operator.
Out is a scalar which is the mean of all elements in X.
)DOC"
);
}
};
...
...
paddle/operators/minus_op.cc
浏览文件 @
7a1d5e9d
...
...
@@ -52,14 +52,16 @@ class MinusOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"Y"
,
"The right tensor of minus operator."
);
AddOutput
(
"Out"
,
"The output tensor of minus operator."
);
AddComment
(
R"DOC(Minus Operator
AddComment
(
R"DOC(
Minus Operator.
Equation:
Out = X - Y
$Out = X - Y$
Both the input `X` and `Y` can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD with input `X`.
or not. But the output only shares the LoD information with input `X`.
)DOC"
);
}
};
...
...
paddle/operators/modified_huber_loss_op.cc
浏览文件 @
7a1d5e9d
...
...
@@ -43,27 +43,35 @@ class ModifiedHuberLossOpMaker : public framework::OpProtoAndCheckerMaker {
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"The input tensor of modified huber loss op."
"The input tensor of modified huber loss op.
"
"X is 2-D tensor with shape [batch_size, 1]."
);
AddInput
(
"Y"
,
"The target labels of modified huber loss op."
"The shape of Y is same as X. Values of Y must be 0 or 1."
);
"The target labels of modified huber loss op.
"
"The shape of Y is
the
same as X. Values of Y must be 0 or 1."
);
AddOutput
(
"IntermediateVal"
,
"Variable to save intermediate result which will be reused in "
"backward processing."
)
.
AsIntermediate
();
AddOutput
(
"Out"
,
"Classification loss for X."
);
AddComment
(
R"DOC(
Modified huber loss is used in binary classification problem. The shape of
input X and target Y are both [N, 1] and so is the shape of output loss.
Since target Y is not differentiable, cacluating gradient for Y is illegal.
The formulation of modified huber loss is:
L(y, f(x)) = max(0, 1 - yf(x))^2 for yf(x) >= -1,
-4yf(x) otherwise.
Make sure the values of target label Y are in {0, 1} here. The operator will
Modified Huber Loss Operator.
This operator is used in binary classification problem. The shape of
input X and target Y are both [N, 1] and so is the shape of the output loss.
Since target Y is not differentiable, calculating gradient for Y is illegal.
The formula of modified huber loss is:
$$
L(y, f(x)) =
\begin{cases}
(\max(0, 1 - yf(x)))^2, \text{if} \ yf(x) >= -1 \\
-4yf(x), \quad \text{otherwise}
\end{cases}
$$
Make sure the values of target label Y are in {0, 1} here. This operator will
scale values of Y to {-1, +1} when computing losses and gradients.
)DOC"
);
}
};
...
...
paddle/operators/momentum_op.cc
浏览文件 @
7a1d5e9d
...
...
@@ -75,17 +75,23 @@ class MomentumOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput
(
"VelocityOut"
,
"(Tensor) Output updated velocity"
);
AddAttr
<
float
>
(
"mu"
,
"(float) Momentum coefficient"
);
AddAttr
<
bool
>
(
"useNesterov"
,
"(bool) Use Nesterov Momentum"
)
AddAttr
<
bool
>
(
"useNesterov"
,
"(bool, default false) "
"Use Nesterov Momentum"
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
Momentum Algorithm with a flag for Nestrov Moemntum (momentum).
velocity = mu * velocity + gradient
if (use_nesterov):
param = param - gradient * learning_rate + mu * velocity * learning_rate
else:
param = param - learning_rate * velocity
Momentum Optimizer.
This optimizer has a flag for Nestrov Momentum.
The update equations are as follows:
$$
velocity = mu * velocity + gradient \\
if (use\_nesterov): \\
param = param - gradient * learning\_rate + mu * velocity * learning\_rate \\
else: \\
param = param - learning\_rate * velocity. \\
$$
)DOC"
);
}
...
...
paddle/operators/mul_op.cc
浏览文件 @
7a1d5e9d
...
...
@@ -78,6 +78,7 @@ class MulOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput
(
"Out"
,
"The output of mul op"
);
AddAttr
<
int
>
(
"x_num_col_dims"
,
"(int, default 1) "
R"DOC(mul_op can take tensors with more than two dimensions as input `X`,
in that case, tensors will be reshaped to a matrix. The matrix's first
dimension(column length) will be the product of tensor's last
...
...
@@ -88,20 +89,24 @@ class MulOpMaker : public framework::OpProtoAndCheckerMaker {
.
EqualGreaterThan
(
1
);
AddAttr
<
int
>
(
"y_num_col_dims"
,
"(int, default 1) "
R"DOC(mul_op can take tensors with more than two dimensions as input `Y`,
in that case, tensors will be reshaped to a matrix. Just like input `X`.
)DOC"
)
.
SetDefault
(
1
)
.
EqualGreaterThan
(
1
);
AddComment
(
R"DOC(
Mul operator is used to perform matrix multiplication for input X and Y.
Mul Operator.
This operator is used to perform matrix multiplication for input X and Y.
The equation is:
Out = X * Y
$$Out = X * Y$$
Both the input `X` and `Y` can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD with input `X`.
or not. But the output only shares the LoD information with input `X`.
)DOC"
);
}
};
...
...
paddle/operators/multiplex_op.cc
浏览文件 @
7a1d5e9d
...
...
@@ -66,7 +66,8 @@ class MultiplexOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"The candidate tensors of multiplex operator."
)
.
AsDuplicable
();
AddOutput
(
"Out"
,
"The output tensor of multiplex operator."
);
AddComment
(
R"DOC(Multiplex operator
AddComment
(
R"DOC(
Multiplex Operator.
Multiplex multiple tensors according to the index provided by the index tensor.
...
...
@@ -77,10 +78,11 @@ the (Ids[i])-th tensor.
For i-th row of the output tensor:
y[i] = x_{k}[i]
$$y[i] = x_{k}[i]$$
where
y is the output tensor. `x_{k}` is the k-th input tensor
where
`y` is the output tensor, `x_{k}` is the k-th input tensor,
and `k = Ids[i]`.
)DOC"
);
}
};
...
...
paddle/operators/name_convention.md
浏览文件 @
7a1d5e9d
...
...
@@ -44,17 +44,21 @@ public:
AddOutput
(
"Out"
,
"(Tensor) Accumulated output tensor"
);
AddAttr
<
float
>
(
"gamma"
,
"(float, default 1.0) Accumulation multiplier"
).
SetDefault
(
1.0
f
);
AddComment
(
R"DOC(
Accumulate operator accumulates the input tensor to the output tensor. If the
Accumulate Operator.
This operator accumulates the input tensor to the output tensor. If the
output tensor already has the right size, we add to it; otherwise, we first
initialize the output tensor to all zeros, and then do accumulation. Any
further calls to the operator, given that no one else fiddles with the output
in the interim, will do simple accumulations.
Accumulation is done as shown:
Accumulation is done as follows:
Out = 1*X + gamma*Out
where X is the input tensor, Out is the output tensor and gamma is the multiplier
argument.
)DOC"
);
}
};
...
...
paddle/operators/nccl_op.cc
浏览文件 @
7a1d5e9d
...
...
@@ -48,12 +48,17 @@ class NCCLInitOpMaker : public framework::OpProtoAndCheckerMaker {
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddOutput
(
"Communicator"
,
"Create Communicator for communicating between gpus"
);
AddAttr
<
std
::
vector
<
int
>>
(
"gpus"
,
"gpu id lists"
);
AddAttr
<
int
>
(
"data_type"
,
"output data type"
)
AddAttr
<
std
::
vector
<
int
>>
(
"gpus"
,
"(vector<int>) GPU id lists"
);
AddAttr
<
int
>
(
"data_type"
,
"(int, default 5 (FP32)) "
"Output data type"
)
.
SetDefault
(
framework
::
DataType
::
FP32
);
AddComment
(
R"DOC(
create communicator.
)DOC"
);
NCCLInit Operator.
Create communicator.
)DOC"
);
}
};
...
...
@@ -143,11 +148,15 @@ class NCCLAllReduceOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"Communicator"
,
"Communicator for communicating between gpus"
);
AddOutput
(
"Out"
,
"The output of AllReduce op"
);
AddAttr
<
std
::
string
>
(
"reduction"
,
"(string, default 'ncclSum') "
"{'ncclMin', 'ncclMax', 'ncclProd', 'ncclSum'}."
)
.
SetDefault
(
"ncclSum"
);
AddComment
(
R"DOC(
AllReduce the input tensors.
)DOC"
);
NCCLAllReduce Operator.
AllReduce the input tensors.
)DOC"
);
}
};
...
...
@@ -161,14 +170,20 @@ class NCCLReduceOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"Communicator"
,
"Communicator for communicating between gpus"
);
AddOutput
(
"Out"
,
"The output of Reduce op"
);
AddAttr
<
std
::
string
>
(
"reduction"
,
"(string, default 'ncclSum') "
"{'ncclMin', 'ncclMax', 'ncclProd', 'ncclSum'}."
)
.
SetDefault
(
"ncclSum"
);
AddAttr
<
int
>
(
"root"
,
"root gpu of the parameter. if not "
"set(platform::kInvalidGPUId). hashed by name."
)
"(int, default kInvalidGPUId) "
"Root gpu of the parameter. If not, "
"set(platform::kInvalidGPUId). Hashed by name."
)
.
SetDefault
(
platform
::
kInvalidGPUId
);
AddComment
(
R"DOC(
Reduce the tensors)DOC"
);
NCCLReduce Operator.
Reduce the tensors.
)DOC"
);
}
};
...
...
@@ -182,12 +197,16 @@ class NCCLBcastOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"Communicator"
,
"Communicator for communicating between gpus"
);
AddOutput
(
"Out"
,
"The output of Bcast"
);
AddAttr
<
int
>
(
"root"
,
"root gpu of the parameter. if not "
"set(platform::kInvalidGPUId). hashed by name."
)
"(int, default kInvalidGPUId) "
"Root gpu of the parameter. If not, "
"set(platform::kInvalidGPUId). Hashed by name."
)
.
SetDefault
(
platform
::
kInvalidGPUId
);
AddComment
(
R"DOC(
Bcast the tensors.
)DOC"
);
NCCLBcast Operator.
Bcast the tensors.
)DOC"
);
}
};
...
...
paddle/operators/pad_op.cc
浏览文件 @
7a1d5e9d
...
...
@@ -54,41 +54,44 @@ class PadOpMaker : public framework::OpProtoAndCheckerMaker {
"The input of pad op. "
"The input should be a k-D tensor(k > 0 and k < 7)"
);
AddOutput
(
"Out"
,
"The output of pad op."
"The output of pad op.
"
"A tensor with the same shape as X."
);
AddAttr
<
std
::
vector
<
int
>>
(
"paddings"
,
"(vector<int>) "
"A list<int> to describe the padding rules for each dimension. "
"For 2-D image tensor, paddings=[0, 1, 2, 3] means "
"padding 0 row to top, 1 row to bottom, 2 columns to left "
"and 3 columns to right. Size of paddings should be equal to "
"2 * dimension size of the input tensor."
);
AddAttr
<
float
>
(
"pad_value"
,
"(float, default 0.0) "
"The value to fill the padded areas."
)
.
SetDefault
(
0.0
f
);
AddComment
(
R"DOC(
Pad input into output, as specified by paddings and pad_value. The input should be a k-D tensor(k > 0 and k < 7). As an example:
Pad Operator.
Pad input into output, as specified by paddings and pad_value.
The input should be a k-D tensor(k > 0 and k < 7). As an example:
Given:
X = [[1, 2],
[3, 4]]
and
[3, 4]],
paddings = [0, 1, 1, 2]
paddings = [0, 1, 1, 2]
,
and
pad_value = 0
pad_value = 0
,
then we get
we have:
Out = [[0, 1, 2, 0, 0]
[0, 3, 4, 0, 0]
[0, 0, 0, 0, 0]]
)DOC"
);
AddAttr
<
std
::
vector
<
int
>>
(
"paddings"
,
"A list<int> to describes padding rules for each dimension."
" For 2-D image tensor, paddings=[0, 1, 2, 3] means"
" padding 0 row to top, 1 row to bottom, 2 columns to left"
" and 3 columns to right.Size of paddings should be equal to"
" 2 * dimension size of input tensor."
);
AddAttr
<
float
>
(
"pad_value"
,
"(float) default to 0; "
"The value to fill padded areas."
)
.
SetDefault
(
0.0
f
);
}
};
...
...
paddle/operators/pool_op.cc
浏览文件 @
7a1d5e9d
...
...
@@ -73,125 +73,138 @@ Pool2dOpMaker::Pool2dOpMaker(framework::OpProto *proto,
AddInput
(
"X"
,
"(Tensor) The input tensor of pooling operator. "
"The format of input tensor is NCHW. Where N is batch size, C is the "
"number of channels, H and W is the height and width of feature."
);
"The format of input tensor is NCHW, where N is batch size, C is the "
"number of channels, H is the height of the feature, "
"and W is the width of the feature."
);
AddOutput
(
"Out"
,
"(Tensor) The output tensor of pooling operator."
"The format of output tensor is also NCHW
.
"
"
Where N is batch size, C is
"
"
the number of channels, H and W is the height and
"
"
width of
feature."
);
"(Tensor) The output tensor of pooling operator.
"
"The format of output tensor is also NCHW
,
"
"
where N is batch size, C is the number of channels,
"
"
H is the height of the feature,
"
"
and W is the width of the
feature."
);
AddAttr
<
std
::
string
>
(
"poolingType"
,
"(string), pooling type, can be
\"
max
\"
for max-pooling "
"and
\"
avg
\"
for average-pooling."
)
.
InEnum
({
"max"
,
"avg"
});
AddAttr
<
std
::
vector
<
int
>>
(
"ksize"
,
"(vector
), the pooling window size(height, width)
"
"
of pooling operator.
"
"(vector
<int>) The pooling window
"
"
size(height, width) of the pooling operator.
"
"If globalPooling = true, ksize and paddings will "
"be ignored."
);
// TODO(Chengduo): Add checker.
// (Currently,
// TypedAttrChecker don't support vector type.)
AddAttr
<
bool
>
(
"globalPooling"
,
"(bool
default: false), whether to use the global pooling.
"
"(bool
, default false) Whether to use the global pooling.
"
"If globalPooling = true, ksize and paddings will be ignored."
)
.
SetDefault
(
false
);
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"(vector, default:{1, 1}), strides(height,
width) of pooling operator."
)
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"(vector<int>, default {1, 1}), strides(height, "
"
width) of pooling operator."
)
.
SetDefault
({
1
,
1
});
// TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
AddAttr
<
std
::
vector
<
int
>>
(
"paddings"
,
"(vector defalut:{0,0}), paddings(height, width) of pooling operator."
"(vector<int>, defalut {0,0}), paddings(height, width) of pooling "
"operator."
"If globalPooling = true, paddings and ksize will be ignored."
)
.
SetDefault
({
0
,
0
});
// TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
AddComment
(
R"DOC(
Pool2d Operator.
The pooling2d operation calculates the output based on
the input, poolingType and ksize, strides, paddings parameters.
Input(X) and output(Out) are in NCHW format
. W
here N is batch size, C is the
number of channels, H
and W is the height and width of
feature.
Input(X) and output(Out) are in NCHW format
, w
here N is batch size, C is the
number of channels, H
is the height of the feature, and W is the width of the
feature.
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
The input(X) size and output(Out) size may be different.
Example:
Input:
X shape:
(N, C, H_in, W_in)
X shape:
$(N, C, H_{in}, W_{in})$
Output:
Out shape:
(N, C, H_out, W_out)
Out shape:
$(N, C, H_{out}, W_{out})$
where
H_out = (H_in - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
W_out = (W_in - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
$$
H_{out} = (H_{in} - ksize[0] + 2 * paddings[0]) / strides[0] + 1 \\
W_{out} = (W_{in} - ksize[1] + 2 * paddings[1]) / strides[1] + 1
$$
)DOC"
);
}
Pool3dOpMaker
::
Pool3dOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
AddInput
(
"X"
,
"(Tensor) The input tensor of pooling operator. "
"The format of input tensor is NCDHW. Where N is batch size, C is "
"the number of channels, D, H and W is the depth, height and width of "
"feature."
);
"The format of input tensor is NCDHW, where N is batch size, C is "
"the number of channels, and D, H and W is the depth, height and "
"width of "
"the feature, respectively."
);
AddOutput
(
"Out"
,
"(Tensor) The output tensor of pooling operator."
"The format of output tensor is also NCDHW
.
"
"
W
here N is batch size, C is "
"the number of channels, D, H and W is the depth, height and "
"width of
feature
."
);
"The format of output tensor is also NCDHW
,
"
"
w
here N is batch size, C is "
"the number of channels,
and
D, H and W is the depth, height and "
"width of
the feature, respectively
."
);
AddAttr
<
std
::
string
>
(
"poolingType"
,
"(string)
, p
ooling type, can be
\"
max
\"
for max-pooling "
"(string)
P
ooling type, can be
\"
max
\"
for max-pooling "
"and
\"
avg
\"
for average-pooling."
)
.
InEnum
({
"max"
,
"avg"
});
AddAttr
<
std
::
vector
<
int
>>
(
"ksize"
,
"(vector ), the pooling window size(depth, height, "
"width) of pooling
"
"operator.
"
"If globalPooling = true, ksize and paddings wille
"
AddAttr
<
std
::
vector
<
int
>>
(
"ksize"
,
"(vector<int>) The pooling window size(depth, height,
"
"width) of pooling operator.
"
"If globalPooling = true, ksize and paddings will
"
"be ignored."
);
// TODO(Chengduo): Add checker.
// (Currently,
// TypedAttrChecker don't support vector type.)
AddAttr
<
bool
>
(
"globalPooling"
,
"(bool
default: false), whether to use the global pooling.
"
"(bool
, default false) Whether to use the global pooling.
"
"If globalPooling = true, ksize and paddings wille be ignored."
)
.
SetDefault
(
false
);
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"(vector, default:{1,1,1}), strides(depth, height, "
"width) of pooling operator."
)
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"(vector<int>, default {1,1,1}) Strides(depth, height, "
"width) of the pooling operator."
)
.
SetDefault
({
1
,
1
,
1
});
// TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
AddAttr
<
std
::
vector
<
int
>>
(
"paddings"
,
"(vector
defalut:
{0,0,0}), paddings(depth, height, "
"width) of pooling operator."
"If globalPooling = true, ksize and paddings will
e
be ignored."
)
"(vector
<int>, defalut
{0,0,0}), paddings(depth, height, "
"width) of pooling operator.
