Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
75aaa08a
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
75aaa08a
编写于
7月 12, 2022
作者:
Q
qipengh
提交者:
GitHub
7月 12, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MLU]add elementwise_pow op (#44215)
上级
176a8832
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
483 addition
and
0 deletion
+483
-0
paddle/fluid/operators/elementwise/elementwise_mlu.h
paddle/fluid/operators/elementwise/elementwise_mlu.h
+13
-0
paddle/fluid/operators/elementwise/elementwise_pow_op_mlu.cc
paddle/fluid/operators/elementwise/elementwise_pow_op_mlu.cc
+214
-0
python/paddle/fluid/tests/unittests/mlu/test_elementwise_pow_op_mlu.py
.../fluid/tests/unittests/mlu/test_elementwise_pow_op_mlu.py
+256
-0
未找到文件。
paddle/fluid/operators/elementwise/elementwise_mlu.h
浏览文件 @
75aaa08a
...
@@ -122,6 +122,7 @@ enum BINARY_FUNCTOR {
...
@@ -122,6 +122,7 @@ enum BINARY_FUNCTOR {
DIVNONAN
,
DIVNONAN
,
MAXIMUM
,
MAXIMUM
,
MINIMUM
,
MINIMUM
,
POW
,
};
};
template
<
BINARY_FUNCTOR
func
>
template
<
BINARY_FUNCTOR
func
>
...
@@ -171,6 +172,18 @@ inline void MLUBinary<MINIMUM>(const framework::ExecutionContext& ctx,
...
@@ -171,6 +172,18 @@ inline void MLUBinary<MINIMUM>(const framework::ExecutionContext& ctx,
MLUCnnl
::
Minimum
(
ctx
,
in1_desc
,
in1
,
in2_desc
,
in2
,
out_desc
,
out
);
MLUCnnl
::
Minimum
(
ctx
,
in1_desc
,
in1
,
in2_desc
,
in2
,
out_desc
,
out
);
}
}
template
<
>
inline
void
MLUBinary
<
POW
>
(
const
framework
::
ExecutionContext
&
ctx
,
cnnlComputationPreference_t
prefer
,
const
cnnlTensorDescriptor_t
x_desc
,
const
void
*
x
,
const
cnnlTensorDescriptor_t
y_desc
,
const
void
*
y
,
const
cnnlTensorDescriptor_t
out_desc
,
void
*
out
)
{
MLUCnnl
::
Pow
(
ctx
,
prefer
,
x_desc
,
x
,
y_desc
,
y
,
out_desc
,
out
);
}
template
<
BINARY_FUNCTOR
Functor
,
typename
T
>
template
<
BINARY_FUNCTOR
Functor
,
typename
T
>
void
MLUBinaryOp
(
const
framework
::
ExecutionContext
&
ctx
)
{
void
MLUBinaryOp
(
const
framework
::
ExecutionContext
&
ctx
)
{
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
...
...
paddle/fluid/operators/elementwise/elementwise_pow_op_mlu.cc
0 → 100644
浏览文件 @
75aaa08a
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/elementwise/elementwise_mlu.h"
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
class
ElementwisePowMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
MLUBinaryOp
<
POW
,
T
>
(
ctx
);
}
};
template
<
typename
T
>
class
ElementwisePowGradMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
auto
*
dout
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dy
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
auto
place
=
ctx
.
GetPlace
();
auto
x_dims
=
x
->
dims
();
auto
y_dims
=
y
->
dims
();
axis
=
(
axis
<
0
?
std
::
abs
(
x_dims
.
size
()
-
y_dims
.
size
())
+
axis
+
1
:
axis
);
int
max_dim
=
std
::
max
(
x_dims
.
size
(),
y_dims
.
size
());
std
::
vector
<
int
>
x_dims_array
(
max_dim
);
std
::
vector
<
int
>
y_dims_array
(
max_dim
);
std
::
vector
<
int
>
out_dims_array
(
max_dim
);
GetBroadcastDimsArrays
(
x_dims
,
y_dims
,
x_dims_array
.
