Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
77ff97ab
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
77ff97ab
编写于
7月 19, 2017
作者:
X
xzl
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fuse interface of depthwise to expand in python api
上级
21ab0eb8
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
0 addition
and
209 deletion
+0
-209
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+0
-50
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+0
-159
未找到文件。
python/paddle/trainer/config_parser.py
浏览文件 @
77ff97ab
...
...
@@ -1799,56 +1799,6 @@ class ParameterReluLayer(LayerBase):
self
.
create_input_parameter
(
0
,
input_layer
.
size
/
partial_sum
)
@
config_layer
(
'depthwise_conv'
)
class
DepthwiseConvLayer
(
LayerBase
):
layer_type
=
'depthwise_conv'
def
__init__
(
self
,
name
,
inputs
=
[],
bias
=
True
,
num_filters
=
None
,
shared_biases
=
False
,
**
xargs
):
super
(
DepthwiseConvLayer
,
self
).
__init__
(
name
,
self
.
layer_type
,
0
,
inputs
=
inputs
,
**
xargs
)
if
num_filters
is
not
None
:
self
.
config
.
num_filters
=
num_filters
use_gpu
=
int
(
g_command_config_args
.
get
(
"use_gpu"
,
0
))
parallel_nn
=
int
(
g_command_config_args
.
get
(
"parallel_nn"
,
0
))
self
.
layer_type
=
"depthwise_conv"
# need to specify layer in config
self
.
config
.
type
=
self
.
layer_type
if
shared_biases
is
not
None
:
self
.
config
.
shared_biases
=
shared_biases
for
input_index
in
xrange
(
len
(
self
.
inputs
)):
input_layer
=
self
.
get_input_layer
(
input_index
)
conv_conf
=
self
.
config
.
inputs
[
input_index
].
conv_conf
#set the groups, the groups equals the input channels
self
.
inputs
[
input_index
].
conv
.
groups
=
self
.
inputs
[
input_index
].
conv
.
channels
parse_conv
(
self
.
inputs
[
input_index
].
conv
,
input_layer
.
name
,
conv_conf
,
num_filters
)
psize
=
self
.
calc_parameter_size
(
conv_conf
)
self
.
create_input_parameter
(
input_index
,
psize
)
self
.
set_cnn_layer
(
name
,
conv_conf
.
output_y
,
conv_conf
.
output_x
,
self
.
config
.
num_filters
)
psize
=
self
.
config
.
size
if
shared_biases
:
psize
=
self
.
config
.
num_filters
self
.
create_bias_parameter
(
bias
,
psize
,
[
psize
,
1
])
def
calc_parameter_size
(
self
,
conv_conf
):
return
self
.
config
.
num_filters
*
conv_conf
.
filter_channels
\
*
(
conv_conf
.
filter_size
*
conv_conf
.
filter_size_y
)
@
config_layer
(
'conv'
)
class
ConvLayerBase
(
LayerBase
):
layer_type
=
'conv'
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
77ff97ab
...
...
@@ -57,7 +57,6 @@ __all__ = [
'classification_cost'
,
'LayerOutput'
,
'img_conv_layer'
,
'img_depthwise_conv_layer'
,
'img_pool_layer'
,
'batch_norm_layer'
,
'img_cmrnorm_layer'
,
...
...
@@ -152,7 +151,6 @@ class LayerType(object):
HSIGMOID
=
'hsigmoid'
CONV_LAYER
=
'conv'
CONVTRANS_LAYER
=
'convt'
DEPTHWISE_CONV_LAYER
=
'depthwise_conv'
EXCONV_LAYER
=
'exconv'
EXCONVTRANS_LAYER
=
'exconvt'
CUDNNCONV_LAYER
=
'cudnn_conv'
...
...
@@ -2259,163 +2257,6 @@ def hsigmoid(input,
name
,
LayerType
.
HSIGMOID
,
parents
=
parents
,
size
=
l
.
config
.
size
)
@
wrap_name_default
(
"depthwise_conv"
)
@
wrap_param_attr_default
()
@
wrap_bias_attr_default
()
@
wrap_act_default
(
act
=
ReluActivation
())
@
layer_support
(
DROPOUT
)
def
img_depthwise_conv_layer
(
input
,
filter_size
,
num_filters
,
name
=
None
,
num_channels
=
None
,
act
=
None
,
stride
=
1
,
padding
=
0
,
bias_attr
=
None
,
param_attr
=
None
,
shared_biases
=
True
,
layer_attr
=
None
,
filter_size_y
=
None
,
stride_y
=
None
,
padding_y
=
None
,
trans
=
False
,
layer_type
=
None
):
"""
DepthwiseConvolution layer for image.