"
"If globalPooling = true, ksize and paddings will be ignored."
)
.
SetDefault
({
0
,
0
,
0
});
// TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
AddComment
(
R"DOC(
Pool3d Operator.
The pooling3d operation calculates the output based on
the input, poolingType
and ksize, strides,
paddings parameters.
Input(X) and output(Out) are in NCDHW format
. W
here N is batch
size, C is the number of channels,
D, H and W is
the depth, height and
width of
feature. Parameters(ksize, strides, paddings) are three elements.
These three elements represent depth, height and width, respectively.
The input(X) size and output(Out) size may be different.
the input, poolingType
, ksize, strides, and
paddings parameters.
Input(X) and output(Out) are in NCDHW format
, w
here N is batch
size, C is the number of channels,
and D, H and W are
the depth, height and
width of
the feature, respectively. Parameters(ksize, strides, paddings)
are three elements. These three elements represent depth, height and
width, respectively.
The input(X) size and output(Out) size may be different.
Example:
Input:
X shape:
(N, C, D_in, H_in, W_in)
X shape:
$(N, C, D_{in}, H_{in}, W_{in})$
Output:
Out shape:
(N, C, D_out, H_out, W_out)
Out shape:
$(N, C, D_{out}, H_{out}, W_{out})$
where
D_out = (D_in - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
H_out = (H_in - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
W_out = (W_in - ksize[2] + 2 * paddings[2]) / strides[2] + 1;
$$
D_{out} = (D_{in} - ksize[0] + 2 * paddings[0]) / strides[0] + 1 \\
H_{out} = (H_{in} - ksize[1] + 2 * paddings[1]) / strides[1] + 1 \\
W_{out} = (W_{in} - ksize[2] + 2 * paddings[2]) / strides[2] + 1
$$
)DOC"
);
}
}
// namespace operators
...
...
paddle/operators/pool_with_index_op.cc
浏览文件 @
7a1d5e9d
...
...
@@ -89,64 +89,73 @@ class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"(Tensor), the input tensor of pooling operator. "
"The format of input tensor is NCHW. Where N is batch size, C is the "
"number of channels, H and W is the height and width of image."
);
"(Tensor) The input tensor of pooling operator. "
"The format of input tensor is NCHW, where N is batch size, C is the "
"number of channels, H is the height of the image, "
"and W is the width of the image."
);
AddOutput
(
"Out"
,
"(Tensor)
, the output tensor of pooling operator.
"
"The format of output tensor is also NCHW
.
"
"
W
here N is batch size, C is "
"the number of channels, H
and W is the height and
"
"
width of
image."
);
"(Tensor)
The output tensor of pooling operator.
"
"The format of output tensor is also NCHW
,
"
"
w
here N is batch size, C is "
"the number of channels, H
is the height of the image
"
"
and W is the width of the
image."
);
AddOutput
(
"Mask"
,
"(Tensor), the Mask tensor of pooling operator."
"The format of output tensor is also NCHW."
"Where N is batch size, C is the number of channels, H and W "
"is the height and width of image."
"The value in it is the index in current feature map"
);
"(Tensor) The Mask tensor of pooling operator."
"The format of output tensor is also NCHW, "
"where N is batch size, C is the number of channels, "
"H is the height of the image, "
"and W is the width of the image. "
"It represents the index in the current feature map."
);
AddAttr
<
std
::
vector
<
int
>>
(
"ksize"
,
"(vector
), t
he pooling window size(height, "
"width) of pooling operator."
"(vector
<int>) T
he pooling window size(height, "
"width) of pooling operator.
"
"If globalPooling = true, ksize and paddings "
"will be ignored."
);
// TODO(Chengduo): Add
// checker. (Currently,
// TypedAttrChecker don't support vector type.)
AddAttr
<
bool
>
(
"globalPooling"
,
"(bool
default: false), whether to use the global pooling.
"
"(bool
, default false) Whether to use the global pooling.
"
"If globalPooling = true, ksize and paddings will be ignored."
)
.
SetDefault
(
false
);
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"(vector, default:{1, 1}), strides(height,
width) of pooling operator."
)
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"(vector<int>, default {1, 1}), strides(height, "
"
width) of pooling operator."
)
.
SetDefault
({
1
,
1
});
// TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
AddAttr
<
std
::
vector
<
int
>>
(
"paddings"
,
"(vector defalut:{0, 0}), paddings(height, width) of pooling operator."
"(vector<int>, defalut {0, 0}), paddings(height, width) of pooling "
"operator. "
"If globalPooling = true, paddings and will be ignored."
)
.
SetDefault
({
0
,
0
});
// TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
AddComment
(
R"DOC(
MaxPool2d Operator.
The maxPooling2d with index operation calculates the output and the mask
based on the input and ksize, strides, paddings parameters. Input(X) and
output(Out, Mask) are in NCHW format. Where N is batch size, C is the
number of channels, H and W is the height and width of feature.
based on the input, ksize, strides, and paddings parameters. Input(X) and
output(Out, Mask) are in NCHW format, where N is batch size, C is the
number of channels, H is the height of the feature,
and W is the width of the feature.
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
The input(X) size and output(Out, Mask) size may be different.
Example:
Input:
X shape:
(N, C, H_in, W_in)
X shape:
$(N, C, H_{in}, W_{in})$
Output:
Out shape:
(N, C, H_out, W_out)
Mask shape:
(N, C, H_out, W_out)
Out shape:
$(N, C, H_{out}, W_{out})$
Mask shape:
$(N, C, H_{out}, W_{out})$
where
H_out = (H_in - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
W_out = (W_in - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
$$
H_{out} = (H_{in} - ksize[0] + 2 * paddings[0]) / strides[0] + 1 \\
W_{out} = (W_{in} - ksize[1] + 2 * paddings[1]) / strides[1] + 1
$$
)DOC"
);
}
};
...
...
@@ -156,70 +165,76 @@ class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
MaxPool3dWithIndexOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"(Tensor), the input tensor of pooling operator.
"
"The format of input tensor is NCDHW. Where N is batch size, C is
"
"the number of channels, D, H and W is the depth, height and
width of "
"image.
"
);
AddInput
(
"X"
,
"(Tensor) The input tensor of pooling operator. "
"The format of input tensor is NCDHW, where N is batch size, C is
"
"the number of channels, and D, H and W are the depth, height and
"
"
width of "
"the image, respectively
"
);
AddOutput
(
"Out"
,
"(Tensor)
, the output tensor of pooling operator.
"
"The format of output tensor is also NCDHW
.
"
"
Where N is batch size, C is
"
"
the number of channels, D, H and W is
the depth, height and "
"width of
image
."
);
"(Tensor)
The output tensor of pooling operator.
"
"The format of output tensor is also NCDHW
,
"
"
where N is the batch size, C is the number of channels,
"
"
and D, H and W are
the depth, height and "
"width of
the image, respectively
."
);
AddOutput
(
"Mask"
,
"(Tensor), the Mask tensor of pooling operator."
"The format of output tensor is also NCDHW."
"Where N is batch size, C is the number of channels, D, H and W "
"is the depth, height and width of image."
"The value in it is the index in current feature map"
);
"(Tensor) The Mask tensor of pooling operator. "
"The format of output tensor is also NCDHW, "
"where N is the batch size, C is the number of channels, and "
"D, H and W are the depth, height and width "
"of the image, respectively. "
"It represents the index in the current feature map."
);
AddAttr
<
std
::
vector
<
int
>>
(
"ksize"
,
"(vector), the pooling window size(depth, "
"height, width) of pooling "
"operator."
"(vector<int>) The pooling window size(depth, "
"height, width) of pooling operator. "
"If globalPooling = true, ksize and paddings "
"will be ignored."
);
// TODO(Chengduo): Add
// checker. (Currently,
// TypedAttrChecker don't support vector type.)
AddAttr
<
bool
>
(
"globalPooling"
,
"(bool
default: false), whether to use the global pooling.
"
"(bool
, default false) Whether to use the global pooling.
"
"If globalPooling = true, ksize and paddings will be ignored."
)
.
SetDefault
(
false
);
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"(vector
, default:
{1,1,1}), strides(depth, "
"(vector
<int>, default
{1,1,1}), strides(depth, "
"height, width) of pooling operator."
)
.
SetDefault
({
1
,
1
,
1
});
// TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
AddAttr
<
std
::
vector
<
int
>>
(
"paddings"
,
"(vector
defalut:
{0,0,0}), paddings(depth, "
"height, width) of pooling operator."
"(vector
, defalut
{0,0,0}), paddings(depth, "
"height, width) of pooling operator.
"
"If globalPooling = true, paddings and ksize will be ignored."
)
.
SetDefault
({
0
,
0
,
0
});
// TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
AddComment
(
R"DOC(
MaxPool3d Operator.
The maxpooling3d with index operation calculates the output and the mask
based on the input and ksize, strides, paddings parameters.
Input(X) and output(Out, Mask) are in NCDHW format. Where N is batch
size, C is the number of channels, D, H and W is the depth, height and
width of feature. Parameters(ksize, strides, paddings) are three elements.
Input(X) and output(Out, Mask) are in NCDHW format, where N is batch
size, C is the number of channels, and D, H and W are the depth, height and
width of the feature, respectively.
Parameters(ksize, strides, paddings) are three elements.
These three elements represent depth, height and width, respectively.
The input(X) size and output(Out, Mask) size may be different.
Example:
Input:
X shape:
(N, C, D_in, H_in, W_in)
X shape:
$(N, C, D_{in}, H_{in}, W_{in})$
Output:
Out shape:
(N, C, D_out, H_out, W_out)
Mask shape:
(N, C, D_out, H_out, W_out)
Out shape:
$(N, C, D_{out}, H_{out}, W_{out})$
Mask shape:
$(N, C, D_{out}, H_{out}, W_{out})$
where
D_out = (D_in - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
H_out = (H_in - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
W_out = (W_in - ksize[2] + 2 * paddings[2]) / strides[2] + 1;
$$
D_{out} = (D_{in} - ksize[0] + 2 * paddings[0]) / strides[0] + 1 \\
H_{out} = (H_{in} - ksize[1] + 2 * paddings[1]) / strides[1] + 1 \\
W_{out} = (W_{in} - ksize[2] + 2 * paddings[2]) / strides[2] + 1
$$
)DOC"
);
}
};
...
...
paddle/operators/precision_recall_op.cc
浏览文件 @
7a1d5e9d
...
...
@@ -92,76 +92,78 @@ class PrecisionRecallOpMaker : public framework::OpProtoAndCheckerMaker {
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"MaxProbs"
,
"(Tensor, default Tensor<float>)
, a
2-D tensor with shape N x 1, "
"(Tensor, default Tensor<float>)
A
2-D tensor with shape N x 1, "
"where N is the batch size. Each row contains the max probability "
"of an instance which computed by the previous top_k (k=1) "
"operator."
);
AddInput
(
"Indices"
,
"(Tensor, default Tensor<int>)
, a
2-D tensor with shape N x 1, "
"(Tensor, default Tensor<int>)
A
2-D tensor with shape N x 1, "
"where N is the batch size. Each row contains the corresponding "
"index which computed by the previous top_k (k=1) operator."
);
AddInput
(
"Labels"
,
"(Tensor, default Tensor<int>)
, a
2-D tensor with shape N x 1, "
"(Tensor, default Tensor<int>)
A
2-D tensor with shape N x 1, "
"where N is the batch size. Each element is a label and the "
"value should be in [0, class_number - 1]."
);
AddInput
(
"Weights"
,
"(Tensor, default Tensor<float>)
, a
2-D tensor with shape N x 1, "
"(Tensor, default Tensor<float>)
A
2-D tensor with shape N x 1, "
"where N is the batch size. This input is optional. If provided, "
"weight of instance would be considered when computing metrics."
)
.
AsDispensable
();
AddInput
(
"StatesInfo"
,
"(Tensor, default Tensor<int>)
, a
2-D tensor with shape D x 4, "
"(Tensor, default Tensor<int>)
A
2-D tensor with shape D x 4, "
"where D is the number of classes. This input is optional. If "
"provided, current state will be accumulated to this state and "
"the accumulation state will be
as
the output state."
)
"the accumulation state will be the output state."
)
.
AsDispensable
();
AddOutput
(
"BatchMetrics"
,
"(Tensor, default Tensor<float>)
, a 1-D tensor with shape {6}.
"
"This output tensor contains metrics for current batch data."
"(Tensor, default Tensor<float>)
A 1-D tensor with shape {6}.
"
"This output tensor contains metrics for current batch data.
"
"The layout is [macro average precision, macro average recall, "
"macro f1 score, micro average precision, micro average recall, "
"micro f1 score]"
);
"micro f1 score]
.
"
);
AddOutput
(
"AccumMetrics"
,
"(Tensor, default Tensor<float>)
, a 1-D tensor with shape {6}.
"
"This output tensor contains metrics for accumulated data."
"(Tensor, default Tensor<float>)
A 1-D tensor with shape {6}.
"
"This output tensor contains metrics for accumulated data.
"
"The layout is [macro average precision, macro average recall, "
"macro f1 score, micro average precision, micro average recall, "
"micro f1 score]"
);
"micro f1 score]
.
"
);
AddOutput
(
"AccumStatesInfo"
,
"(Tensor, default Tensor<float>)
, a
2-D tensor with shape D x 4, "
"(Tensor, default Tensor<float>)
A
2-D tensor with shape D x 4, "
"where D is equal to class number. This output tensor contains "
"accumulated state variables used to compute metrics. The layout "
"for each class is [true positives, false positives, "
"true negatives, false negatives]."
);
AddAttr
<
int
>
(
"class_number"
,
"Number of classes to be evaluated."
);
AddAttr
<
int
>
(
"class_number"
,
"
(int)
Number of classes to be evaluated."
);
AddComment
(
R"DOC(
When given 'Input(Indices)' and 'Input(Labels)', this operator can be used
Precision Recall Operator.
When given Input(Indices) and Input(Labels), this operator can be used
to compute various metrics including:
-
macro average precision
-
macro average recall
-
macro f1 score
-
micro average precision
-
micro average recall
-
micro f1 score
1.
macro average precision
2.
macro average recall
3.
macro f1 score
4.
micro average precision
5.
micro average recall
6.
micro f1 score
To compute the above metrics, we need to do statistics for true positives,
false positives and false negatives. Here count of true negatives is not
false positives and false negatives. Here
the
count of true negatives is not
necessary, but counting it may provide potential usage and the cost is
trivial, so the operator also provides count of true negatives.
trivial, so the operator also provides
the
count of true negatives.
We define state as a 2-D tensor with shape [class_number, 4]. Each row of a
state contains statistic variables for corresponding class. Layout of each row
is: TP(true positives), FP(false positives), TN(true negatives),
FN(false negatives). If
'Input(Weights)'
provided, TP, FP, TN, FN will be
calculated by given weight instead of instance count.
FN(false negatives). If
Input(Weights) is
provided, TP, FP, TN, FN will be
calculated by given weight instead of
the
instance count.
This operator also supports metrics computing for cross-batch situation. To
achieve this,
'Input(StatesInfo)'
should be provided. State of current batch
data will be accumulated to
'Input(StatesInfo)' and 'Output(AccumStatesInfo)'
achieve this,
Input(StatesInfo)
should be provided. State of current batch
data will be accumulated to
Input(StatesInfo) and Output(AccumStatesInfo)
is the accumulation state.
'Output(BatchMetrics)'
is metrics of current batch data while
'Output(AccumStatesInfo)'
is metrics of accumulation data.
Output(BatchMetrics)
is metrics of current batch data while
Output(AccumStatesInfo)
is metrics of accumulation data.
)DOC"
);
}
...
...
paddle/operators/prelu_op.cc
浏览文件 @
7a1d5e9d
...
...
@@ -41,17 +41,24 @@ class PReluOpMaker : public framework::OpProtoAndCheckerMaker {
PReluOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"The input tensor of prelu operator."
);
AddInput
(
"Alpha"
,
"The alpha weight of PRelu operator."
);
AddOutput
(
"Out"
,
"The output tensor of PRelu operator."
);
AddComment
(
R"DOC(PRelu operator
AddInput
(
"Alpha"
,
"The alpha weight of prelu operator."
);
AddOutput
(
"Out"
,
"The output tensor of prelu operator."
);
AddComment
(
R"DOC(
PRelu Operator.
The equation is:
f(x) = alpha * x , for x < 0
f(x) = x , for x >= 0
$$
f(x) =
\begin{cases}
\alpha * x, \quad \text{if} \ x < 0 \\
x, \qquad \text{if} \ x >= 0
\end{cases}
$$
The input `X` can carry the LoD (Level of Details) information,
or not. And the output shares the LoD with input `X`.
or not. And the output shares the LoD information with input `X`.
)DOC"
);
}
};
...
...
paddle/operators/proximal_adagrad_op.cc
浏览文件 @
7a1d5e9d
...
...
@@ -83,22 +83,26 @@ class ProximalAdagradOpMaker : public framework::OpProtoAndCheckerMaker {
"L1 regularization strength."
)
.
SetDefault
(
0.0
f
);
AddAttr
<
float
>
(
"l2"
,
"(float, default 0.0)"
"(float, default 0.0)
"
"L2 regularization strength."
)
.
SetDefault
(
0.0
f
);
AddComment
(
R"DOC(
Proximal Adagrad Optimizer.
Optimizer that implements the proximal adagrad algorithm
.
Optimizer that implements the proximal adagrad algorithm
:
moment = moment + grad * grad
prox_param = param - learning_rate * grad * (1 / sqrt(moment))
param = sign(prox_param) / (1 + learning_rate * l2) *
max { |prox_param| - learning_rate * l1 , 0 }
$$
moment = moment + grad * grad \\
prox\_param = param - learning\_rate * grad * (1 / \sqrt{moment}) \\
param = sign(prox\_param) / (1 + learning\_rate * l2) *
\max(|prox\_param| - learning\_rate * l1 , 0)
$$
The paper that proposed Proximal GD:
(http://papers.nips.cc/paper/3793-efficient-learning-using-forward-backward-splitting.pdf)
Here, we use the adagrad learning rate as specified here:
(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
)DOC"
);
}
};
...
...
paddle/operators/proximal_gd_op.cc
浏览文件 @
7a1d5e9d
...
...
@@ -67,19 +67,23 @@ class ProximalGDOpMaker : public framework::OpProtoAndCheckerMaker {
"L1 regularization strength."
)
.
SetDefault
(
0.0
f
);
AddAttr
<
float
>
(
"l2"
,
"(float, default 0.0)"
"(float, default 0.0)
"
"L2 regularization strength."