data
(),
y_dims_array
.
data
(),
out_dims_array
.
data
(),
max_dim
,
axis
);
cnnlDataType_t
data_type
=
ToCnnlDataType
<
T
>
();
MLUCnnlTensorDesc
x_desc
(
max_dim
,
x_dims_array
.
data
(),
data_type
);
MLUCnnlTensorDesc
y_desc
(
max_dim
,
y_dims_array
.
data
(),
data_type
);
MLUCnnlTensorDesc
out_desc
(
max_dim
,
out_dims_array
.
data
(),
data_type
);
auto
dout_dims
=
dout
->
dims
();
if
(
dx
)
{
// dx = dout * y * pow(x, y - 1);
Tensor
one_dx
(
y
->
type
());
one_dx
.
mutable_data
<
T
>
(
phi
::
make_ddim
(
y_dims_array
),
place
);
FillMLUTensorWithHostValue
(
ctx
,
static_cast
<
T
>
(
1
),
&
one_dx
);
Tensor
sub_dx
(
y
->
type
());
sub_dx
.
mutable_data
<
T
>
(
phi
::
make_ddim
(
y_dims_array
),
place
);
MLUCnnlOpTensorDesc
op_tensor_desc
(
CNNL_OP_TENSOR_SUB
,
data_type
,
CNNL_NOT_PROPAGATE_NAN
);
MLUCnnl
::
OpTensor
(
ctx
,
op_tensor_desc
.
get
(),
y_desc
.
get
(),
GetBasePtr
(
y
),
y_desc
.
get
(),
GetBasePtr
(
&
one_dx
),
y_desc
.
get
(),
GetBasePtr
(
&
sub_dx
),
data_type
);
Tensor
tmp_dx
(
x
->
type
());
tmp_dx
.
mutable_data
<
T
>
(
phi
::
make_ddim
(
out_dims_array
),
place
);
MLUCnnl
::
Pow
(
ctx
,
CNNL_COMPUTATION_HIGH_PRECISION
,
x_desc
.
get
(),
GetBasePtr
(
x
),
y_desc
.
get
(),
GetBasePtr
(
&
sub_dx
),
out_desc
.
get
(),
GetBasePtr
(
&
tmp_dx
));
MLUCnnl
::
MulAx
(
ctx
,
y_desc
.
get
(),
GetBasePtr
(
y
),
out_desc
.
get
(),
GetBasePtr
(
&
tmp_dx
));
MLUCnnl
::
MulAx
(
ctx
,
out_desc
.
get
(),
GetBasePtr
(
dout
),
out_desc
.
get
(),
GetBasePtr
(
&
tmp_dx
));
if
(
x_dims
!=
dout_dims
)
{
dx
->
mutable_data
<
T
>
(
place
);
std
::
vector
<
int
>
reduce_axes
;
GetReduceAxes
(
axis
,
dout_dims
,
x_dims
,
&
reduce_axes
);
if
(
!
reduce_axes
.
empty
())
{
MLUCnnlReduceDesc
reduction_desc
(
reduce_axes
,
CNNL_REDUCE_ADD
,
data_type
,
CNNL_NOT_PROPAGATE_NAN
,
CNNL_REDUCE_NO_INDICES
,
CNNL_32BIT_INDICES
);
MLUCnnlTensorDesc
dx_desc
(
*
dx
);
MLUCnnl
::
Reduce
(
ctx
,
true
/*need_workspace*/
,
reduction_desc
.
get
(),
nullptr
,
out_desc
.
get
(),
GetBasePtr
(
&
tmp_dx
),
0
,
nullptr
,
nullptr
,
dx_desc
.
get
(),
GetBasePtr
(
dx
));
}
}
else
{
dx
->
ShareDataWith
(
tmp_dx
);
}
}
if
(
dy
)
{
// dy = dout * log(x) * pow(x, y)
Tensor
tmp_dy
(
y
->
type
());
tmp_dy
.
mutable_data
<
T
>
(
phi
::
make_ddim
(
out_dims_array
),
place
);
MLUCnnl
::
Pow
(
ctx
,
CNNL_COMPUTATION_HIGH_PRECISION
,
x_desc
.
