Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
793c74bf
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
793c74bf
编写于
8月 12, 2020
作者:
Y
yukavio
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add unit tests
上级
3007c102
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
207 addition
and
0 deletion
+207
-0
python/paddle/fluid/tests/unittests/test_one_hot_new_op.py
python/paddle/fluid/tests/unittests/test_one_hot_new_op.py
+207
-0
未找到文件。
python/paddle/fluid/tests/unittests/test_one_hot_new_op.py
0 → 100644
浏览文件 @
793c74bf
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
math
from
op_test
import
OpTest
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
import
paddle.nn.functional
as
functional
import
paddle.fluid.framework
as
framework
from
paddle.fluid.framework
import
Program
,
program_guard
class
TestOneHotOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
'one_hot_v2'
depth
=
10
depth_np
=
np
.
array
(
10
).
astype
(
'int32'
)
dimension
=
12
x_lod
=
[[
4
,
1
,
3
,
3
]]
x
=
[
np
.
random
.
randint
(
0
,
depth
-
1
)
for
i
in
range
(
sum
(
x_lod
[
0
]))]
x
=
np
.
array
(
x
).
astype
(
'int32'
).
reshape
([
sum
(
x_lod
[
0
])])
out
=
np
.
zeros
(
shape
=
(
np
.
product
(
x
.
shape
),
depth
)).
astype
(
'float32'
)
for
i
in
range
(
np
.
product
(
x
.
shape
)):
out
[
i
,
x
[
i
]]
=
1.0
self
.
inputs
=
{
'X'
:
(
x
,
x_lod
),
'depth_tensor'
:
depth_np
}
self
.
attrs
=
{
'dtype'
:
int
(
core
.
VarDesc
.
VarType
.
FP32
)}
self
.
outputs
=
{
'Out'
:
(
out
,
x_lod
)}
def
test_check_output
(
self
):
self
.
check_output
(
check_dygraph
=
False
)
class
TestOneHotOp_attr
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
'one_hot_v2'
depth
=
10
dimension
=
12
x_lod
=
[[
4
,
1
,
3
,
3
]]
x
=
[
np
.
random
.
randint
(
0
,
depth
-
1
)
for
i
in
range
(
sum
(
x_lod
[
0
]))]
x
=
np
.
array
(
x
).
astype
(
'int32'
).
reshape
([
sum
(
x_lod
[
0
]),
1
])
out
=
np
.
zeros
(
shape
=
(
np
.
product
(
x
.
shape
[:
-
1
]),
1
,
depth
)).
astype
(
'float32'
)
for
i
in
range
(
np
.
product
(
x
.
shape
)):
out
[
i
,
0
,
x
[
i
]]
=
1.0
self
.
inputs
=
{
'X'
:
(
x
,
x_lod
)}
self
.
attrs
=
{
'dtype'
:
int
(
core
.
VarDesc
.
VarType
.
FP32
),
'depth'
:
depth
}
self
.
outputs
=
{
'Out'
:
(
out
,
x_lod
)}
def
test_check_output
(
self
):
self
.
check_output
(
check_dygraph
=
False
)
class
TestOneHotOp_default_dtype
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
'one_hot_v2'
depth
=
10
depth_np
=
np
.
array
(
10
).
astype
(
'int32'
)
dimension
=
12
x_lod
=
[[
4
,
1
,
3
,
3
]]
x
=
[
np
.
random
.
randint
(
0
,
depth
-
1
)
for
i
in
range
(
sum
(
x_lod
[
0
]))]
x
=
np
.
array
(
x
).
astype
(
'int32'
).
reshape
([
sum
(
x_lod
[
0
])])
out
=
np
.
zeros
(
shape
=
(
np
.
product
(
x
.
shape
),
depth
)).
astype
(
'float32'
)
for
i
in
range
(
np
.
product
(
x
.
shape
)):
out
[
i
,
x
[
i
]]
=
1.0
self
.
inputs
=
{
'X'
:
(
x
,
x_lod
),
'depth_tensor'
:
depth_np
}
self
.
attrs
=
{}
self
.
outputs
=
{
'Out'
:
(
out
,
x_lod
)}
def
test_check_output
(
self
):
self
.
check_output
(
check_dygraph
=
False
)
class
TestOneHotOp_default_dtype_attr
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
'one_hot_v2'
depth
=
10
dimension
=
12
x_lod
=
[[
4
,
1
,
3
,
3
]]
x
=
[
np
.