)
.
SetDefault
(
0.0
f
);
AddComment
(
R"DOC(
ProximalGD Operator.
Optimizer that implements the proximal gradient descent algorithm
.
Optimizer that implements the proximal gradient descent algorithm
:
prox_param = param - learning_rate * grad
param = sign(prox_param) / (1 + learning_rate * l2) *
max { |prox_param| - learning_rate * l1 , 0 }
$$
prox\_param = param - learning\_rate * grad \\
param = sign(prox\_param) / (1 + learning\_rate * l2) *
\max(|prox\_param| - learning\_rate * l1, 0)
$$
The paper that proposed Proximal Gradient Descent:
(http://papers.nips.cc/paper/3793-efficient-learning-using-forward-backward-splitting.pdf)
)DOC"
);
}
};
...
...
paddle/operators/rank_loss_op.cc
浏览文件 @
7a1d5e9d
...
...
@@ -26,9 +26,9 @@ class RankLossOp : public framework::OperatorWithKernel {
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
// input check
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Label"
),
"Input(Label) shouldn't be null"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Left"
),
"Input(Left) shouldn't be null"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Right"
),
"Input(Right) shouldn't be null"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Label"
),
"Input(Label) shouldn't be null
.
"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Left"
),
"Input(Left) shouldn't be null
.
"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Right"
),
"Input(Right) shouldn't be null
.
"
);
auto
label_dims
=
ctx
->
GetInputDim
(
"Label"
);
auto
left_dims
=
ctx
->
GetInputDim
(
"Left"
);
...
...
@@ -50,32 +50,32 @@ class RankLossOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"Label"
,
"The label indicating A ranked higher than B or not, row vector."
);
AddInput
(
"Left"
,
"The output of RankNet for doc A, vector."
);
AddInput
(
"Right"
,
"The output of RankNet for doc B, vetor"
);
AddInput
(
"Right"
,
"The output of RankNet for doc B, vetor
.
"
);
AddOutput
(
"Out"
,
"The output loss of RankLoss operator, vector."
);
AddComment
(
R"DOC(RankLoss operator
AddComment
(
R"DOC(
RankLoss Operator.
Rank loss operator for RankNet[1]. RankNet is a pairwise ranking model with
RankLoss operator for RankNet
(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf).
RankNet is a pairwise ranking model with
one training sample consisting of a pair of doc A and B, and the label P
indicating that A is ranked higher than B or not:
P = {0, 1} or {0, 0.5, 1}, where 0.5 means no information about the rank of
the input pair.
The RankLoss operator
contain
s three inputs: Left (o_i), Right (o_j) and Label
(P_{i,j}), which represent the output of RankNet for t
wo docs and the label
respectively, and yields the rank loss C_{i,j}
by following the expression
The RankLoss operator
take
s three inputs: Left (o_i), Right (o_j) and Label
(P_{i,j}), which represent the output of RankNet for t
he two docs and the label,
respectively, and yields the rank loss C_{i,j}
using the following equation:
\f
[
\f
$$
C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}}) \\
o_{i,j} = o_i - o_j \\
\tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
\f
]
\f
$$
The operator can take inputs of one sample or in batch.
[1]. Chris Burges, Tal Shaked, Erin Renshaw, et al. Learning to
Rank using Gradient Descent.
http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf
)DOC"
);
}
};
...
...
paddle/operators/recurrent_op.cc
浏览文件 @
7a1d5e9d
...
...
@@ -509,14 +509,14 @@ class RecurrentOpProtoMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
kInitialStates
,
"rnn initial states"
).
AsDuplicable
();
AddInput
(
kParameters
,
"Parameters are used by step block as its input. However, the "
"input
s
is not a sequence tensor. Every time step, each operator "
"in step block just use the parameter directly"
)
"input is not a sequence tensor. Every time step, each operator "
"in step block just use the parameter directly
.
"
)
.
AsDuplicable
();
AddOutput
(
kOutputs
,
"The output sequence of RNN. The sequence length must be same"
)
"The output sequence of RNN. The sequence length must be same
.
"
)
.
AsDuplicable
();
AddOutput
(
kStepScopes
,
"StepScopes contain
s
all local variables in each time step."
);
"StepScopes contain all local variables in each time step."
);
AddAttr
<
std
::
vector
<
std
::
string
>>
(
kExStates
,
string
::
Sprintf
(
R"DOC(The ex-state variable names.
...
...
@@ -556,10 +556,12 @@ if reverse is True
o o o o
)DOC"
).
SetDefault
(
false
);
AddAttr
<
bool
>
(
kIsTrain
,
""
).
SetDefault
(
true
);
AddComment
(
R"DOC(Static Length Recurrent Operator
AddComment
(
R"DOC(
Static Length Recurrent Operator.
The static length recurrent operator can only operate on fixed size sequence
data, i.e. in each mini-batch, the sequence length of all inputs are the same.
The static length recurrent operator can only operate on fix sized sequence
data, i.e. in each mini-batch, the sequence length of all inputs are same.
)DOC"
);
}
};
...
...
paddle/operators/reduce_op.cc
浏览文件 @
7a1d5e9d
...
...
@@ -80,24 +80,27 @@ class ReduceOpMaker : public framework::OpProtoAndCheckerMaker {
public:
ReduceOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"(Tensor) The input tensor. Tensors with rank at most 6 are supported
"
);
AddInput
(
"X"
,
"(Tensor) The input tensor. Tensors with rank at most 6 are "
"supported.
"
);
AddOutput
(
"Out"
,
"(Tensor) The result tensor."
);
AddAttr
<
int
>
(
"dim"
,
"(int, default
1
) The dimension to reduce. "
"(int, default
0
) The dimension to reduce. "
"Must be in the range [-rank(input), rank(input)). "
"If `dim < 0`, the dim to reduce is `rank + dim`. "
"Not
ing
that reducing on the first dim will make the LoD info lost."
)
"Not
e
that reducing on the first dim will make the LoD info lost."
)
.
SetDefault
(
0
);
AddAttr
<
bool
>
(
"keep_dim"
,
"(bool, default false) "
"If true, retain the reduced dimension with length 1."
)
.
SetDefault
(
false
);
comment_
=
R"DOC(
{ReduceOP} operator computes the {reduce} of input tensor along the given dimension.
The result tensor has 1 fewer dimension than the input unless `keep_dim` is true.
{ReduceOp} Operator.
This operator computes the {reduce} of input tensor along the given dimension.
The result tensor has 1 fewer dimension than the input unless keep_dim is true.
)DOC"
;
AddComment
(
comment_
);
}
...
...
paddle/operators/reshape_op.cc
浏览文件 @
7a1d5e9d
...
...
@@ -71,8 +71,11 @@ class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker {
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"The input tensor of reshape operator."
);
AddOutput
(
"Out"
,
"The output tensor of reshape operator."
);
AddAttr
<
std
::
vector
<
int
>>
(
"shape"
,
"Target shape of reshape operator."
);
AddComment
(
R"DOC(Reshape operator
AddAttr
<
std
::
vector
<
int
>>
(
"shape"
,
"(vector<int>) "
"Target shape of reshape operator."
);
AddComment
(
R"DOC(
Reshape Operator.
Reshape Input(X) into the shape specified by Attr(shape).
...
...
@@ -81,7 +84,7 @@ Given a 2-D tensor X with 2 rows and 2 columns
[[1, 2], [3, 4]]
with
target shape = [1, 4], the reshape operator will transform
and
target shape = [1, 4], the reshape operator will transform
the tensor X into a 1-D tensor:
[1, 2, 3, 4]
...
...
paddle/operators/rmsprop_op.cc
浏览文件 @
7a1d5e9d
...
...
@@ -68,22 +68,22 @@ class RmspropOpMaker : public framework::OpProtoAndCheckerMaker {
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"Param"
,
"(Tensor, default Tensor<float>) "
"Input parameter value that has to be updated"
);
"Input parameter value that has to be updated
.
"
);
AddInput
(
"MeanSquare"
,
"(Tensor, default Tensor<float>)"
" The mean square value that gets updated"
);
" The mean square value that gets updated
.
"
);
AddInput
(
"LearningRate"
,
"(Tensor, default Tensor<float>) "
"The learning rate should be a tensor of size 1"
);
"The learning rate should be a tensor of size 1
.
"
);
AddInput
(
"Grad"
,
"(Tensor, default Tensor<float>) "
"Input gradient of the parameter"
);
"Input gradient of the parameter
.
"
);
AddInput
(
"Moment"
,
"(Tensor, default Tensor<float>) The moment that gets updated"
);
"(Tensor, default Tensor<float>) The moment that gets updated
.
"
);
AddOutput
(
"ParamOut"
,
"(Tensor) Output updated parameter value"
);
AddOutput
(
"MomentOut"
,
"(Tensor) Output updated moment"
);
AddOutput
(
"MeanSquareOut"
,
"(Tensor) Output Mean squared updated value"
);
AddOutput
(
"ParamOut"
,
"(Tensor) Output updated parameter value
.
"
);
AddOutput
(
"MomentOut"
,
"(Tensor) Output updated moment
.
"
);
AddOutput
(
"MeanSquareOut"
,
"(Tensor) Output Mean squared updated value
.
"
);
AddAttr
<
float
>
(
"epsilon"
,
"(float, default 1e-10) Constant "
...
...
@@ -93,18 +93,19 @@ class RmspropOpMaker : public framework::OpProtoAndCheckerMaker {
"(float, default 0.9) "
"Discounting factor for coming gradient."
)
.
SetDefault
(
0.9
f
);
AddAttr
<
float
>
(
"momentum"
,
"(float, default 0.0) Constant value"
)
AddAttr
<
float
>
(
"momentum"
,
"(float, default 0.0) Constant value
.
"
)
.
SetDefault
(
0.0
f
);
AddComment
(
R"DOC(
Rmsprop Optimizer.
RMSprop
MeanSquareOut = decay * MeanSquare + (1 - decay) * Grad * Grad
$$
MeanSquareOut = decay * MeanSquare + (1 - decay) * Grad * Grad \\
MomentOut = momentum * Moment +
LearningRate * Grad / sqrt(MeanSquareOut + epsilon)
\frac{LearningRate * Grad}{\sqrt{MeanSquareOut + epsilon}} \\
ParamOut = Param - MomentOut
$$
The original slides that proposed R
MS
prop: Slide 29 of
The original slides that proposed R
ms
prop: Slide 29 of
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf)
)DOC"
);
...
...
paddle/operators/seq_expand_op.cc
浏览文件 @
7a1d5e9d
...
...
@@ -53,8 +53,10 @@ class SeqExpandOpMaker : public framework::OpProtoAndCheckerMaker {
"(LodTensor)The output of seq_expand op."
"The lod of output will be as same as input(Y)'s lod."
);
AddComment
(
R"DOC(
Expand input(X) according to LOD of input(Y)
.
Seq Expand Operator
.
This operator expands input(X) according to LOD of input(Y).
Following are cases to better explain how this works:
Case 1:
Given 2-level a LoDTensor input(X)
...
...
paddle/operators/sequence_concat_op.cc
浏览文件 @
7a1d5e9d
...
...
@@ -68,11 +68,12 @@ class SequenceConcatOpMaker : public framework::OpProtoAndCheckerMaker {
"The level should be less than the level number of inputs."
)
.
SetDefault
(
0
);
AddComment
(
R"DOC(
Sequence Concat
operator
Sequence Concat
Operator.
The sequence_concat operator concatenates multiple LoDTensors.
It
only supports
sequence (LoD Tensor with level number is 1)
It
supports a
sequence (LoD Tensor with level number is 1)
or a nested sequence (LoD tensor with level number is 2) as its input.
The following examples explain how the operator works:
- Case1:
If the axis is other than 0(here, axis is 1 and level is 1),
each input should have the same LoD information and the LoD
...
...
@@ -98,6 +99,7 @@ or a nested sequence (LoD tensor with level number is 2) as its input.
LoD(Out) = {{0,5,9}, {0,2,5,7,9}}; Dims(Out) = (9,3,4)
NOTE: The levels of all the inputs should be the same.
)DOC"
);
}
};
...
...
paddle/operators/sequence_conv_op.cc
浏览文件 @
7a1d5e9d
...
...
@@ -105,10 +105,10 @@ class SequenceConvOpMaker : public framework::OpProtoAndCheckerMaker {
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"(LoDTensor) the input(X) is a LodTensor, which support "
"(LoDTensor) the input(X) is a LodTensor, which support
s
"
"variable-time length input sequence. The underlying tensor in "
"this LoDTensor is a matrix with shape (T, N), where
,
T is the "
"total time steps in this mini-batch
,
N is the input_hidden_size."
);
"this LoDTensor is a matrix with shape (T, N), where T is the "
"total time steps in this mini-batch
and
N is the input_hidden_size."
);
AddInput
(
"PaddingData"
,
"(Tensor, optional) the input(PaddingData) is an optional "
"parameter, and it is learnable. "
...
...
@@ -157,14 +157,16 @@ class SequenceConvOpMaker : public framework::OpProtoAndCheckerMaker {
.
GreaterThan
(
0
);
AddComment
(
R"DOC(
SequenceConvOp performs convolution operation on features of
contextLength time-steps of each instance.
The convolution operation calculates the output based on the input, filter
and strides, paddings parameters. The size of each dimension of the
parameters is checked in the infer-shape. In order to ensure the equal
length of sequence before and after convolution, it is necessary to fill
the top and bottom of each sequence according to context_length,
context_stride and context_start.
Sequence Conv Operator.
SequenceConvOp performs convolution operation on features of contextLength
time-steps of each instance. The convolution operation calculates the output
based on the input, filter, strides and paddings parameters.
The size of each dimension of the parameters is checked during infer-shape.
In order to ensure the equal length of sequence before and after convolution,
it is necessary to fill the top and bottom of each sequence based on
context_length, context_stride and context_start.
)DOC"
);
}
};
...
...
paddle/operators/sequence_pool_op.cc
浏览文件 @
7a1d5e9d
...
...
@@ -45,33 +45,36 @@ class SequencePoolOpMaker : public framework::OpProtoAndCheckerMaker {
.
SetDefault
(
"AVERAGE"
)
.
InEnum
({
"AVERAGE"
,
"SUM"
,
"SQRT"
,
"LAST"
,
"FIRST"
,
"MAX"
});
AddComment
(
R"DOC(
SequencePoolOp pools features of all time-steps of each instance.
It supports six pooling pooltype:
- AVERAGE: Out[i] = average_{for each instance in i-th sequence}{X[i]}
- SUM: Out[i] = sum_{for each instance in i-th sequence}{X[i]}
- SQRT: Out[i] = sum_{for each instance in i-th sequence}{X[i]}
/ sqrt(i-th sequence length)
- LAST: Out[i] = last instance in i-th sequence X[i]
- FIRST: Out[i] = first instance in i-th sequence X[i]
- MAX: Out[i] = max_{for each instance in i-th sequence}{X[i]}
For a mini-batch of 3 variable-length sentences, containing 2, 3, and 2 time-steps:
Assume X is a [7,M,N] LoDTensor, and X->lod()[0] = [0, 2, 5, 7], 7=2+3+2.
Besides, for the sake of simplicity, we assume M=1 and N=1,
and the value of X = [[1, 3], [2, 4, 6], [5, 1]].
Thus, Out is a [3,1,1] Tensor without LoD infomation.
And for different pooltype, the value of Out is as follows:
- AVERAGE: [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
- SUM: [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
- SQRT: [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
Sequence Pool Operator.
The SequencePoolOp pools features of all time-steps of each instance.
It supports six pooling types:
1. AVERAGE: Out[i] = $$avg(X_i)$$
2. SUM: Out[i] = $$\sum_jX_{ij}$$
3. SQRT: Out[i] = $$\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}$$
4. LAST: Out[i] = last instance in i-th sequence X[i]
5. FIRST: Out[i] = first instance in i-th sequence X[i]
6. MAX: Out[i] = $$max(X_i)$$
The following example explains how this works:
For a mini-batch of 3 variable-length sentences,
containing 2, 3, and 2 time-steps:
Assume X is a [7,M,N] LoDTensor, and X->lod()[0] = [0, 2, 5, 7], 7=2+3+2.
Besides, for the sake of simplicity, we assume M=1 and N=1,
and the value of X = [[1, 3], [2, 4, 6], [5, 1]].
Thus, Out is a [3,1,1] Tensor without LoD infomation.
And for different pooltype, the value of Out is as follows:
- AVERAGE: [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
- SUM: [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
- SQRT: [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
- MAX: [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
- LAST: [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
- FIRST: [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
- MAX: [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
- LAST: [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
- FIRST: [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
)DOC"
);
}
};
...
...
paddle/operators/sequence_softmax_op.cc
浏览文件 @
7a1d5e9d
...
...
@@ -43,20 +43,24 @@ class SequenceSoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
"(LoDTensor) 1-D or 2-D output LoDTensor with the 2-nd dimension "
"of length 1."
);
AddComment
(
R"DOC(
SequenceSoftmaxOp computes softmax activation among all time-steps for each
Sequence Softmax Operator.
SequenceSoftmaxOp computes the softmax activation among all time-steps for each
sequence. The dimension of each time-step should be 1. Thus, the shape of
input Tensor can be either [N, 1] or [N], where N is the sum of
all sequences'
length
s.
input Tensor can be either [N, 1] or [N], where N is the sum of
the length
of all sequence
s.
Equation
:
The algorithm works as follows
:
for i-th sequence in a mini-batch:
Out(X[lod[i]:lod[i+1]], :) =
exp(X[lod[i]:lod[i+1], :]) / sum(exp(X[lod[i]:lod[i+1], :]))
$$Out(X[lod[i]:lod[i+1]], :) =
\frac{\exp(X[lod[i]:lod[i+1], :])}
{\sum(\exp(X[lod[i]:lod[i+1], :]))}$$
For example, for a mini-batch of 3 sequences with variable-length,
each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
then softmax will be computed among X[0:2, :], X[2:5, :], X[5:7, :]
and N turns out to be 7.
)DOC"
);
}
};
...
...
paddle/operators/sigmoid_cross_entropy_with_logits_op.cc
浏览文件 @
7a1d5e9d
...
...
@@ -107,26 +107,28 @@ class SigmoidCrossEntropyWithLogitsOpMaker
AddComment
(
R"DOC(
SigmoidCrossEntropyWithLogits Operator.