get
(),
GetBasePtr
(
x
),
y_desc
.
get
(),
GetBasePtr
(
y
),
out_desc
.
get
(),
GetBasePtr
(
&
tmp_dy
));
Tensor
log_x
(
x
->
type
());
log_x
.
mutable_data
<
T
>
(
x
->
dims
(),
place
);
MLUCnnl
::
Log
(
ctx
,
CNNL_COMPUTATION_HIGH_PRECISION
,
CNNL_LOG_E
,
x_desc
.
get
(),
GetBasePtr
(
x
),
x_desc
.
get
(),
GetBasePtr
(
&
log_x
));
MLUCnnl
::
MulAx
(
ctx
,
x_desc
.
get
(),
GetBasePtr
(
&
log_x
),
out_desc
.
get
(),
GetBasePtr
(
&
tmp_dy
));
MLUCnnl
::
MulAx
(
ctx
,
out_desc
.
get
(),
GetBasePtr
(
dout
),
out_desc
.
get
(),
GetBasePtr
(
&
tmp_dy
));
if
(
y_dims
!=
dout_dims
)
{
dy
->
mutable_data
<
T
>
(
place
);
std
::
vector
<
int
>
reduce_axes
;
GetReduceAxes
(
axis
,
dout_dims
,
y_dims
,
&
reduce_axes
);
if
(
!
reduce_axes
.
empty
())
{
MLUCnnlReduceDesc
reduction_desc
(
reduce_axes
,
CNNL_REDUCE_ADD
,
data_type
,
CNNL_NOT_PROPAGATE_NAN
,
CNNL_REDUCE_NO_INDICES
,
CNNL_32BIT_INDICES
);
MLUCnnlTensorDesc
dy_desc
(
*
dy
);
MLUCnnl
::
Reduce
(
ctx
,
true
/*need_workspace*/
,
reduction_desc
.
get
(),
nullptr
,
out_desc
.
get
(),
GetBasePtr
(
&
tmp_dy
),
0
,
nullptr
,
nullptr
,
dy_desc
.
get
(),
GetBasePtr
(
dy
));
}
}
else
{
dy
->
ShareDataWith
(
tmp_dy
);
}
}
if
(
!
dx
&&
!
dy
)
{
PADDLE_THROW
(
platform
::
errors
::
Unavailable
(
"Not support all outputs to be empty."
));
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_MLU_KERNEL
(
elementwise_pow
,
ops
::
ElementwisePowMLUKernel
<
plat
::
float16
>
,
ops
::
ElementwisePowMLUKernel
<
float
>
);
REGISTER_OP_MLU_KERNEL
(
elementwise_pow_grad
,
ops
::
ElementwisePowGradMLUKernel
<
plat
::
float16
>
,
ops
::
ElementwisePowGradMLUKernel
<
float
>
);
python/paddle/fluid/tests/unittests/mlu/test_elementwise_pow_op_mlu.py
0 → 100644
浏览文件 @
75aaa08a
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
paddle.fluid
as
fluid
import
paddle
import
numpy
as
np
import
unittest
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
paddle
.
enable_static
()
SEED
=
2022
def
ComputeGrad
(
x
,
y
,
out
,
axis
):
grad
=
1
/
out
.
size
shape_x
=
x
.
shape
shape_y
=
y
.
shape
shape_out
=
out
.
shape
reduce_axes_x
=
[]
reduce_axes_y
=
[]
if
shape_x
!=
shape_out
:
if
len
(
shape_x
)
<
len
(
shape_out
):
src_axis
=
axis
else
:
src_axis
=
0
for
ax
in
range
(
len
(
shape_out
)):
if
(
ax
<
src_axis
or
ax
>=
src_axis
+
len
(
shape_x
))
or
(
shape_out
[
ax
]
>
1
and
shape_x
[
ax
-
src_axis
]
==
1
):
reduce_axes_x
.