random
.
randint
(
0
,
depth
-
1
)
for
i
in
range
(
sum
(
x_lod
[
0
]))]
x
=
np
.
array
(
x
).
astype
(
'int32'
).
reshape
([
sum
(
x_lod
[
0
]),
1
])
out
=
np
.
zeros
(
shape
=
(
np
.
product
(
x
.
shape
[:
-
1
]),
1
,
depth
)).
astype
(
'float32'
)
for
i
in
range
(
np
.
product
(
x
.
shape
)):
out
[
i
,
0
,
x
[
i
]]
=
1.0
self
.
inputs
=
{
'X'
:
(
x
,
x_lod
)}
self
.
attrs
=
{
'depth'
:
depth
}
self
.
outputs
=
{
'Out'
:
(
out
,
x_lod
)}
def
test_check_output
(
self
):
self
.
check_output
(
check_dygraph
=
False
)
class
TestOneHotOp_exception
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
op_type
=
'one_hot_v2'
self
.
depth
=
10
self
.
place
=
core
.
CPUPlace
()
self
.
dimension
=
12
self
.
x
=
core
.
LoDTensor
()
x_lod
=
[[
4
,
1
,
3
,
3
]]
data
=
[
np
.
random
.
randint
(
11
,
20
)
for
i
in
range
(
sum
(
x_lod
[
0
]))]
data
=
np
.
array
(
data
).
astype
(
'int'
).
reshape
([
sum
(
x_lod
[
0
]),
1
])
self
.
x
.
set
(
data
,
self
.
place
)
self
.
x
.
set_recursive_sequence_lengths
(
x_lod
)
def
test_check_output
(
self
):
program
=
Program
()
with
program_guard
(
program
):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
self
.
dimension
],
dtype
=
'float32'
,
lod_level
=
1
)
block
=
program
.
current_block
()
one_hot_out
=
block
.
create_var
(
name
=
"one_hot_out"
,
type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
dtype
=
'float32'
)
block
.
append_op
(
type
=
'one_hot'
,
inputs
=
{
'X'
:
x
},
attrs
=
{
'depth'
:
self
.
depth
},
outputs
=
{
'Out'
:
one_hot_out
})
exe
=
fluid
.
Executor
(
self
.
place
)
def
run
():
exe
.
run
(
feed
=
{
'x'
:
self
.
x
},
fetch_list
=
[
one_hot_out
],
return_numpy
=
False
)
self
.
assertRaises
(
core
.
EnforceNotMet
,
run
)
class
TestOneHotOpApi
(
unittest
.
TestCase
):
def
test_api
(
self
):
num_classes
=
10
self
.
_run
(
num_classes
)
def
test_api_with_depthTensor
(
self
):
num_classes
=
fluid
.
layers
.
assign
(
input
=
np
.
array
([
10
],
dtype
=
np
.
int32
))
self
.
_run
(
num_classes
)
def
test_api_with_dygraph
(
self
):
num_classes
=
10
label
=
np
.
array
(
[
np
.
random
.
randint
(
0
,
num_classes
-
1
)
for
i
in
range
(
6
)]).
reshape
([
6
,
1
])
with
fluid
.
dygraph
.
guard
():
one_hot_label
=
functional
.
one_hot
(
x
=
fluid
.
dygraph
.
to_variable
(
label
),
num_classes
=
num_classes
)
def
_run
(
self
,
num_classes
):
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
"int64"
)
one_hot_label
=
functional
.
one_hot
(
x
=
label
,
num_classes
=
num_classes
)
place
=
fluid
.
CPUPlace
()
label_data
=
np
.
array
([
np
.
random
.
randint
(
0
,
10
-
1
)
for
i
in
range
(
6
)]).
reshape
([
6
,
1
])
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
ret
=
exe
.
run
(
feed
=
{
'label'
:
label_data
,
},
fetch_list
=
[
one_hot_label
],
return_numpy
=
False
)
class
BadInputTestOnehotV2
(
unittest
.
TestCase
):
def
test_error
(
self
):
with
fluid
.
program_guard
(
fluid
.
Program
()):
def
test_bad_x
():
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
4
],
append_batch_size
=
False
,
dtype
=
"float32"
)
one_hot_label
=
functional
.
one_hot
(
x
=
label
,
num_classes
=
4
)
self
.
assertRaises
(
TypeError
,
test_bad_x
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录