The details of depthwise convolution layer, please refer
https://arxiv.org/abs/1704.04861
The Depthwise Convolution layer must meet this requirement that the groups equals to the
inputChannels. And the groups must be divisible by outputChannels.
So the filter shape will be (groups, outputChannels/groups, 1, filter_size, filter_size_y)
The example usage is:
.. code-block:: python
conv = img_depthwise_conv_layer(input=data, filter_size=1, filter_size_y=1,
num_channels=8,
num_filters=16, stride=1,
bias_attr=False,
act=ReluActivation())
:param name: Layer name.
:type name: basestring
:param input: Layer Input.
:type input: LayerOutput
:param filter_size: The x dimension of a filter kernel. Or input a tuple for
two image dimension.
:type filter_size: int|tuple|list
:param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle
currently supports rectangular filters, the filter's
shape will be (filter_size, filter_size_y).
:type filter_size_y: int|None
:param num_filters: Each filter group's number of filter
:param act: Activation type. Default is tanh
:type act: BaseActivation
:param stride: The x dimension of the stride. Or input a tuple for two image
dimension.
:type stride: int|tuple|list
:param stride_y: The y dimension of the stride.
:type stride_y: int
:param padding: The x dimension of the padding. Or input a tuple for two
image dimension
:type padding: int|tuple|list
:param padding_y: The y dimension of the padding.
:type padding_y: int
:param bias_attr: DepthwiseConvolution bias attribute. None means default bias.
False means no bias.
:type bias_attr: ParameterAttribute|False
:param num_channels: number of input channels. If None will be set
automatically from previous output.
:type num_channels: int
:param param_attr: DepthwiseConvolution param attribute. None means default attribute
:type param_attr: ParameterAttribute
:param shared_biases: Is biases will be shared between filters or not.
:type shared_biases: bool
:param layer_attr: Layer Extra Attribute.
:type layer_attr: ExtraLayerAttribute
:param trans: true if it is a convTransLayer, false if it is a convLayer
:type trans: bool
:param layer_type: specify the layer_type, default is None. If trans=True,
layer_type has to be "exconvt" or "cudnn_convt",
otherwise layer_type has to be either "exconv" or
"cudnn_conv"
:type layer_type: String
:return: LayerOutput object.
:rtype: LayerOutput
"""
if
num_channels
is
None
:
assert
input
.
num_filters
is
not
None
num_channels
=
input
.
num_filters
# the groups in depthwise conv should be equal to input channels.
groups
=
num_channels
if
filter_size_y
is
None
:
if
isinstance
(
filter_size
,
collections
.
Sequence
):
assert
len
(
filter_size
)
==
2
filter_size
,
filter_size_y
=
filter_size
else
:
filter_size_y
=
filter_size
if
stride_y
is
None
:
if
isinstance
(
stride
,
collections
.
Sequence
):
assert
len
(
stride
)
==
2
stride
,
stride_y
=
stride
else
:
stride_y
=
stride
if
padding_y
is
None
:
if
isinstance
(
padding
,
collections
.
Sequence
):
assert
len
(
padding
)
==
2
padding
,
padding_y
=
padding
else
:
padding_y
=
padding
if
param_attr
.
attr
.
get
(
'initial_smart'
):
# special initial for conv layers.
init_w
=
(
2.0
/
(
filter_size
**
2
*
num_channels
))
**
0.5
param_attr
.
attr
[
"initial_mean"
]
=
0.0
param_attr
.
attr
[
"initial_std"
]
=
init_w
param_attr
.
attr
[
"initial_strategy"
]
=
0
param_attr
.
attr
[
"initial_smart"
]
=
False
lt
=
LayerType
.
DEPTHWISE_CONV_LAYER
l
=
Layer
(
name
=
name
,
inputs
=
Input
(
input
.
name
,
conv
=
Conv
(
filter_size
=
filter_size
,
padding
=
padding
,
stride
=
stride
,
channels
=
num_channels
,
groups
=
groups
,
filter_size_y
=
filter_size_y
,
padding_y
=
padding_y
,
stride_y
=
stride_y
),
**
param_attr
.
attr
),
active_type
=
act
.
name
,
num_filters
=
num_filters
,
bias
=
ParamAttr
.
to_bias
(
bias_attr
),
shared_biases
=
shared_biases
,
type
=
lt
,
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
))
return
LayerOutput
(
name
,
lt
,
parents
=
[
input
],
activation
=
act
,
num_filters
=
num_filters
,
size
=
l
.
config
.
size
)
@
wrap_name_default
(
"conv"
)
@
wrap_param_attr_default
()
@
wrap_bias_attr_default
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录