append
(
ax
)
if
shape_y
!=
shape_out
:
if
len
(
shape_y
)
<
len
(
shape_out
):
src_axis
=
axis
else
:
src_axis
=
0
for
ax
in
range
(
len
(
shape_out
)):
if
(
ax
<
src_axis
or
ax
>=
src_axis
+
len
(
shape_y
))
or
(
shape_out
[
ax
]
>
1
and
shape_y
[
ax
-
src_axis
]
==
1
):
reduce_axes_y
.
append
(
ax
)
if
len
(
reduce_axes_x
)
>
0
:
for
i
in
reduce_axes_x
:
x
=
np
.
expand_dims
(
x
,
axis
=
i
)
if
len
(
reduce_axes_y
)
>
0
:
for
i
in
reduce_axes_y
:
y
=
np
.
expand_dims
(
y
,
axis
=
i
)
dx
=
y
*
np
.
power
(
x
,
y
-
1
)
*
grad
dy
=
np
.
log
(
x
)
*
np
.
power
(
x
,
y
)
*
grad
if
len
(
reduce_axes_x
)
>
0
:
for
i
,
element
in
enumerate
(
reduce_axes_x
):
dx
=
np
.
add
.
reduce
(
dx
,
element
-
i
)
if
len
(
reduce_axes_y
)
>
0
:
for
i
,
element
in
enumerate
(
reduce_axes_y
):
dy
=
np
.
add
.
reduce
(
dy
,
element
-
i
)
return
dx
,
dy
class
TestElementwisePow
(
OpTest
):
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"elementwise_pow"
self
.
init_dtype
()
self
.
init_input_output
()
self
.
init_axis
()
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
self
.
x
),
'Y'
:
OpTest
.
np_dtype_to_fluid_dtype
(
self
.
y
)
}
self
.
attrs
=
{
'axis'
:
self
.
axis
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
init_axis
(
self
):
self
.
axis
=
-
1
def
init_input_output
(
self
):
np
.
random
.
seed
(
SEED
)
self
.
x
=
np
.
random
.
uniform
(
1
,
2
,
[
11
,
17
]).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
uniform
(
1
,
2
,
[
11
,
17
]).
astype
(
self
.
dtype
)
self
.
out
=
np
.
power
(
self
.
x
,
self
.
y
)
def
test_check_grad_normal
(
self
):
dx
,
dy
=
ComputeGrad
(
self
.
x
,
self
.
y
,
self
.
out
,
self
.
axis
)
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
,
'Y'
],
'Out'
,
user_defined_grads
=
[
dx
,
dy
])
def
test_check_grad_ingore_x
(
self
):
_
,
dy
=
ComputeGrad
(
self
.
x
,
self
.
y
,
self
.
out
,
self
.
axis
)
self
.
check_grad_with_place
(
self
.
place
,
[
'Y'
],
'Out'
,
no_grad_set
=
set
(
"X"
),
user_defined_grads
=
[
dy
])
def
test_check_grad_ingore_y
(
self
):
dx
,
_
=
ComputeGrad
(
self
.
x
,
self
.
y
,
self
.
out
,
self
.
axis
)
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Out'
,
no_grad_set
=
set
(
"Y"
),
user_defined_grads
=
[
dx
])
class
TestElementwisePowFp16
(
TestElementwisePow
):
def
init_input_output
(
self
):
np
.
random
.
seed
(
SEED
)
self
.
x
=
np
.
random
.
uniform
(
1
,
2
,
[
11
,
17
]).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
uniform
(
1
,
2
,
[
11
,
17
]).
astype
(
self
.
dtype
)
self
.
out
=
np
.
power
(
self
.
x
,
self
.
y
)
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
# self.__class__.no_need_check_grad = True
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
atol
=
1e-5
)
class
TestElementwisePowOp_broadcast_0
(
TestElementwisePow
):
def
init_axis
(
self
):
self
.
axis
=
1
def
init_input_output
(
self
):
np
.
random
.
seed
(
SEED
)
self
.
x
=
np
.
random
.
uniform
(
1
,
2
,
[
11
,
17
]).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
uniform
(
1
,
2
,
[
1
,
11
,
17
]).