This measures the element
wise probability error in discrete
classification tasks
This measures the element
-wise probability error in
classification tasks
in which each class is independent. This can be thought of as predicting labels
for a data-point that are not mutually exclusive. For example, a news article
can be about politics, technology or sports at the same time or none of these.
for a data-point, where labels are not mutually exclusive.
For example, a news article can be about politics, technology or sports
at the same time or none of these.
The logistic loss is given as follows:
loss = -Labels * log(sigmoid(X)) - (1 - Labels) * log(1 - sigmoid(X))
$$loss = -Labels * \log(\sigma(X)) - (1 - Labels) * \log(1 - \sigma(X))$$
We know that
sigmoid(X) = (1 / (1 + exp(-X))). By substituting this we get
We know that
$$\sigma(X) = (1 / (1 + \exp(-X)))$$. By substituting this we get:
loss = X - X * Labels + log(1 + exp(-X))
$$loss = X - X * Labels + \log(1 + \exp(-X))$$
For stability and to prevent overflow of
exp(-X)
when X < 0,
we
can
reformulate the loss as follows:
For stability and to prevent overflow of
$$\exp(-X)$$
when X < 0,
we reformulate the loss as follows:
loss = max(X, 0) - X * Labels + log(1 + exp(-abs(X)))
$$loss = \max(X, 0) - X * Labels + \log(1 + \exp(-|X|))$$
Both the input `X` and `Labels` can carry the LoD (Level of Details) information.
However the output only shares the LoD with input `X`.
)DOC"
);
}
};
...
...
paddle/operators/smooth_l1_loss_op.cc
浏览文件 @
7a1d5e9d
...
...
@@ -77,14 +77,17 @@ class SmoothL1LossOpMaker : public framework::OpProtoAndCheckerMaker {
"A float scalar with default value 3.0."
)
.
SetDefault
(
3.0
);
AddComment
(
R"DOC(
Compute smooth l1 loss for input and target. The operator take the 1st
dimension of input as batch size. For each instance, it will compute
smooth l1 loss element by element first and sum all losses to one value.
So the output shape is [batch_size, 1].
Smooth L1 Loss Operator.
This operator computes the smooth l1 loss for input and target.
The operator takes the first dimension of input as the batch size.
For each instance, it computes the smooth l1 loss element by element first
and then sums all the losses. So the resulting output shape
is [batch_size, 1].
The equation is:
loss =
0.5 * (sigma * (x-y))^2 if abs(x - y) < 1 / sigma^2
abs(x - y) - 0.5 / sigma^2
otherwise
loss =
$$0.5 * (\sigma * (x-y))^2$$ if $$|x - y| < 1 /({\sigma}^2)$$
$$\frac{|x - y| - 0.5}{{\sigma}^2}$$
otherwise
)DOC"
);
}
...
...
paddle/operators/softmax_op.cc
浏览文件 @
7a1d5e9d
...
...
@@ -44,20 +44,23 @@ class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
"2-D with shape [batch_size, input_feature_dimensions]."
);
AddOutput
(
"Y"
,
"The normalized values with the same shape as X."
);
AddComment
(
R"DOC(
The input of softmax operator is a 2-D tensor with shape N x K (N is the
Softmax Operator.
The input of the softmax operator is a 2-D tensor with shape N x K (N is the
batch_size, K is the dimension of input feature). The output tensor has the
same shape as the input tensor.
For each row of the input tensor, the softmax operator squashes the
K-dimensional vector of arbitrary real values to a K-dimensional vector of real
values in the range [0, 1] that add up to 1. Specifically, it computes the
exponential of the given dimension and the sum of exponential values of all
the other dimensions in the K-dimensional vector input. Then the ratio of the
exponential of the given dimension and the sum of exponential values of all
the other dimensions is the output of the softmax operator.
values in the range [0, 1] that add up to 1.
It computes the exponential of the given dimension and the sum of exponential
values of all the other dimensions in the K-dimensional vector input.
Then the ratio of the exponential of the given dimension and the sum of
exponential values of all the other dimensions is the output of the softmax
operator.
For each row `i` and each column `j` in input X, we have:
Y[i, j] = exp(X[i, j]) / sum_j(exp(X[i, j]))
$$Y[i, j] = \frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}$$
)DOC"
);
}
...
...
paddle/operators/softmax_with_cross_entropy_op.cc
浏览文件 @
7a1d5e9d
...
...
@@ -51,32 +51,34 @@ class SoftmaxWithCrossEntropyOpMaker
"the given labels as soft labels."
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
Cross entropy loss with softmax are used as the output layer extensively. This
Softmax With Cross Entropy Operator.
Cross entropy loss with softmax is used as the output layer extensively. This
operator computes the softmax normalized values for each row of the input
tensor, after which cross-entropy loss is
then
computed. This provides a more
tensor, after which cross-entropy loss is computed. This provides a more
numerically stable gradient.
Because this operator
s
performs a softmax on logits internally, it expects
unscaled logits.
Please do not call this op with the output of softmax operator,
which will
produce incorrect results.
Because this operator performs a softmax on logits internally, it expects
unscaled logits.
This operator should not be used with the output of
softmax operator since that would
produce incorrect results.
When the attribute softLabel is set false, this operators expects mutually
exclusive hard labels, each sample in a batch is in exactly one class with
probabilit
ies 1. Each sample in the batch with one and only on
e label.
exclusive hard labels, each sample in a batch is in exactly one class with
a
probabilit
y of 1.0. Each sample in the batch will have a singl
e label.
Equation
:
The equation is as follows
:
1)
hard label (one-hot label
)
1)
Hard label (one-hot label, so every sample has exactly one class
)
Loss_j = \f$ -\text{Logit}_{Label_j} +
$$
Loss_j = \f$ -\text{Logit}_{Label_j} +
\log\left(\sum_{i=0}^{K}\exp(\text{Logit}_i)\right),
j = 1, ..., K $\f
j = 1, ..., K $\f
$$
2)
soft label (
a distribution over all classes)
2)
Soft label (each sample can have
a distribution over all classes)
Loss_j = \f$ -\sum_{i=0}^{K}\text{Label}_i\left(\text{Logit}_i -
$$
Loss_j = \f$ -\sum_{i=0}^{K}\text{Label}_i\left(\text{Logit}_i -
\log\left(\sum_{i=0}^{K}\exp(\text{Logit}_i)\right)\right),
j = 1,...,K $\f
j = 1,...,K $\f
$$
)DOC"
);
}
...
...
paddle/operators/transpose_op.cc
浏览文件 @
7a1d5e9d
...
...
@@ -32,7 +32,7 @@ class TransposeOp : public framework::OperatorWithKernel {
size_t
axis_size
=
axis
.
size
();
PADDLE_ENFORCE_EQ
(
x_rank
,
axis_size
,
"
t
he input tensor's rank(%d) "
"
T
he input tensor's rank(%d) "
"should be equal to the axis's size(%d)"
,
x_rank
,
axis_size
);
...
...
@@ -64,12 +64,14 @@ class TransposeOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput
(
"Out"
,
"(Tensor)The output tensor"
);
AddAttr
<
std
::
vector
<
int
>>
(
"axis"
,
"(vector<int>)
a
list of values, and the size of the list should be "
"(vector<int>)
A
list of values, and the size of the list should be "
"the same with the input tensor rank, the tensor will "
"permute the axes according the the values given"
);
AddComment
(
R"DOC(
The Tensor will be permuted according to the axis values given.
The op is very much like the numpy.transpose function in python
Transpose Operator.
The input tensor will be permuted according to the axis values given.
The op functions similar to how numpy.transpose works in python.
For example:
>> input = numpy.arange(6).reshape((2,3))
>> input
...
...
@@ -83,6 +85,7 @@ For example:
[2, 5]])
So, given a input tensor of shape(N, C, H, W) and the axis is {0, 2, 3, 1},
the output tensor shape will be (N, H, W, C)
)DOC"
);
}
};
...
...
paddle/pybind/protobuf.cc
浏览文件 @
7a1d5e9d
...
...
@@ -239,7 +239,8 @@ void BindVarDsec(py::module &m) {
.
value
(
"FEED_MINIBATCH"
,
VarDesc
::
FEED_MINIBATCH
)
.
value
(
"FETCH_LIST"
,
VarDesc
::
FETCH_LIST
)
.
value
(
"STEP_SCOPES"
,
VarDesc
::
STEP_SCOPES
)
.
value
(
"LOD_RANK_TABLE"
,
VarDesc
::
LOD_RANK_TABLE
);
.
value
(
"LOD_RANK_TABLE"
,
VarDesc
::
LOD_RANK_TABLE
)
.
value
(
"LOD_TENSOR_ARRAY"
,
VarDesc
::
LOD_TENSOR_ARRAY
);
}
void
BindOpDesc
(
py
::
module
&
m
)
{
...
...
paddle/pybind/pybind.cc
浏览文件 @
7a1d5e9d
...
...
@@ -23,6 +23,7 @@ limitations under the License. */
#include "paddle/framework/framework.pb.h"
#include "paddle/framework/lod_rank_table.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/lod_tensor_array.h"
#include "paddle/framework/prune.h"
#include "paddle/framework/selected_rows.h"
#include "paddle/framework/tensor_array.h"
...
...
@@ -233,6 +234,9 @@ All parameter, weight, gradient are variables in Paddle.
return
self
.
GetMutable
<
SelectedRows
>
();
},
py
::
return_value_policy
::
reference
)
.
def
(
"get_lod_tensor_array"
,
[](
Variable
&
self
)
{
return
self
.
GetMutable
<
LoDTensorArray
>
();
},
py
::
return_value_policy
::
reference
)
#ifdef PADDLE_WITH_CUDA
.
def
(
"get_communicator"
,
[](
Variable
&
self
)
->
platform
::
Communicator
*
{
...
...
@@ -505,6 +509,23 @@ All parameter, weight, gradient are variables in Paddle.
return
res
;
});
py
::
class_
<
LoDTensorArray
>
(
m
,
"LoDTensorArray"
)
.
def
(
"__getitem__"
,
[](
LoDTensorArray
&
self
,
size_t
i
)
{
return
&
self
.
at
(
i
);
},
py
::
return_value_policy
::
reference
)
.
def
(
"__len__"
,
[](
LoDTensorArray
&
self
)
{
return
self
.
size
();
})
.
def
(
"__setitem__"
,
[](
LoDTensorArray
&
self
,
size_t
i
,
const
LoDTensor
&
t
)
{
PADDLE_ENFORCE_LT
(
i
,
self
.
size
());
self
[
i
].
ShareDataWith
(
t
);
self
[
i
].
set_lod
(
t
.
lod
());
})
.
def
(
"append"
,
[](
LoDTensorArray
&
self
,
const
LoDTensor
&
t
)
{
self
.
emplace_back
();
self
.
back
().
ShareDataWith
(
t
);
self
.
back
().
set_lod
(
t
.
lod
());
});
m
.
def
(
"op_support_gpu"
,
OpSupportGPU
);
#ifdef PADDLE_WITH_CUDA
m
.
def
(
"get_cuda_device_count"
,
platform
::
GetCUDADeviceCount
);
...
...
python/paddle/trainer/config_parser.py
浏览文件 @
7a1d5e9d
...
...
@@ -2775,9 +2775,15 @@ class NCELayer(LayerBase):
@
config_layer
(
'addto'
)
class
AddToLayer
(
LayerBase
):
layer_type
=
'addto'
def
__init__
(
self
,
name
,
inputs
,
bias
=
True
,
**
xargs
):
use_mkldnn
=
bool
(
int
(
g_command_config_args
.
get
(
"use_mkldnn"
,
0
)))
if
self
.
layer_type
==
"mkldnn_addto"
:
config_assert
(
use_mkldnn
,
"mkldnn_addto only support MKLDNN"
)
self
.
layer_type
=
'mkldnn_addto'
if
use_mkldnn
else
'addto'
super
(
AddToLayer
,
self
).
__init__
(
name
,
'addto'
,
0
,
inputs
=
inputs
,
**
xargs
)
name
,
self
.
layer_type
,
0
,
inputs
=
inputs
,
**
xargs
)
config_assert
(
len
(
inputs
)
>
0
,
'inputs cannot be empty for AddToLayer'
)
if
len
(
self
.
inputs
)
>
1
:
...
...
@@ -2796,6 +2802,11 @@ class AddToLayer(LayerBase):
self
.
create_bias_parameter
(
bias
,
self
.
config
.
size
)
@
config_layer
(
'mkldnn_addto'
)
class
MKLDNNAddtoLayer
(
AddToLayer
):
layer_type
=
'mkldnn_addto'
@
config_layer
(
'agent'
)
class
AgentLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
size
,
device
=
None
):
...
...
python/paddle/v2/framework/backward.py
浏览文件 @
7a1d5e9d
...
...
@@ -19,8 +19,20 @@ def append_backward_ops(loss, parameter_list=None, no_grad_set=None):
:rtype: list[Variable]
"""
assert
isinstance
(
loss
,
framework
.
Variable
)
param_grad_map
=
loss
.
block
.
program
.
append_backward
(
loss
,
no_grad_set
or
set
())
if
no_grad_set
is
None
:
program
=
loss
.
block
.
program
assert
isinstance
(
program
,
framework
.
Program
)
no_grad_set
=
list
()
for
block
in
program
.
blocks
:
assert
isinstance
(
block
,
framework
.
Block
)
for
var
in
block
.
vars
.
itervalues
():
assert
isinstance
(
var
,
framework
.
Variable
)
if
var
.
stop_gradient
:
no_grad_set
.
append
(
var
.
name
)
no_grad_set
=
set
(
no_grad_set
)
param_grad_map
=
loss
.
block
.
program
.
append_backward
(
loss
,
no_grad_set
)
if
parameter_list
is
not
None
:
parameters
=
parameter_list
else
:
...
...
python/paddle/v2/framework/framework.py
浏览文件 @
7a1d5e9d
...
...
@@ -21,6 +21,7 @@ class Variable(object):
dtype
=
None
,
lod_level
=
None
,
persistable
=
None
,
stop_gradient
=
False
,
**
kwargs
):
self
.
block
=
block
...
...
@@ -89,6 +90,7 @@ class Variable(object):
self
.
block
.
vars
[
name
]
=
self
self
.
op
=
None
self
.
stop_gradient
=
stop_gradient
def
__str__
(
self
):
protostr
=
self
.
desc
.
serialize_to_string
()
...
...
@@ -550,5 +552,5 @@ class Parameter(Variable):
# program is a global instance.
g_program
=
Program
()
g_
init
_program
=
Program
()
g_
main_
program
=
Program
()
g_
startup
_program
=
Program
()
python/paddle/v2/framework/io.py
浏览文件 @
7a1d5e9d
import
os
import
cPickle
as
pickle
from
paddle.v2.framework.framework
import
Program
,
Parameter
,
g_program
,
\
from
paddle.v2.framework.framework
import
Program
,
Parameter
,
g_
main_
program
,
\
Variable
__all__
=
[
...
...
@@ -29,13 +29,13 @@ def _clone_var_in_block_(block, var):
persistable
=
True
)
def
save_vars
(
executor
,
dirname
,
program
=
None
,
vars
=
None
,
predicate
=
None
):
def
save_vars
(
executor
,
dirname
,
main_
program
=
None
,
vars
=
None
,
predicate
=
None
):
"""
Save variables to directory by executor.
:param executor: executor that save variable
:param dirname: directory path
:param program: program. If vars is None, then filter all variables in this
:param
main_
program: program. If vars is None, then filter all variables in this
program which fit `predicate`. Default g_program.
:param predicate: The Predicate describes a callable that returns a variable
as a bool. If it returns true, the variables will be saved.
...
...
@@ -44,15 +44,15 @@ def save_vars(executor, dirname, program=None, vars=None, predicate=None):
:return: None
"""
if
vars
is
None
:
if
program
is
None
:
program
=
g
_program
if
not
isinstance
(
program
,
Program
):
if
main_
program
is
None
:
main_program
=
g_main
_program
if
not
isinstance
(
main_
program
,
Program
):
raise
TypeError
(
"program should be as Program type or None"
)
save_vars
(
executor
,
dirname
=
dirname
,
vars
=
filter
(
predicate
,
program
.
list_vars
()))
vars
=
filter
(
predicate
,
main_
program
.
list_vars
()))
else
:
save_program
=
Program
()
save_block
=
save_program
.
global_block
()
...
...
@@ -66,37 +66,37 @@ def save_vars(executor, dirname, program=None, vars=None, predicate=None):
executor
.
run
(
save_program
)
def
save_params
(
executor
,
dirname
,
program
=
None
):
def
save_params
(
executor
,
dirname
,
main_
program
=
None
):
"""
Save all parameters to directory with executor.
"""
save_vars
(
executor
,
dirname
=
dirname
,
program
=
program
,
main_program
=
main_
program
,
vars
=
None
,
predicate
=
is_parameter
)
def
save_persistables
(
executor
,
dirname
,
program
=
None
):
def
save_persistables
(
executor
,
dirname
,
main_
program
=
None
):
"""
Save all persistables to directory with executor.
"""
save_vars
(
executor
,
dirname
=
dirname
,
program
=
program
,
main_program
=
main_
program
,
vars
=
None
,
predicate
=
is_persistable
)
def
load_vars
(
executor
,
dirname
,
program
=
None
,
vars
=
None
,
predicate
=
None
):
def
load_vars
(
executor
,
dirname
,
main_
program
=
None
,
vars
=
None
,
predicate
=
None
):
"""
Load variables from directory by executor.
:param executor: executor that save variable
:param dirname: directory path
:param program: program. If vars is None, then filter all variables in this
:param
main_
program: program. If vars is None, then filter all variables in this
program which fit `predicate`. Default g_program.
:param predicate: The Predicate describes a callable that returns a variable
as a bool. If it returns true, the variables will be loaded.
...
...
@@ -105,15 +105,15 @@ def load_vars(executor, dirname, program=None, vars=None, predicate=None):
:return: None
"""
if
vars
is
None
:
if
program
is
None
:
program
=
g
_program
if
not
isinstance
(
program
,
Program
):
if
main_
program
is
None
:
main_program
=
g_main
_program
if
not
isinstance
(
main_
program
,
Program
):
raise
TypeError
(
"program's type should be Program"
)
load_vars
(
executor
,
dirname
=
dirname
,
vars
=
filter
(
predicate
,
program
.
list_vars
()))
vars
=
filter
(
predicate
,
main_
program
.
list_vars
()))
else
:
load_prog
=
Program
()
load_block
=
load_prog
.
global_block
()
...
...
@@ -129,27 +129,33 @@ def load_vars(executor, dirname, program=None, vars=None, predicate=None):
executor
.
run
(
load_prog
)
def
load_params
(
executor
,
dirname
,
program
=
None
):
def
load_params
(
executor
,
dirname
,
main_
program
=
None
):
"""
load all parameters from directory by executor.
"""
load_vars
(
executor
,
dirname
=
dirname
,
program
=
program
,
predicate
=
is_parameter
)
executor
,
dirname
=
dirname
,
main_program
=
main_program
,
predicate
=
is_parameter
)
def
load_persistables
(
executor
,
dirname
,
program
=
None
):
def
load_persistables
(
executor
,
dirname
,
main_
program
=
None
):
"""
load all persistables from directory by executor.
"""
load_vars
(
executor
,
dirname
=
dirname
,
program
=
program
,
predicate
=
is_persistable
)
executor
,
dirname
=
dirname
,
main_program
=
main_program
,
predicate
=
is_persistable
)
def
save_inference_model
(
dirname
,
feeded_var_names
,
target_vars
,
executor
,
program
=
None
):
main_
program
=
None
):
"""
Build a model especially for inference,
and save it to directory by the executor.
...
...
@@ -158,20 +164,20 @@ def save_inference_model(dirname,
:param feeded_var_names: Names of variables that need to be feeded data during inference
:param target_vars: Variables from which we can get inference results.
:param executor: executor that save inference model
:param program: original program, which will be pruned to build the inference model.
:param
main_
program: original program, which will be pruned to build the inference model.
Default g_program.
:return: None
"""
if
program
is
None
:
program
=
g
_program
if
main_
program
is
None
:
main_program
=
g_main
_program
if
not
isinstance
(
target_vars
,
list
):
target_vars
=
[
target_vars
]
if
not
os
.
path
.
isdir
(
dirname
):
os
.
makedirs
(
dirname
)
pruned_program
=
program
.
prune
(
target_vars
)
pruned_program
=
main_
program
.
prune
(
target_vars
)
fetch_var_names
=
[
v
.
name
for
v
in
target_vars
]
model_file_name
=
dirname
+
"/__model__"
...
...
@@ -182,10 +188,10 @@ def save_inference_model(dirname,
"fetch_var_names"
:
fetch_var_names
},
f
,
-
1
)
save_params
(
executor
,
dirname
,
program
)
save_params
(
executor
,
dirname
,
main_
program
)
def
load_persistables_if_exist
(
executor
,
dirname
,
program
=
None
):
def
load_persistables_if_exist
(
executor
,
dirname
,
main_
program
=
None
):
filenames
=
next
(
os
.
walk
(
dirname
))[
2
]
filenames
=
set
(
filenames
)
...
...
@@ -198,7 +204,7 @@ def load_persistables_if_exist(executor, dirname, program=None):
load_vars
(
executor
,
dirname
,
program
=
program
,
main_program
=
main_
program
,
vars
=
None
,
predicate
=
_is_presistable_and_exist_
)
...
...
python/paddle/v2/framework/layer_helper.py
浏览文件 @
7a1d5e9d
import
copy
import
itertools
from
paddle.v2.framework.framework
import
Variable
,
g_program
,
\
g_
init
_program
,
unique_name
,
Program
from
paddle.v2.framework.framework
import
Variable
,
g_
main_
program
,
\
g_
startup
_program
,
unique_name
,
Program
from
paddle.v2.framework.initializer
import
ConstantInitializer
,
\
UniformInitializer
...
...
@@ -20,23 +20,23 @@ class LayerHelper(object):
return
self
.
kwargs
[
'name'
]
@
property
def
program
(
self
):
prog
=
self
.
kwargs
.
get
(
'program'
,
None
)
def
main_
program
(
self
):
prog
=
self
.
kwargs
.
get
(
'
main_
program'
,
None
)
if
prog
is
None
:
return
g_program
return
g_
main_
program
else
:
return
prog
@
property
def
init
_program
(
self
):
prog
=
self
.
kwargs
.
get
(
'
init
_program'
,
None
)
def
startup
_program
(
self
):
prog
=
self
.
kwargs
.
get
(
'
startup
_program'
,
None
)
if
prog
is
None
:
return
g_
init
_program
return
g_
startup
_program
else
:
return
prog
def
append_op
(
self
,
*
args
,
**
kwargs
):
return
self
.
program
.
current_block
().
append_op
(
*
args
,
**
kwargs
)
return
self
.
main_
program
.
current_block
().
append_op
(
*
args
,
**
kwargs
)
def
multiple_input
(
self
,
input_param_name
=
'input'
):
inputs
=
self
.
kwargs
.
get
(
input_param_name
,
[])
...
...
@@ -120,27 +120,27 @@ class LayerHelper(object):
attr_copy
[
'initializer'
]
=
initializer
if
attr_copy
[
'name'
]
is
None
:
attr_copy
[
'name'
]
=
unique_name
(
"."
.
join
([
self
.
name
,
suffix
]))
self
.
init
_program
.
global_block
().
create_parameter
(
self
.
startup
_program
.
global_block
().
create_parameter
(
dtype
=
dtype
,
shape
=
shape
,
**
attr_copy
)
return
self
.
program
.
global_block
().
create_parameter
(
return
self
.
main_
program
.
global_block
().
create_parameter
(
name
=
attr_copy
[
'name'
],
dtype
=
dtype
,
shape
=
shape
)
def
create_tmp_variable
(
self
,
dtype
):
return
self
.
program
.
current_block
().
create_var
(
return
self
.
main_
program
.
current_block
().
create_var
(
name
=
unique_name
(
"."
.
join
([
self
.
name
,
'tmp'
])),
dtype
=
dtype
,
persistable
=
False
)
def
create_variable
(
self
,
*
args
,
**
kwargs
):
return
self
.
program
.
current_block
().
create_var
(
*
args
,
**
kwargs
)
return
self
.
main_
program
.
current_block
().
create_var
(
*
args
,
**
kwargs
)
def
create_global_variable
(
self
,
persistable
=
False
,
*
args
,
**
kwargs
):
return
self
.
program
.
global_block
().
create_var
(
return
self
.
main_
program
.
global_block
().
create_var
(
*
args
,
persistable
=
persistable
,
**
kwargs
)
def
set_variable_initializer
(
self
,
var
,
initializer
):
assert
isinstance
(
var
,
Variable
)
self
.
init
_program
.
global_block
().
create_var
(
self
.
startup
_program
.
global_block
().
create_var
(
name
=
var
.
name
,
type
=
var
.
type
,
dtype
=
var
.
data_type
,
...
...
python/paddle/v2/framework/layers.py
浏览文件 @
7a1d5e9d
...
...
@@ -18,8 +18,8 @@ def fc(input,
name
=
None
,
act
=
None
,
num_flatten_dims
=
1
,
program
=
None
,
init
_program
=
None
):
main_
program
=
None
,
startup
_program
=
None
):
# create helper
helper
=
LayerHelper
(
'fc'
,
**
locals
())
...
...
@@ -64,8 +64,8 @@ def embedding(input,
data_type
=
'float32'
,
is_sparse
=
False
,
param_attr
=
None
,
program
=
None
,
init
_program
=
None
):
main_
program
=
None
,
startup
_program
=
None
):
helper
=
LayerHelper
(
'embedding'
,
**
locals
())
w
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
shape
=
size
,
dtype
=
data_type
)
...
...
@@ -84,8 +84,8 @@ def data(name,
data_type
=
'float32'
,
type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
append_batch_size
=
True
,
program
=
None
,
init
_program
=
None
):
main_
program
=
None
,
startup
_program
=
None
):
helper
=
LayerHelper
(
'data'
,
**
locals
())
shape
=
list
(
shape
)
for
i
in
xrange
(
len
(
shape
)):
...
...
@@ -99,7 +99,7 @@ def data(name,
shape
=
[
-
1
]
+
shape
# append batch size as -1
return
helper
.
create_global_variable
(
name
=
name
,
shape
=
shape
,
dtype
=
data_type
,
type
=
type
)
name
=
name
,
shape
=
shape
,
dtype
=
data_type
,
type
=
type
,
stop_gradient
=
True
)
def
_convert_
(
name
):
...
...
@@ -178,7 +178,7 @@ _create_op_func_('sigmoid')
_create_op_func_
(
'scale'
)
def
cast
(
x
,
data_type
,
program
=
None
):
def
cast
(
x
,
data_type
,
main_
program
=
None
):
helper
=
LayerHelper
(
'cast'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
data_type
)
helper
.
append_op
(
...
...
@@ -190,7 +190,7 @@ def cast(x, data_type, program=None):
return
out
def
concat
(
input
,
axis
,
program
=
None
,
init
_program
=
None
):
def
concat
(
input
,
axis
,
main_program
=
None
,
startup
_program
=
None
):
helper
=
LayerHelper
(
'concat'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
helper
.
input_dtype
())
helper
.
append_op
(
...
...
@@ -201,7 +201,7 @@ def concat(input, axis, program=None, init_program=None):
return
out
def
sums
(
input
,
program
=
None
,
init
_program
=
None
):
def
sums
(
input
,
main_program
=
None
,
startup
_program
=
None
):
helper
=
LayerHelper
(
'sum'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
helper
.
input_dtype
())
helper
.
append_op
(
type
=
'sum'
,
inputs
=
{
'X'
:
input
},
outputs
=
{
'Out'
:
out
})
...
...
@@ -281,8 +281,8 @@ def sequence_conv(input,
padding
=
None
,
bias_attr
=
None
,
param_attr
=
None
,
program
=
None
,
init
_program
=
None
):
main_
program
=
None
,
startup
_program
=
None
):
# FIXME(dzh) : want to unify the argument of python layer
# function. So we ignore some unecessary attributes.
# such as, padding_trainable, context_start.
...
...
@@ -321,8 +321,8 @@ def conv2d(input,
padding
=
None
,
bias_attr
=
None
,
param_attr
=
None
,
program
=
None
,
init
_program
=
None
):
main_
program
=
None
,
startup
_program
=
None
):
helper
=
LayerHelper
(
'conv2d'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
...
...
@@ -388,8 +388,8 @@ def pool2d(input,
pool_stride
=
[
1
,
1
],
pool_padding
=
[
0
,
0
],
global_pooling
=
False
,
program
=
None
,
init
_program
=
None
):
main_
program
=
None
,
startup
_program
=
None
):
if
pool_type
not
in
[
"max"
,
"avg"
]:
raise
ValueError
(
"Unknown pool_type: '%s'. It can only be 'max' or 'avg'."
,
...
...
@@ -428,8 +428,8 @@ def batch_norm(input,
param_attr
=
None
,
bias_attr
=
None
,
data_layout
=
'NCHW'
,
program
=
None
,
init
_program
=
None
):
main_
program
=
None
,
startup
_program
=
None
):
helper
=
LayerHelper
(
'batch_norm'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
...
...
@@ -505,16 +505,16 @@ class BlockGuard(object):
keyword.
"""
def
__init__
(
self
,
program
):
if
not
isinstance
(
program
,
Program
):
def
__init__
(
self
,
main_
program
):
if
not
isinstance
(
main_
program
,
Program
):
raise
TypeError
(
"BlockGuard takes a program"
)
self
.
program
=
program
self
.
main_program
=
main_
program
def
__enter__
(
self
):
self
.
program
.
create_block
()
self
.
main_
program
.
create_block
()
def
__exit__
(
self
,
exc_type
,
exc_val
,
exc_tb
):
self
.
program
.
rollback
()
self
.
main_
program
.
rollback
()
if
exc_type
is
not
None
:
return
False
# re-raise exception
return
True
...
...
@@ -524,7 +524,7 @@ class StaticRNNGuard(BlockGuard):
def
__init__
(
self
,
rnn
):
if
not
isinstance
(
rnn
,
StaticRNN
):
raise
TypeError
(
"StaticRNNGuard takes an StaticRNN"
)
super
(
StaticRNNGuard
,
self
).
__init__
(
rnn
.
helper
.
program
)
super
(
StaticRNNGuard
,
self
).
__init__
(
rnn
.
helper
.
main_
program
)
self
.
rnn
=
rnn
def
__enter__
(
self
):
...
...
@@ -560,8 +560,9 @@ class StaticRNN(object):
IN_RNN_BLOCK
=
1
AFTER_RNN_BLOCK
=
2
def
__init__
(
self
,
name
=
None
,
program
=
None
):
self
.
helper
=
LayerHelper
(
"static_rnn"
,
name
=
name
,
program
=
program
)
def
__init__
(
self
,
name
=
None
,
main_program
=
None
):
self
.
helper
=
LayerHelper
(
"static_rnn"
,
name
=
name
,
main_program
=
main_program
)
self
.
memories
=
{}
# memory map, from pre_mem.name --> MemoryLink
self
.
inputs
=
[]
# input variable list in current block
self
.
outputs
=
[]
# output variable list in parent block
...
...
@@ -653,7 +654,7 @@ class StaticRNN(object):
self
.
memories
[
mem
.
name
].
mem
=
var
def
parent_block
(
self
):
prog
=
self
.
helper
.
program
prog
=
self
.
helper
.
main_
program
parent_idx
=
prog
.
current_block
().
parent_idx
assert
parent_idx
>=
0
parent_block
=
prog
.
block
(
parent_idx
)
...
...
@@ -670,8 +671,8 @@ class StaticRNN(object):
return
self
.
outputs
def
complete_rnn_op
(
self
):
program
=
self
.
helper
.
program
rnn_block
=
program
.
current_block
()
main_program
=
self
.
helper
.
main_
program
rnn_block
=
main_
program
.
current_block
()
parent_block
=
self
.
parent_block
()
local_inputs
=
set
()
...
...
@@ -737,7 +738,7 @@ class StaticRNN(object):
})
def
lod_rank_table
(
x
,
level
=
0
,
program
=
None
):
def
lod_rank_table
(
x
,
level
=
0
,
main_
program
=
None
):
helper
=
LayerHelper
(
"lod_rank_table"
,
**
locals
())
table
=
helper
.
create_variable
(
type
=
core
.
VarDesc
.
VarType
.
LOD_RANK_TABLE
,
...
...
python/paddle/v2/framework/net_drawer.py
浏览文件 @
7a1d5e9d
...
...
@@ -80,7 +80,7 @@ def parse_graph(program, graph, var_dict, **kwargs):
graph
.
edge
(
**
draw_edge
(
var_dict
,
op
,
e
,
arg
))
def
draw_graph
(
init_program
,
program
,
**
kwargs
):
def
draw_graph
(
startup_program
,
main_
program
,
**
kwargs
):
if
kwargs
.
has_key
(
"graph_attr"
):
GRAPH_STYLE
.
update
(
kwargs
[
graph_attr
])
if
kwargs
.
has_key
(
"node_attr"
):
...
...
@@ -101,8 +101,8 @@ def draw_graph(init_program, program, **kwargs):
**
kwargs
)
var_dict
=
{}
parse_graph
(
init
_program
,
g
,
var_dict
)
parse_graph
(
program
,
g
,
var_dict
)
parse_graph
(
startup
_program
,
g
,
var_dict
)
parse_graph
(
main_
program
,
g
,
var_dict
)
if
filename
!=
None
:
g
.
save
()
...
...
python/paddle/v2/framework/nets.py
浏览文件 @
7a1d5e9d
...
...
@@ -10,23 +10,23 @@ def simple_img_conv_pool(input,
pool_stride
,
act
,
pool_type
=
'max'
,
program
=
None
,
init
_program
=
None
):
main_
program
=
None
,
startup
_program
=
None
):
conv_out
=
layers
.
conv2d
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
act
=
act
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
pool_out
=
layers
.
pool2d
(
input
=
conv_out
,
pool_size
=
pool_size
,
pool_type
=
pool_type
,
pool_stride
=
pool_stride
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
return
pool_out
...
...
@@ -40,8 +40,8 @@ def img_conv_group(input,
conv_batchnorm_drop_rate
=
None
,
pool_stride
=
1
,
pool_type
=
None
,
program
=
None
,
init
_program
=
None
):
main_
program
=
None
,
startup
_program
=
None
):
"""
Image Convolution Group, Used for vgg net.
"""
...
...
@@ -71,30 +71,30 @@ def img_conv_group(input,
filter_size
=
conv_filter_size
[
i
],
padding
=
conv_padding
[
i
],
act
=
local_conv_act
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
if
conv_with_batchnorm
[
i
]:
tmp
=
layers
.
batch_norm
(
input
=
tmp
,
act
=
conv_act
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
drop_rate
=
conv_batchnorm_drop_rate
[
i
]
if
abs
(
drop_rate
)
>
1e-5
:
tmp
=
layers
.
dropout
(
x
=
tmp
,
dropout_prob
=
drop_rate
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
pool_out
=
layers
.
pool2d
(
input
=
tmp
,
pool_size
=
pool_size
,
pool_type
=
pool_type
,
pool_stride
=
pool_stride
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
return
pool_out
...
...
@@ -103,19 +103,19 @@ def sequence_conv_pool(input,
filter_size
,
act
=
"sigmoid"
,
pool_type
=
"max"
,
program
=
None
,
init
_program
=
None
):
main_
program
=
None
,
startup
_program
=
None
):
conv_out
=
layers
.
sequence_conv
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
act
=
act
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
pool_out
=
layers
.
sequence_pool
(
input
=
conv_out
,
pool_type
=
pool_type
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
return
pool_out
python/paddle/v2/framework/optimizer.py
浏览文件 @
7a1d5e9d
...
...
@@ -132,7 +132,7 @@ class Optimizer(object):
def
create_optimization_pass
(
self
,
parameters_and_grads
,
loss
,
init
_program
=
None
):
startup
_program
=
None
):
"""Add optimization operators to update gradients to variables.
Args:
...
...
@@ -144,7 +144,7 @@ class Optimizer(object):
optimization. This will include parameter update ops, global step
update ops and any other custom ops required by subclasses to manage
their internal state.
:param
init
_program:
:param
startup
_program:
"""
# This is a default implementation of create_optimization_pass that
# can be shared by most optimizers. This implementation assumes that
...
...
@@ -156,7 +156,9 @@ class Optimizer(object):
# Create any accumulators
program
=
loss
.
block
.
program
self
.
helper
=
LayerHelper
(
self
.
__class__
.
__name__
,
program
=
program
,
init_program
=
init_program
)
self
.
__class__
.
__name__
,
main_program
=
program
,
startup_program
=
startup_program
)
self
.
_create_accumulators
(
loss
.
block
,
[
p
[
0
]
for
p
in
parameters_and_grads
])
# Create any necessary tensors
...
...