astype
(
self
.
dtype
)
self
.
out
=
np
.
power
(
self
.
x
,
self
.
y
)
def
test_check_grad_normal
(
self
):
dx
,
dy
=
ComputeGrad
(
self
.
x
,
self
.
y
,
self
.
out
,
self
.
axis
)
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
,
'Y'
],
'Out'
,
user_defined_grads
=
[
dx
,
dy
])
def
test_check_grad_ingore_x
(
self
):
_
,
dy
=
ComputeGrad
(
self
.
x
,
self
.
y
,
self
.
out
,
self
.
axis
)
self
.
check_grad_with_place
(
self
.
place
,
[
'Y'
],
'Out'
,
no_grad_set
=
set
(
"X"
),
user_defined_grads
=
[
dy
])
def
test_check_grad_ingore_y
(
self
):
dx
,
_
=
ComputeGrad
(
self
.
x
,
self
.
y
,
self
.
out
,
self
.
axis
)
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Out'
,
no_grad_set
=
set
(
"Y"
),
user_defined_grads
=
[
dx
])
class
TestElementwisePowOp_broadcast_1
(
TestElementwisePow
):
def
init_axis
(
self
):
self
.
axis
=
1
def
init_input_output
(
self
):
np
.
random
.
seed
(
SEED
)
self
.
x
=
np
.
random
.
uniform
(
1
,
2
,
[
2
,
100
,
1
]).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
uniform
(
1
,
2
,
[
100
]).
astype
(
self
.
dtype
)
self
.
out
=
np
.
power
(
self
.
x
,
self
.
y
.
reshape
(
1
,
100
,
1
))
def
test_check_grad_normal
(
self
):
dx
,
dy
=
ComputeGrad
(
self
.
x
,
self
.
y
,
self
.
out
,
self
.
axis
)
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
,
'Y'
],
'Out'
,
user_defined_grads
=
[
dx
,
dy
])
def
test_check_grad_ingore_x
(
self
):
_
,
dy
=
ComputeGrad
(
self
.
x
,
self
.
y
,
self
.
out
,
self
.
axis
)
self
.
check_grad_with_place
(
self
.
place
,
[
'Y'
],
'Out'
,
no_grad_set
=
set
(
"X"
),
user_defined_grads
=
[
dy
])
def
test_check_grad_ingore_y
(
self
):
dx
,
_
=
ComputeGrad
(
self
.
x
,
self
.
y
,
self
.
out
,
self
.
axis
)
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Out'
,
no_grad_set
=
set
(
"Y"
),
user_defined_grads
=
[
dx
])
class
TestElementwisePowOp_broadcast_2
(
TestElementwisePow
):
def
init_axis
(
self
):
self
.
axis
=
0
def
init_input_output
(
self
):
np
.
random
.
seed
(
SEED
)
self
.
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
100
,
3
,
1
]).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
uniform
(
0.1
,
1
,
[
100
]).
astype
(
self
.
dtype
)
self
.
out
=
np
.
power
(
self
.
x
,
self
.
y
.
reshape
(
100
,
1
,
1
))
def
test_check_grad_normal
(
self
):
dx
,
dy
=
ComputeGrad
(
self
.
x
,
self
.
y
,
self
.
out
,
self
.
axis
)
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
,
'Y'
],
'Out'
,
user_defined_grads
=
[
dx
,
dy
])
def
test_check_grad_ingore_x
(
self
):
_
,
dy
=
ComputeGrad
(
self
.
x
,
self
.
y
,
self
.
out
,
self
.
axis
)
self
.
check_grad_with_place
(
self
.
place
,
[
'Y'
],
'Out'
,
no_grad_set
=
set
(
"X"
),
user_defined_grads
=
[
dy
])
def
test_check_grad_ingore_y
(
self
):
dx
,
_
=
ComputeGrad
(
self
.
x
,
self
.
y
,
self
.
out
,
self
.
axis
)
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Out'
,
no_grad_set
=
set
(
"Y"
),
user_defined_grads
=
[
dx
])
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录