@@ -185,7 +187,7 @@ class Optimizer(object):
def
minimize
(
self
,
loss
,
init
_program
=
None
,
startup
_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
):
"""Add operations to minimize `loss` by updating `parameter_list`.
...
...
@@ -198,7 +200,7 @@ class Optimizer(object):
# Add regularization if any
params_grads
=
append_regularization_ops
(
params_grads
)
optimize_ops
=
self
.
create_optimization_pass
(
params_grads
,
loss
,
init
_program
)
startup
_program
)
return
optimize_ops
...
...
python/paddle/v2/framework/tests/test_executor_and_mul.py
浏览文件 @
7a1d5e9d
...
...
@@ -2,7 +2,7 @@ import unittest
from
paddle.v2.framework.layers
import
mul
,
data
import
paddle.v2.framework.core
as
core
from
paddle.v2.framework.executor
import
Executor
from
paddle.v2.framework.framework
import
g_program
from
paddle.v2.framework.framework
import
g_
main_
program
import
numpy
...
...
@@ -23,7 +23,7 @@ class TestExecutor(unittest.TestCase):
tensor_b
=
core
.
LoDTensor
()
tensor_b
.
set
(
b_np
,
place
)
exe
=
Executor
(
place
)
outs
=
exe
.
run
(
g_program
,
outs
=
exe
.
run
(
g_
main_
program
,
feed
=
{
'a'
:
tensor_a
,
'b'
:
tensor_b
},
fetch_list
=
[
out
])
...
...
python/paddle/v2/framework/tests/test_fit_a_line.py
浏览文件 @
7a1d5e9d
...
...
@@ -3,40 +3,44 @@ import paddle.v2.framework.layers as layers
import
paddle.v2.framework.core
as
core
import
paddle.v2.framework.optimizer
as
optimizer
from
paddle.v2.framework.framework
import
Program
,
g_program
from
paddle.v2.framework.framework
import
Program
,
g_
main_
program
from
paddle.v2.framework.io
import
save_persistables
,
load_persistables
from
paddle.v2.framework.executor
import
Executor
import
numpy
as
np
init
_program
=
Program
()
program
=
Program
()
startup
_program
=
Program
()
main_
program
=
Program
()
x
=
layers
.
data
(
name
=
'x'
,
shape
=
[
13
],
data_type
=
'float32'
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
y_predict
=
layers
.
fc
(
input
=
x
,
size
=
1
,
act
=
None
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
y
=
layers
.
data
(
name
=
'y'
,
shape
=
[
1
],
data_type
=
'float32'
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
cost
=
layers
.
square_error_cost
(
input
=
y_predict
,
label
=
y
,
program
=
program
,
init_program
=
init_program
)
avg_cost
=
layers
.
mean
(
x
=
cost
,
program
=
program
,
init_program
=
init_program
)
input
=
y_predict
,
label
=
y
,
main_program
=
main_program
,
startup_program
=
startup_program
)
avg_cost
=
layers
.
mean
(
x
=
cost
,
main_program
=
main_program
,
startup_program
=
startup_program
)
sgd_optimizer
=
optimizer
.
SGDOptimizer
(
learning_rate
=
0.001
)
opts
=
sgd_optimizer
.
minimize
(
avg_cost
,
init
_program
)
opts
=
sgd_optimizer
.
minimize
(
avg_cost
,
startup
_program
)
BATCH_SIZE
=
20
...
...
@@ -48,12 +52,12 @@ train_reader = paddle.batch(
place
=
core
.
CPUPlace
()
exe
=
Executor
(
place
)
exe
.
run
(
init
_program
,
feed
=
{},
fetch_list
=
[])
exe
.
run
(
startup
_program
,
feed
=
{},
fetch_list
=
[])
PASS_NUM
=
100
for
pass_id
in
range
(
PASS_NUM
):
save_persistables
(
exe
,
"./fit_a_line.model/"
,
program
=
program
)
load_persistables
(
exe
,
"./fit_a_line.model/"
,
program
=
program
)
save_persistables
(
exe
,
"./fit_a_line.model/"
,
main_program
=
main_
program
)
load_persistables
(
exe
,
"./fit_a_line.model/"
,
main_program
=
main_
program
)
for
data
in
train_reader
():
x_data
=
np
.
array
(
map
(
lambda
x
:
x
[
0
],
data
)).
astype
(
"float32"
)
y_data
=
np
.
array
(
map
(
lambda
x
:
x
[
1
],
data
)).
astype
(
"float32"
)
...
...
@@ -65,7 +69,7 @@ for pass_id in range(PASS_NUM):
tensor_y
=
core
.
LoDTensor
()
tensor_y
.
set
(
y_data
,
place
)
# print tensor_y.get_dims()
outs
=
exe
.
run
(
program
,
outs
=
exe
.
run
(
main_
program
,
feed
=
{
'x'
:
tensor_x
,
'y'
:
tensor_y
},
fetch_list
=
[
avg_cost
])
...
...
python/paddle/v2/framework/tests/test_image_classification_layer.py
浏览文件 @
7a1d5e9d
...
...
@@ -9,8 +9,8 @@ def conv_block(input,
num_filter
,
groups
,
dropouts
,
program
=
None
,
init
_program
=
None
):
main_
program
=
None
,
startup
_program
=
None
):
return
nets
.
img_conv_group
(
input
=
input
,
pool_size
=
2
,
...
...
@@ -21,77 +21,81 @@ def conv_block(input,
conv_with_batchnorm
=
True
,
conv_batchnorm_drop_rate
=
dropouts
,
pool_type
=
'max'
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
class
TestLayer
(
unittest
.
TestCase
):
def
test_batch_norm_layer
(
self
):
program
=
Program
()
init
_program
=
Program
()
main_
program
=
Program
()
startup
_program
=
Program
()
images
=
layers
.
data
(
name
=
'pixel'
,
shape
=
[
3
,
48
,
48
],
data_type
=
'float32'
,
program
=
program
)
main_program
=
main_
program
)
layers
.
batch_norm
(
input
=
images
,
program
=
program
,
init_program
=
init_program
)
input
=
images
,
main_program
=
main_program
,
startup_program
=
startup_program
)
# print str(program)
# print str(
main_
program)
def
test_dropout_layer
(
self
):
program
=
Program
()
init
_program
=
Program
()
main_
program
=
Program
()
startup
_program
=
Program
()
images
=
layers
.
data
(
name
=
'pixel'
,
shape
=
[
3
,
48
,
48
],
data_type
=
'float32'
,
program
=
program
)
main_program
=
main_
program
)
layers
.
dropout
(
x
=
images
,
dropout_prob
=
0.5
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
# print str(program)
# print str(
main_
program)
def
test_img_conv_group
(
self
):
program
=
Program
()
init
_program
=
Program
()
main_
program
=
Program
()
startup
_program
=
Program
()
images
=
layers
.
data
(
name
=
'pixel'
,
shape
=
[
3
,
48
,
48
],
data_type
=
'float32'
,
program
=
program
,
init_program
=
init_program
)
conv1
=
conv_block
(
images
,
64
,
2
,
[
0.3
,
0
],
program
,
init_program
)
conv2
=
conv_block
(
conv1
,
256
,
3
,
[
0.4
,
0.4
,
0
],
program
,
init_program
)
main_program
=
main_program
,
startup_program
=
startup_program
)
conv1
=
conv_block
(
images
,
64
,
2
,
[
0.3
,
0
],
main_program
,
startup_program
)
conv2
=
conv_block
(
conv1
,
256
,
3
,
[
0.4
,
0.4
,
0
],
main_program
,
startup_program
)
# print str(program)
# print str(
main_
program)
def
test_elementwise_add_with_act
(
self
):
program
=
Program
()
init
_program
=
Program
()
main_
program
=
Program
()
startup
_program
=
Program
()
image1
=
layers
.
data
(
name
=
'pixel1'
,
shape
=
[
3
,
48
,
48
],
data_type
=
'float32'
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
image2
=
layers
.
data
(
name
=
'pixel2'
,
shape
=
[
3
,
48
,
48
],
data_type
=
'float32'
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
out
=
layers
.
elementwise_add
(
x
=
image1
,
y
=
image2
,
act
=
'relu'
,
program
=
program
,
init_program
=
init
_program
)
# print(program)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
# print(
main_
program)
if
__name__
==
'__main__'
:
...
...
python/paddle/v2/framework/tests/test_image_classification_train.py
浏览文件 @
7a1d5e9d
...
...
@@ -5,19 +5,19 @@ import paddle.v2.framework.layers as layers
import
paddle.v2.framework.nets
as
nets
import
paddle.v2.framework.optimizer
as
optimizer
from
paddle.v2.framework.executor
import
Executor
from
paddle.v2.framework.framework
import
g_
init_program
,
g
_program
from
paddle.v2.framework.framework
import
g_
startup_program
,
g_main
_program
from
paddle.v2.framework.initializer
import
XavierInitializer
def
resnet_cifar10
(
input
,
depth
=
32
,
program
=
None
,
init
_program
=
None
):
def
resnet_cifar10
(
input
,
depth
=
32
,
main_program
=
None
,
startup
_program
=
None
):
def
conv_bn_layer
(
input
,
ch_out
,
filter_size
,
stride
,
padding
,
act
=
'relu'
,
program
=
None
,
init
_program
=
None
):
main_
program
=
None
,
startup
_program
=
None
):
tmp
=
layers
.
conv2d
(
input
=
input
,
filter_size
=
filter_size
,
...
...
@@ -26,10 +26,13 @@ def resnet_cifar10(input, depth=32, program=None, init_program=None):
padding
=
padding
,
act
=
None
,
bias_attr
=
False
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
return
layers
.
batch_norm
(
input
=
tmp
,
act
=
act
,
program
=
program
,
init_program
=
init_program
)
input
=
tmp
,
act
=
act
,
main_program
=
main_program
,
startup_program
=
startup_program
)
def
shortcut
(
input
,
ch_in
,
ch_out
,
stride
,
program
,
init_program
):
if
ch_in
!=
ch_out
:
...
...
@@ -42,16 +45,16 @@ def resnet_cifar10(input, depth=32, program=None, init_program=None):
ch_in
,
ch_out
,
stride
,
program
=
program
,
init_program
=
init
_program
):
main_program
=
main_
program
,
startup_program
=
startup
_program
):
tmp
=
conv_bn_layer
(
input
,
ch_out
,
3
,
stride
,
1
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
tmp
=
conv_bn_layer
(
tmp
,
ch_out
,
...
...
@@ -59,21 +62,22 @@ def resnet_cifar10(input, depth=32, program=None, init_program=None):
1
,
1
,
act
=
None
,
program
=
program
,
init_program
=
init_program
)
short
=
shortcut
(
input
,
ch_in
,
ch_out
,
stride
,
program
,
init_program
)
main_program
=
main_program
,
startup_program
=
startup_program
)
short
=
shortcut
(
input
,
ch_in
,
ch_out
,
stride
,
main_program
,
startup_program
)
return
layers
.
elementwise_add
(
x
=
tmp
,
y
=
short
,
act
=
'relu'
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
def
layer_warp
(
block_func
,
input
,
ch_in
,
ch_out
,
count
,
stride
,
program
,
init
_program
):
tmp
=
block_func
(
input
,
ch_in
,
ch_out
,
stride
,
program
,
init
_program
)
startup
_program
):
tmp
=
block_func
(
input
,
ch_in
,
ch_out
,
stride
,
program
,
startup
_program
)
for
i
in
range
(
1
,
count
):
tmp
=
block_func
(
tmp
,
ch_out
,
ch_out
,
1
,
program
,
init
_program
)
tmp
=
block_func
(
tmp
,
ch_out
,
ch_out
,
1
,
program
,
startup
_program
)
return
tmp
assert
(
depth
-
2
)
%
6
==
0
...
...
@@ -84,8 +88,8 @@ def resnet_cifar10(input, depth=32, program=None, init_program=None):
filter_size
=
3
,
stride
=
1
,
padding
=
1
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
res1
=
layer_warp
(
basicblock
,
conv1
,
...
...
@@ -93,8 +97,8 @@ def resnet_cifar10(input, depth=32, program=None, init_program=None):
16
,
n
,
1
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
res2
=
layer_warp
(
basicblock
,
res1
,
...
...
@@ -102,8 +106,8 @@ def resnet_cifar10(input, depth=32, program=None, init_program=None):
32
,
n
,
2
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
res3
=
layer_warp
(
basicblock
,
res2
,
...
...
@@ -111,25 +115,25 @@ def resnet_cifar10(input, depth=32, program=None, init_program=None):
64
,
n
,
2
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
pool
=
layers
.
pool2d
(
input
=
res3
,
pool_size
=
8
,
pool_type
=
'avg'
,
pool_stride
=
1
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
return
pool
def
vgg16_bn_drop
(
input
,
program
=
None
,
init
_program
=
None
):
def
vgg16_bn_drop
(
input
,
main_program
=
None
,
startup
_program
=
None
):
def
conv_block
(
input
,
num_filter
,
groups
,
dropouts
,
program
=
None
,
init
_program
=
None
):
main_
program
=
None
,
startup
_program
=
None
):
return
nets
.
img_conv_group
(
input
=
input
,
pool_size
=
2
,
...
...
@@ -140,38 +144,50 @@ def vgg16_bn_drop(input, program=None, init_program=None):
conv_with_batchnorm
=
True
,
conv_batchnorm_drop_rate
=
dropouts
,
pool_type
=
'max'
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
conv1
=
conv_block
(
input
,
64
,
2
,
[
0.3
,
0
],
program
,
init_program
)
conv2
=
conv_block
(
conv1
,
128
,
2
,
[
0.4
,
0
],
program
,
init_program
)
conv3
=
conv_block
(
conv2
,
256
,
3
,
[
0.4
,
0.4
,
0
],
program
,
init_program
)
conv4
=
conv_block
(
conv3
,
512
,
3
,
[
0.4
,
0.4
,
0
],
program
,
init_program
)
conv5
=
conv_block
(
conv4
,
512
,
3
,
[
0.4
,
0.4
,
0
],
program
,
init_program
)
conv1
=
conv_block
(
input
,
64
,
2
,
[
0.3
,
0
],
main_program
,
startup_program
)
conv2
=
conv_block
(
conv1
,
128
,
2
,
[
0.4
,
0
],
main_program
,
startup_program
)
conv3
=
conv_block
(
conv2
,
256
,
3
,
[
0.4
,
0.4
,
0
],
main_program
,
startup_program
)
conv4
=
conv_block
(
conv3
,
512
,
3
,
[
0.4
,
0.4
,
0
],
main_program
,
startup_program
)
conv5
=
conv_block
(
conv4
,
512
,
3
,
[
0.4
,
0.4
,
0
],
main_program
,
startup_program
)
drop
=
layers
.
dropout
(
x
=
conv5
,
dropout_prob
=
0.5
,
program
=
program
,
init_program
=
init_program
)
x
=
conv5
,
dropout_prob
=
0.5
,
main_program
=
main_program
,
startup_program
=
startup_program
)
fc1
=
layers
.
fc
(
input
=
drop
,
size
=
512
,
act
=
None
,
param_attr
=
{
"initializer"
:
XavierInitializer
()},
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
reshape1
=
layers
.
reshape
(
x
=
fc1
,
shape
=
list
(
fc1
.
shape
+
(
1
,
1
)),
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
bn
=
layers
.
batch_norm
(
input
=
reshape1
,
act
=
'relu'
,
program
=
program
,
init_program
=
init_program
)
input
=
reshape1
,
act
=
'relu'
,
main_program
=
main_program
,
startup_program
=
startup_program
)
drop2
=
layers
.
dropout
(
x
=
bn
,
dropout_prob
=
0.5
,
program
=
program
,
init_program
=
init_program
)
x
=
bn
,
dropout_prob
=
0.5
,
main_program
=
main_program
,
startup_program
=
startup_program
)
fc2
=
layers
.
fc
(
input
=
drop2
,
size
=
512
,
act
=
None
,
param_attr
=
{
"initializer"
:
XavierInitializer
()},
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
return
fc2
...
...
@@ -209,7 +225,7 @@ train_reader = paddle.batch(
place
=
core
.
CPUPlace
()
exe
=
Executor
(
place
)
exe
.
run
(
g_
init
_program
,
feed
=
{},
fetch_list
=
[])
exe
.
run
(
g_
startup
_program
,
feed
=
{},
fetch_list
=
[])
for
pass_id
in
range
(
PASS_NUM
):
batch_id
=
0
...
...
@@ -227,7 +243,7 @@ for pass_id in range(PASS_NUM):
tensor_img
.
set
(
img_data
,
place
)
tensor_y
.
set
(
y_data
,
place
)
outs
=
exe
.
run
(
g_program
,
outs
=
exe
.
run
(
g_
main_
program
,
feed
=
{
"pixel"
:
tensor_img
,
"label"
:
tensor_y
},
fetch_list
=
[
avg_cost
,
accuracy
])
...
...
python/paddle/v2/framework/tests/test_inference_model_io.py
浏览文件 @
7a1d5e9d
...
...
@@ -3,7 +3,7 @@ import paddle.v2.framework.layers as layers
import
paddle.v2.framework.core
as
core
import
paddle.v2.framework.optimizer
as
optimizer
from
paddle.v2.framework.framework
import
Program
,
g_program
from
paddle.v2.framework.framework
import
Program
,
g_
main_
program
from
paddle.v2.framework.io
import
save_inference_model
,
load_inference_model
import
paddle.v2.framework.executor
as
executor
import
unittest
...
...
@@ -20,28 +20,28 @@ class TestBook(unittest.TestCase):
name
=
'x'
,
shape
=
[
2
],
data_type
=
'float32'
,
program
=
program
,
init
_program
=
init_program
)
main_
program
=
program
,
startup
_program
=
init_program
)
y
=
layers
.
data
(
name
=
'y'
,
shape
=
[
1
],
data_type
=
'float32'
,
program
=
program
,
init
_program
=
init_program
)
main_
program
=
program
,
startup
_program
=
init_program
)
y_predict
=
layers
.
fc
(
input
=
x
,
size
=
1
,
act
=
None
,
program
=
program
,
init
_program
=
init_program
)
main_
program
=
program
,
startup
_program
=
init_program
)
cost
=
layers
.
square_error_cost
(
input
=
y_predict
,
label
=
y
,
program
=
program
,
init
_program
=
init_program
)
main_
program
=
program
,
startup
_program
=
init_program
)
avg_cost
=
layers
.
mean
(
x
=
cost
,
program
=
program
,
init
_program
=
init_program
)
x
=
cost
,
main_program
=
program
,
startup
_program
=
init_program
)
sgd_optimizer
=
optimizer
.
SGDOptimizer
(
learning_rate
=
0.001
)
opts
=
sgd_optimizer
.
minimize
(
avg_cost
,
init_program
)
...
...
python/paddle/v2/framework/tests/test_layers.py
浏览文件 @
7a1d5e9d
import
paddle.v2.framework.layers
as
layers
import
paddle.v2.framework.nets
as
nets
from
paddle.v2.framework.framework
import
Program
,
g_program
from
paddle.v2.framework.framework
import
Program
,
g_
main_
program
import
paddle.v2.framework.core
as
core
import
unittest
...
...
@@ -9,15 +9,15 @@ class TestBook(unittest.TestCase):
def
test_fit_a_line
(
self
):
program
=
Program
()
x
=
layers
.
data
(
name
=
'x'
,
shape
=
[
13
],
data_type
=
'float32'
,
program
=
program
)
y_predict
=
layers
.
fc
(
input
=
x
,
size
=
1
,
act
=
None
,
program
=
program
)
name
=
'x'
,
shape
=
[
13
],
data_type
=
'float32'
,
main_
program
=
program
)
y_predict
=
layers
.
fc
(
input
=
x
,
size
=
1
,
act
=
None
,
main_
program
=
program
)
y
=
layers
.
data
(
name
=
'y'
,
shape
=
[
1
],
data_type
=
'float32'
,
program
=
program
)
name
=
'y'
,
shape
=
[
1
],
data_type
=
'float32'
,
main_
program
=
program
)
cost
=
layers
.
square_error_cost
(
input
=
y_predict
,
label
=
y
,
program
=
program
)
input
=
y_predict
,
label
=
y
,
main_
program
=
program
)
avg_cost
=
layers
.
mean
(
x
=
cost
,
program
=
program
)
avg_cost
=
layers
.
mean
(
x
=
cost
,
main_
program
=
program
)
self
.
assertIsNotNone
(
avg_cost
)
program
.
append_backward
(
avg_cost
)
print
str
(
program
)
...
...
@@ -27,26 +27,42 @@ class TestBook(unittest.TestCase):
# Change g_program, so the rest layers use `g_program`
images
=
layers
.
data
(
name
=
'pixel'
,
shape
=
[
784
],
data_type
=
'float32'
,
program
=
program
)
name
=
'pixel'
,
shape
=
[
784
],
data_type
=
'float32'
,
main_program
=
program
)
label
=
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
data_type
=
'int32'
,
program
=
program
)
hidden1
=
layers
.
fc
(
input
=
images
,
size
=
128
,
act
=
'relu'
,
program
=
program
)
hidden2
=
layers
.
fc
(
input
=
hidden1
,
size
=
64
,
act
=
'relu'
,
program
=
program
)
name
=
'label'
,
shape
=
[
1
],
data_type
=
'int32'
,
main_program
=
program
)
hidden1
=
layers
.
fc
(
input
=
images
,
size
=
128
,
act
=
'relu'
,
main_program
=
program
)
hidden2
=
layers
.
fc
(
input
=
hidden1
,
size
=
64
,
act
=
'relu'
,
main_program
=
program
)
predict
=
layers
.
fc
(
input
=
hidden2
,
size
=
10
,
act
=
'softmax'
,
program
=
program
)
cost
=
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
,
program
=
program
)
avg_cost
=
layers
.
mean
(
x
=
cost
,
program
=
program
)
main_program
=
program
)
cost
=
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
,
main_program
=
program
)
avg_cost
=
layers
.
mean
(
x
=
cost
,
main_program
=
program
)
self
.
assertIsNotNone
(
avg_cost
)
print
str
(
program
)
def
test_simple_conv2d
(
self
):
program
=
Program
()
images
=
layers
.
data
(
name
=
'pixel'
,
shape
=
[
3
,
48
,
48
],
data_type
=
'int32'
,
program
=
program
)
name
=
'pixel'
,
shape
=
[
3
,
48
,
48
],
data_type
=
'int32'
,
main_program
=
program
)
layers
.
conv2d
(
input
=
images
,
num_filters
=
3
,
filter_size
=
[
4
,
4
],
program
=
program
)
input
=
images
,
num_filters
=
3
,
filter_size
=
[
4
,
4
],
main_program
=
program
)
print
str
(
program
)
...
...
@@ -57,9 +73,9 @@ class TestBook(unittest.TestCase):
name
=
'pixel'
,
shape
=
[
1
,
28
,
28
],
data_type
=
'float32'
,
program
=
program
)
main_
program
=
program
)
label
=
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
data_type
=
'int32'
,
program
=
program
)
name
=
'label'
,
shape
=
[
1
],
data_type
=
'int32'
,
main_
program
=
program
)
conv_pool_1
=
nets
.
simple_img_conv_pool
(
input
=
images
,
filter_size
=
5
,
...
...
@@ -67,7 +83,7 @@ class TestBook(unittest.TestCase):
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
,
program
=
program
)
main_
program
=
program
)
conv_pool_2
=
nets
.
simple_img_conv_pool
(
input
=
conv_pool_1
,
filter_size
=
5
,
...
...
@@ -75,14 +91,15 @@ class TestBook(unittest.TestCase):
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
,
program
=
program
)
main_
program
=
program
)
predict
=
layers
.
fc
(
input
=
conv_pool_2
,
size
=
10
,
act
=
"softmax"
,
program
=
program
)
cost
=
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
,
program
=
program
)
avg_cost
=
layers
.
mean
(
x
=
cost
,
program
=
program
)
main_program
=
program
)
cost
=
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
,
main_program
=
program
)
avg_cost
=
layers
.
mean
(
x
=
cost
,
main_program
=
program
)
program
.
append_backward
(
avg_cost
)
...
...
@@ -93,58 +110,58 @@ class TestBook(unittest.TestCase):
dict_size
=
10000
embed_size
=
32
first_word
=
layers
.
data
(
name
=
'firstw'
,
shape
=
[
1
],
data_type
=
'int64'
,
program
=
program
)
name
=
'firstw'
,
shape
=
[
1
],
data_type
=
'int64'
,
main_
program
=
program
)
second_word
=
layers
.
data
(
name
=
'secondw'
,
shape
=
[
1
],
data_type
=
'int64'
,
program
=
program
)
name
=
'secondw'
,
shape
=
[
1
],
data_type
=
'int64'
,
main_
program
=
program
)
third_word
=
layers
.
data
(
name
=
'thirdw'
,
shape
=
[
1
],
data_type
=
'int64'
,
program
=
program
)
name
=
'thirdw'
,
shape
=
[
1
],
data_type
=
'int64'
,
main_
program
=
program
)
forth_word
=
layers
.
data
(
name
=
'forthw'
,
shape
=
[
1
],
data_type
=
'int64'
,
program
=
program
)
name
=
'forthw'
,
shape
=
[
1
],
data_type
=
'int64'
,
main_
program
=
program
)
next_word
=
layers
.
data
(
name
=
'nextw'
,
shape
=
[
1
],
data_type
=
'int64'
,
program
=
program
)
name
=
'nextw'
,
shape
=
[
1
],
data_type
=
'int64'
,
main_
program
=
program
)
embed_first
=
layers
.
embedding
(
input
=
first_word
,
size
=
[
dict_size
,
embed_size
],
data_type
=
'float32'
,
param_attr
=
{
'name'
:
'shared_w'
},
program
=
program
)
main_
program
=
program
)
embed_second
=
layers
.
embedding
(
input
=
second_word
,
size
=
[
dict_size
,
embed_size
],
data_type
=
'float32'
,
param_attr
=
{
'name'
:
'shared_w'
},
program
=
program
)
main_
program
=
program
)
embed_third
=
layers
.
embedding
(
input
=
third_word
,
size
=
[
dict_size
,
embed_size
],
data_type
=
'float32'
,
param_attr
=
{
'name'
:
'shared_w'
},
program
=
program
)
main_
program
=
program
)
embed_forth
=
layers
.
embedding
(
input
=
forth_word
,
size
=
[
dict_size
,
embed_size
],
data_type
=
'float32'
,
param_attr
=
{
'name'
:
'shared_w'
},
program
=
program
)
main_
program
=
program
)
concat_embed
=
layers
.
concat
(
input
=
[
embed_first
,
embed_second
,
embed_third
,
embed_forth
],
axis
=
1
,
program
=
program
)
main_
program
=
program
)
hidden1
=
layers
.
fc
(
input
=
concat_embed
,
size
=
256
,
act
=
'sigmoid'
,
program
=
program
)
main_
program
=
program
)
predict_word
=
layers
.
fc
(
input
=
hidden1
,
size
=
dict_size
,
act
=
'softmax'
,
program
=
program
)
main_
program
=
program
)
cost
=
layers
.
cross_entropy
(
input
=
predict_word
,
label
=
next_word
,
program
=
program
)
avg_cost
=
layers
.
mean
(
x
=
cost
,
program
=
program
)
input
=
predict_word
,
label
=
next_word
,
main_
program
=
program
)
avg_cost
=
layers
.
mean
(
x
=
cost
,
main_
program
=
program
)
self
.
assertIsNotNone
(
avg_cost
)
print
str
(
program
)
...
...
python/paddle/v2/framework/tests/test_lod_rank_table.py
浏览文件 @
7a1d5e9d
from
paddle.v2.framework.layers
import
lod_rank_table
,
data
from
paddle.v2.framework.executor
import
Executor
from
paddle.v2.framework.framework
import
g_program
from
paddle.v2.framework.framework
import
g_
main_
program
import
paddle.v2.framework.core
as
core
import
numpy
import
unittest
...
...
@@ -19,7 +19,7 @@ class TestLoDRankTable(unittest.TestCase):
tensor
.
set
(
numpy
.
random
.
random
(
size
=
(
17
,
100
)),
cpu
)
tensor
.
set_lod
([[
0
,
1
,
3
],
[
0
,
5
,
6
,
7
],
[
0
,
3
,
4
,
9
,
10
,
13
,
16
,
17
]])
exe
.
run
(
g_program
,
scope
=
scope
,
feed
=
{
'x'
:
tensor
})
exe
.
run
(
g_
main_
program
,
scope
=
scope
,
feed
=
{
'x'
:
tensor
})
var
=
scope
.
find_var
(
rank_table
.
name
)
table
=
var
.
get_lod_rank_table
()
self
.
assertEqual
([(
0
,
5
),
(
1
,
1
),
(
2
,
1
)],
table
.
items
())
...
...
python/paddle/v2/framework/tests/test_lod_tensor_array.py
0 → 100644
浏览文件 @
7a1d5e9d
import
unittest
import
paddle.v2.framework.core
as
core
import
numpy
class
TestLoDTensorArray
(
unittest
.
TestCase
):
def
test_get_set
(
self
):
scope
=
core
.
Scope
()
arr
=
scope
.
var
(
'tmp_lod_tensor_array'
)
tensor_array
=
arr
.
get_lod_tensor_array
()
self
.
assertEqual
(
0
,
len
(
tensor_array
))
cpu
=
core
.
CPUPlace
()
for
i
in
xrange
(
10
):
t
=
core
.
LoDTensor
()
t
.
set
(
numpy
.
array
([
i
],
dtype
=
'float32'
),
cpu
)
t
.
set_lod
([[
0
,
1
]])
tensor_array
.
append
(
t
)
self
.
assertEqual
(
10
,
len
(
tensor_array
))
for
i
in
xrange
(
10
):
t
=
tensor_array
[
i
]
self
.
assertEqual
(
numpy
.
array
(
t
),
numpy
.
array
([
i
],
dtype
=
'float32'
))
self
.
assertEqual
([[
0
,
1
]],
t
.
lod
())
t
=
core
.
LoDTensor
()
t
.
set
(
numpy
.
array
([
i
+
10
],
dtype
=
'float32'
),
cpu
)
t
.
set_lod
([[
0
,
2
]])
tensor_array
[
i
]
=
t
t
=
tensor_array
[
i
]
self
.
assertEqual
(
numpy
.
array
(
t
),
numpy
.
array
(
[
i
+
10
],
dtype
=
'float32'
))
self
.
assertEqual
([[
0
,
2
]],
t
.
lod
())
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/v2/framework/tests/test_operator_desc.py
浏览文件 @
7a1d5e9d
import
unittest
from
paddle.v2.framework.framework
import
Variable
,
Program
,
g_program
from
paddle.v2.framework.framework
import
Variable
,
Program
,
g_
main_
program
import
paddle.v2.framework.core
as
core
class
TestOperator
(
unittest
.
TestCase
):
def
test_error_type
(
self
):
block
=
g_program
.
create_block
()
block
=
g_
main_
program
.
create_block
()
try
:
block
.
append_op
()
self
.
assertFail
()
...
...
python/paddle/v2/framework/tests/test_parameter.py
浏览文件 @
7a1d5e9d
import
unittest
from
paddle.v2.framework.framework
import
g_program
from
paddle.v2.framework.framework
import
g_
main_
program
import
paddle.v2.framework.core
as
core
class
TestParameter
(
unittest
.
TestCase
):
def
test_param
(
self
):
b
=
g_program
.
create_block
()
b
=
g_
main_
program
.
create_block
()
param
=
b
.
create_parameter
(
name
=
'fc.w'
,
shape
=
[
784
,
100
],
...
...
python/paddle/v2/framework/tests/test_program.py
浏览文件 @
7a1d5e9d
...
...
@@ -2,35 +2,35 @@ import unittest
import
paddle.v2.framework.core
as
core
from
paddle.v2.framework.framework
import
Program
from
paddle.v2.framework.framework
import
g_program
from
paddle.v2.framework.framework
import
g_
main_
program
class
TestProgram
(
unittest
.
TestCase
):
def
test_program
(
self
):
b
=
g_program
.
current_block
()
b
=
g_
main_
program
.
current_block
()
self
.
assertEqual
(
-
1
,
b
.
parent_idx
)
self
.
assertEqual
(
0
,
b
.
idx
)
b
=
g_program
.
create_block
()
b
=
g_
main_
program
.
create_block
()
self
.
assertEqual
(
1
,
b
.
idx
)
self
.
assertEqual
(
0
,
b
.
parent_idx
)
b
=
g_program
.
create_block
()
b
=
g_
main_
program
.
create_block
()
self
.
assertEqual
(
2
,
b
.
idx
)
self
.
assertEqual
(
1
,
b
.
parent_idx
)
g_program
.
rollback
()
g_
main_
program
.
rollback
()
b
=
g_program
.
current_block
()
b
=
g_
main_
program
.
current_block
()
self
.
assertEqual
(
1
,
b
.
idx
)
self
.
assertEqual
(
0
,
b
.
parent_idx
)
b
=
g_program
.
create_block
()
b
=
g_
main_
program
.
create_block
()
self
.
assertEqual
(
3
,
b
.
idx
)
self
.
assertEqual
(
1
,
b
.
parent_idx
)
g_program
.
rollback
()
b
=
g_program
.
current_block
()
g_
main_
program
.
rollback
()
b
=
g_
main_
program
.
current_block
()
self
.
assertEqual
(
1
,
b
.
idx
)
self
.
assertEqual
(
0
,
b
.
parent_idx
)
...
...
python/paddle/v2/framework/tests/test_recognize_digits_conv.py
浏览文件 @
7a1d5e9d
...
...
@@ -4,26 +4,26 @@ import paddle.v2.framework.nets as nets
import
paddle.v2.framework.core
as
core
import
paddle.v2.framework.optimizer
as
optimizer
from
paddle.v2.framework.framework
import
Program
,
g_program
from
paddle.v2.framework.framework
import
Program
,
g_
main_
program
from
paddle.v2.framework.executor
import
Executor
import
numpy
as
np
init
_program
=
Program
()
program
=
Program
()
startup
_program
=
Program
()
main_
program
=
Program
()
images
=
layers
.
data
(
name
=
'pixel'
,
shape
=
[
1
,
28
,
28
],
data_type
=
'float32'
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
label
=
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
data_type
=
'int64'
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
conv_pool_1
=
nets
.
simple_img_conv_pool
(
input
=
images
,
filter_size
=
5
,
...
...
@@ -31,8 +31,8 @@ conv_pool_1 = nets.simple_img_conv_pool(
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
conv_pool_2
=
nets
.
simple_img_conv_pool
(
input
=
conv_pool_1
,
filter_size
=
5
,
...
...
@@ -40,24 +40,30 @@ conv_pool_2 = nets.simple_img_conv_pool(
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
predict
=
layers
.
fc
(
input
=
conv_pool_2
,
size
=
10
,
act
=
"softmax"
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
cost
=
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
,
program
=
program
,
init_program
=
init_program
)
avg_cost
=
layers
.
mean
(
x
=
cost
,
program
=
program
)
input
=
predict
,
label
=
label
,
main_program
=
main_program
,
startup_program
=
startup_program
)
avg_cost
=
layers
.
mean
(
x
=
cost
,
main_program
=
main_program
)
accuracy
=
layers
.
accuracy
(
input
=
predict
,
label
=
label
,
program
=
program
,
init_program
=
init_program
)
input
=
predict
,
label
=
label
,
main_program
=
main_program
,
startup_program
=
startup_program
)
# optimizer = optimizer.MomentumOptimizer(learning_rate=0.1 / 128.0,
# momentum=0.9)
optimizer
=
optimizer
.
AdamOptimizer
(
learning_rate
=
0.01
,
beta1
=
0.9
,
beta2
=
0.999
)
opts
=
optimizer
.
minimize
(
avg_cost
,
init
_program
)
opts
=
optimizer
.
minimize
(
avg_cost
,
startup
_program
)
BATCH_SIZE
=
50
PASS_NUM
=
3
...
...
@@ -69,7 +75,7 @@ train_reader = paddle.batch(
place
=
core
.
CPUPlace
()
exe
=
Executor
(
place
)
exe
.
run
(
init
_program
,
feed
=
{},
fetch_list
=
[])
exe
.
run
(
startup
_program
,
feed
=
{},
fetch_list
=
[])
for
pass_id
in
range
(
PASS_NUM
):
count
=
0
...
...
@@ -84,7 +90,7 @@ for pass_id in range(PASS_NUM):
tensor_img
.
set
(
img_data
,
place
)
tensor_y
.
set
(
y_data
,
place
)
outs
=
exe
.
run
(
program
,
outs
=
exe
.
run
(
main_
program
,
feed
=
{
"pixel"
:
tensor_img
,
"label"
:
tensor_y
},
fetch_list
=
[
avg_cost
,
accuracy
])
...
...
python/paddle/v2/framework/tests/test_recognize_digits_mlp.py
浏览文件 @
7a1d5e9d
...
...
@@ -11,14 +11,14 @@ from paddle.v2.framework.initializer import UniformInitializer
import
numpy
as
np
BATCH_SIZE
=
128
init
_program
=
Program
()
program
=
Program
()
startup
_program
=
Program
()
main_
program
=
Program
()
image
=
layers
.
data
(
name
=
'x'
,
shape
=
[
784
],
data_type
=
'float32'
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
param_attr
=
{
'name'
:
None
,
...
...
@@ -30,38 +30,45 @@ param_attr = {
hidden1
=
layers
.
fc
(
input
=
image
,
size
=
128
,
act
=
'relu'
,
program
=
program
,
init_program
=
init
_program
,
main_program
=
main_
program
,
startup_program
=
startup
_program
,
param_attr
=
param_attr
)
hidden2
=
layers
.
fc
(
input
=
hidden1
,
size
=
64
,
act
=
'relu'
,
program
=
program
,
init_program
=
init
_program
,
main_program
=
main_
program
,
startup_program
=
startup
_program
,
param_attr
=
param_attr
)
predict
=
layers
.
fc
(
input
=
hidden2
,
size
=
10
,
act
=
'softmax'
,
program
=
program
,
init_program
=
init
_program
,
main_program
=
main_
program
,
startup_program
=
startup
_program
,
param_attr
=
param_attr
)
label
=
layers
.
data
(
name
=
'y'
,
shape
=
[
1
],
data_type
=
'int64'
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
cost
=
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
,
program
=
program
,
init_program
=
init_program
)
avg_cost
=
layers
.
mean
(
x
=
cost
,
program
=
program
,
init_program
=
init_program
)
input
=
predict
,
label
=
label
,
main_program
=
main_program
,
startup_program
=
startup_program
)
avg_cost
=
layers
.
mean
(
x
=
cost
,
main_program
=
main_program
,
startup_program
=
startup_program
)
accuracy
=
layers
.
accuracy
(
input
=
predict
,
label
=
label
,
program
=
program
,
init_program
=
init_program
)
input
=
predict
,
label
=
label
,
main_program
=
main_program
,
startup_program
=
startup_program
)
optimizer
=
optimizer
.
MomentumOptimizer
(
learning_rate
=
0.001
,
momentum
=
0.9
)
opts
=
optimizer
.
minimize
(
avg_cost
,
init
_program
)
opts
=
optimizer
.
minimize
(
avg_cost
,
startup
_program
)
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
...
...
@@ -71,7 +78,7 @@ train_reader = paddle.batch(
place
=
core
.
CPUPlace
()
exe
=
Executor
(
place
)
exe
.
run
(
init
_program
,
feed
=
{},
fetch_list
=
[])
exe
.
run
(
startup
_program
,
feed
=
{},
fetch_list
=
[])
PASS_NUM
=
100
for
pass_id
in
range
(
PASS_NUM
):
...
...
@@ -86,7 +93,7 @@ for pass_id in range(PASS_NUM):
tensor_y
=
core
.
LoDTensor
()
tensor_y
.
set
(
y_data
,
place
)
outs
=
exe
.
run
(
program
,
outs
=
exe
.
run
(
main_
program
,
feed
=
{
'x'
:
tensor_x
,
'y'
:
tensor_y
},
fetch_list
=
[
avg_cost
,
accuracy
])
...
...
python/paddle/v2/framework/tests/test_recommender_system.py
浏览文件 @
7a1d5e9d
...
...
@@ -4,13 +4,13 @@ import paddle.v2.framework.nets as nets
import
paddle.v2.framework.core
as
core
import
paddle.v2.framework.optimizer
as
optimizer
from
paddle.v2.framework.framework
import
Program
,
g_program
from
paddle.v2.framework.framework
import
Program
,
g_
main_
program
from
paddle.v2.framework.executor
import
Executor
import
numpy
as
np
init
_program
=
Program
()
program
=
Program
()
startup
_program
=
Program
()
main_
program
=
Program
()
is_sparse
=
True
use_gpu
=
False
BATCH_SIZE
=
256
...
...
@@ -26,8 +26,8 @@ def get_usr_combined_features():
name
=
'user_id'
,
shape
=
[
1
],
data_type
=
'int64'
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
usr_emb
=
layers
.
embedding
(
input
=
uid
,
...
...
@@ -35,13 +35,13 @@ def get_usr_combined_features():
size
=
[
USR_DICT_SIZE
,
32
],
param_attr
=
{
'name'
:
'user_table'
},
is_sparse
=
is_sparse
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
usr_fc
=
layers
.
fc
(
input
=
usr_emb
,
size
=
32
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
USR_GENDER_DICT_SIZE
=
2
...
...
@@ -49,75 +49,75 @@ def get_usr_combined_features():
name
=
'gender_id'
,
shape
=
[
1
],
data_type
=
'int64'
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
usr_gender_emb
=
layers
.
embedding
(
input
=
usr_gender_id
,
size
=
[
USR_GENDER_DICT_SIZE
,
16
],
param_attr
=
{
'name'
:
'gender_table'
},
is_sparse
=
is_sparse
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
usr_gender_fc
=
layers
.
fc
(
input
=
usr_gender_emb
,
size
=
16
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
USR_AGE_DICT_SIZE
=
len
(
paddle
.
dataset
.
movielens
.
age_table
)
usr_age_id
=
layers
.
data
(
name
=
'age_id'
,
shape
=
[
1
],
data_type
=
"int64"
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
usr_age_emb
=
layers
.
embedding
(
input
=
usr_age_id
,
size
=
[
USR_AGE_DICT_SIZE
,
16
],
is_sparse
=
is_sparse
,
param_attr
=
{
'name'
:
'age_table'
},
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
usr_age_fc
=
layers
.
fc
(
input
=
usr_age_emb
,
size
=
16
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
USR_JOB_DICT_SIZE
=
paddle
.
dataset
.
movielens
.
max_job_id
()
+
1
usr_job_id
=
layers
.
data
(
name
=
'job_id'
,
shape
=
[
1
],
data_type
=
"int64"
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
usr_job_emb
=
layers
.
embedding
(
input
=
usr_job_id
,
size
=
[
USR_JOB_DICT_SIZE
,
16
],
param_attr
=
{
'name'
:
'job_table'
},
is_sparse
=
is_sparse
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
usr_job_fc
=
layers
.
fc
(
input
=
usr_job_emb
,
size
=
16
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
concat_embed
=
layers
.
concat
(
input
=
[
usr_fc
,
usr_gender_fc
,
usr_age_fc
,
usr_job_fc
],
axis
=
1
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
usr_combined_features
=
layers
.
fc
(
input
=
concat_embed
,
size
=
200
,
act
=
"tanh"
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
return
usr_combined_features
...
...
@@ -130,8 +130,8 @@ def get_mov_combined_features():
name
=
'movie_id'
,
shape
=
[
1
],
data_type
=
'int64'
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
mov_emb
=
layers
.
embedding
(
input
=
mov_id
,
...
...
@@ -139,13 +139,13 @@ def get_mov_combined_features():
size
=
[
MOV_DICT_SIZE
,
32
],
param_attr
=
{
'name'
:
'movie_table'
},
is_sparse
=
is_sparse
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
mov_fc
=
layers
.
fc
(
input
=
mov_emb
,
size
=
32
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
CATEGORY_DICT_SIZE
=
len
(
paddle
.
dataset
.
movielens
.
movie_categories
())
...
...
@@ -153,21 +153,21 @@ def get_mov_combined_features():
name
=
'category_id'
,
shape
=
[
1
],
data_type
=
'int64'
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
mov_categories_emb
=
layers
.
embedding
(
input
=
category_id
,
size
=
[
CATEGORY_DICT_SIZE
,
32
],
is_sparse
=
is_sparse
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
mov_categories_hidden
=
layers
.
sequence_pool
(
input
=
mov_categories_emb
,
pool_type
=
"sum"
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
MOV_TITLE_DICT_SIZE
=
len
(
paddle
.
dataset
.
movielens
.
get_movie_title_dict
())
...
...
@@ -175,15 +175,15 @@ def get_mov_combined_features():
name
=
'movie_title'
,
shape
=
[
1
],
data_type
=
'int64'
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
mov_title_emb
=
layers
.
embedding
(
input
=
mov_title_id
,
size
=
[
MOV_TITLE_DICT_SIZE
,
32
],
is_sparse
=
is_sparse
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
mov_title_conv
=
nets
.
sequence_conv_pool
(
input
=
mov_title_emb
,
...
...
@@ -191,21 +191,21 @@ def get_mov_combined_features():
filter_size
=
3
,
act
=
"tanh"
,
pool_type
=
"sum"
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
concat_embed
=
layers
.
concat
(
input
=
[
mov_fc
,
mov_categories_hidden
,
mov_title_conv
],
axis
=
1
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
# FIXME(dzh) : need tanh operator
mov_combined_features
=
layers
.
fc
(
input
=
concat_embed
,
size
=
200
,
act
=
"tanh"
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
return
mov_combined_features
...
...
@@ -218,24 +218,26 @@ def model():
inference
=
layers
.
cos_sim
(
X
=
usr_combined_features
,
Y
=
mov_combined_features
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
label
=
layers
.
data
(
name
=
'score'
,
shape
=
[
1
],
data_type
=
'float32'
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
square_cost
=
layers
.
square_error_cost
(
input
=
inference
,
label
=
label
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
avg_cost
=
layers
.
mean
(
x
=
square_cost
,
program
=
program
,
init_program
=
init_program
)
x
=
square_cost
,
main_program
=
main_program
,
startup_program
=
startup_program
)
return
avg_cost
...
...
@@ -243,8 +245,8 @@ def model():
def
main
():
cost
=
model
()
sgd_optimizer
=
optimizer
.
SGDOptimizer
(
learning_rate
=
0.2
)
opts
=
sgd_optimizer
.
minimize
(
cost
,
init_program
=
init
_program
)
block
=
program
.
block
(
0
)
opts
=
sgd_optimizer
.
minimize
(
cost
,
startup_program
=
startup
_program
)
block
=
main_
program
.
block
(
0
)
if
use_gpu
:
place
=
core
.
GPUPlace
(
0
)
...
...
@@ -252,7 +254,7 @@ def main():
place
=
core
.
CPUPlace
()
exe
=
Executor
(
place
)
exe
.
run
(
init
_program
,
feed
=
{},
fetch_list
=
[])
exe
.
run
(
startup
_program
,
feed
=
{},
fetch_list
=
[])
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
...
...
@@ -301,7 +303,7 @@ def main():
PASS_NUM
=
100
for
pass_id
in
range
(
PASS_NUM
):
for
data
in
train_reader
():
outs
=
exe
.
run
(
program
,
outs
=
exe
.
run
(
main_
program
,
feed
=
func_feed
(
feeding
,
data
),
fetch_list
=
[
cost
])
out
=
np
.
array
(
outs
[
0
])
...
...
python/paddle/v2/framework/tests/test_recurrent_op.py
浏览文件 @
7a1d5e9d
...
...
@@ -99,17 +99,17 @@ class RecurrentOpTest1(unittest.TestCase):
batch_size
=
1
sent_len
=
1
def
init
_program
(
self
):
self
.
program
=
Program
()
self
.
init
_program
=
Program
()
def
setup
_program
(
self
):
self
.
main_
program
=
Program
()
self
.
startup
_program
=
Program
()
self
.
p_info
=
{
"
program"
:
self
.
program
,
"
init_program"
:
self
.
init
_program
"
main_program"
:
self
.
main_
program
,
"
startup_program"
:
self
.
startup
_program
}
self
.
place
=
core
.
CPUPlace
()
def
setUp
(
self
):
self
.
init
_program
()
self
.
setup
_program
()
self
.
data_field
=
{
"x"
,
"h_boot"
}
self
.
input_shape
=
(
self
.
sent_len
,
self
.
batch_size
,
self
.
input_dim
)
...
...
@@ -125,13 +125,15 @@ class RecurrentOpTest1(unittest.TestCase):
name
=
'x'
,
append_batch_size
=
False
,
**
self
.
p_info
)
x
.
stop_gradient
=
False
h_boot
=
data
(
shape
=
[
self
.
input_dim
],
data_type
=
'float32'
,
name
=
'h_boot'
,
**
self
.
p_info
)
h_boot
.
stop_gradient
=
False
rnn
=
StaticRNN
(
program
=
self
.
program
)
rnn
=
StaticRNN
(
main_program
=
self
.
main_
program
)
with
rnn
.
step
():
h_pre
=
rnn
.
memory
(
init
=
h_boot
)
x_t
=
rnn
.
step_input
(
x
)
...
...
@@ -153,7 +155,7 @@ class RecurrentOpTest1(unittest.TestCase):
for
x
in
self
.
data_field
}
exe
=
Executor
(
self
.
place
)
out
=
exe
.
run
(
self
.
program
,
out
=
exe
.
run
(
self
.
main_
program
,
feed
=
self
.
feed_map
,
fetch_list
=
[
self
.
output
])
...
...
@@ -165,12 +167,14 @@ class RecurrentOpTest1(unittest.TestCase):
for
x
in
self
.
data_field
}
fetch_list
=
[
self
.
program
.
global_block
().
var
(
x
+
"@GRAD"
)
self
.
main_
program
.
global_block
().
var
(
x
+
"@GRAD"
)
for
x
in
self
.
data_field
]
exe
=
Executor
(
self
.
place
)
return
exe
.
run
(
self
.
program
,
feed
=
self
.
feed_map
,
fetch_list
=
fetch_list
)
return
exe
.
run
(
self
.
main_program
,
feed
=
self
.
feed_map
,
fetch_list
=
fetch_list
)
def
test_backward
(
self
):
self
.
check_forward
()
...
...
@@ -237,7 +241,7 @@ class RecurrentOpTest2(RecurrentOpTest1):
sent_len
=
2
def
setUp
(
self
):
self
.
init
_program
()
self
.
setup
_program
()
self
.
data_field
=
{
"x"
,
"h_boot"
,
"W"
,
"U"
}
...
...
@@ -254,13 +258,15 @@ class RecurrentOpTest2(RecurrentOpTest1):
name
=
'x'
,
append_batch_size
=
False
,
**
self
.
p_info
)
x
.
stop_gradient
=
False
h_boot
=
data
(
shape
=
[
self
.
input_dim
],
data_type
=
'float32'
,
name
=
'h_boot'
,
**
self
.
p_info
)
h_boot
.
stop_gradient
=
False
rnn
=
StaticRNN
(
program
=
self
.
program
)
rnn
=
StaticRNN
(
main_program
=
self
.
main_
program
)
with
rnn
.
step
():
h_pre
=
rnn
.
memory
(
init
=
h_boot
)
x_t
=
rnn
.
step_input
(
x
)
...
...
@@ -333,7 +339,7 @@ class RecurrentOpTest3(RecurrentOpTest1):
sent_len
=
2
def
setUp
(
self
):
self
.
init
_program
()
self
.
setup
_program
()
self
.
data_field
=
{
"x"
,
"h_boot1"
,
"h_boot2"
}
...
...
@@ -351,20 +357,23 @@ class RecurrentOpTest3(RecurrentOpTest1):
name
=
'x'
,
append_batch_size
=
False
,
**
self
.
p_info
)
x
.
stop_gradient
=
False
h_boot1
=
data
(
shape
=
[
self
.
batch_size
,
self
.
input_dim
],
data_type
=
'float32'
,
name
=
'h_boot1'
,
append_batch_size
=
False
,
**
self
.
p_info
)
h_boot1
.
stop_gradient
=
False
h_boot2
=
data
(
shape
=
[
self
.
batch_size
,
self
.
input_dim
],
data_type
=
'float32'
,
name
=
'h_boot2'
,
append_batch_size
=
False
,
**
self
.
p_info
)
h_boot2
.
stop_gradient
=
False
rnn
=
StaticRNN
(
program
=
self
.
program
)
rnn
=
StaticRNN
(
main_program
=
self
.
main_
program
)
with
rnn
.
step
():
h_pre1
=
rnn
.
memory
(
init
=
h_boot1
)
h_pre2
=
rnn
.
memory
(
init
=
h_boot2
)
...
...
python/paddle/v2/framework/tests/test_understand_sentiment_conv.py
浏览文件 @
7a1d5e9d
...
...
@@ -4,7 +4,7 @@ import paddle.v2.framework.nets as nets
import
paddle.v2.framework.core
as
core
import
paddle.v2.framework.optimizer
as
optimizer
from
paddle.v2.framework.framework
import
Program
,
g_
program
,
g_init
_program
from
paddle.v2.framework.framework
import
Program
,
g_
main_program
,
g_startup
_program
from
paddle.v2.framework.executor
import
Executor
import
numpy
as
np
...
...
@@ -70,7 +70,7 @@ def main():
place
=
core
.
CPUPlace
()
exe
=
Executor
(
place
)
exe
.
run
(
g_
init
_program
)
exe
.
run
(
g_
startup
_program
)
for
pass_id
in
xrange
(
PASS_NUM
):
for
data
in
train_data
():
...
...
@@ -82,7 +82,7 @@ def main():
tensor_label
=
core
.
LoDTensor
()
tensor_label
.
set
(
label
,
place
)
outs
=
exe
.
run
(
g_program
,
outs
=
exe
.
run
(
g_
main_
program
,
feed
=
{
"words"
:
tensor_words
,
"label"
:
tensor_label
},
fetch_list
=
[
cost
,
acc
])
...
...
python/paddle/v2/framework/tests/test_variable.py
浏览文件 @
7a1d5e9d
import
unittest
from
paddle.v2.framework.framework
import
Variable
,
g_program
,
Program
from
paddle.v2.framework.framework
import
Variable
,
g_
main_
program
,
Program
import
paddle.v2.framework.core
as
core
import
numpy
as
np
...
...
@@ -18,7 +18,7 @@ class TestVariable(unittest.TestCase):
self
.
assertRaises
(
ValueError
,
lambda
:
convert
(
"int8"
))
def
test_var
(
self
):
b
=
g_program
.
current_block
()
b
=
g_
main_
program
.
current_block
()
w
=
b
.
create_var
(
dtype
=
"float64"
,
shape
=
[
784
,
100
],
lod_level
=
0
,
name
=
"fc.w"
)
self
.
assertNotEqual
(
str
(
w
),
""
)
...
...
python/paddle/v2/framework/tests/test_word2vec.py
浏览文件 @
7a1d5e9d
此差异已折叠。
点击以展开。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录